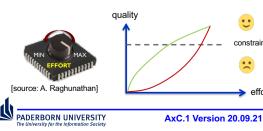


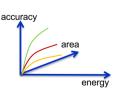
Suitable Application Domains

- Redundant, noisy, imprecise or incomplete input data
 - example: sensor data readings Sensors Isource: Weidmüller Interface
- Output perceived by humans with limited perception
 - example: JPEG lossy image compression


```
PADERBORN UNIVERSITY
```

AxC.1 Version 20.09.21

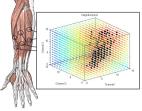

Quality-Effort Trade-Off


- 'Quality' as a new characteristic of an implementation
 - quality metric is application-dependent
 - examples: PSNR for image compression, classification accuracy for neural network, worst-case error for an arithmetic computation, user rating for a search engine ...

constraint

effort

- guality can be a constraint or an optimization objective
- New challenges for design and optimization
 - exploit novel trade-offs between quality and effort
 - define, measure and guarantee quality
 - adjust trade-off at design time or even at runtime

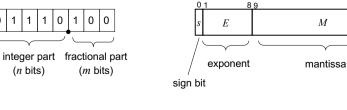


7

Suitable Application Domains

- Time/energy constraints prohibit the computation of an exact or optimal result
 - examples: big data, machine learning

- · No unique or golden answer exists
 - examples: search machines, recommender systems


Google Booking.com yahoo!search **NETFLIX** PADERBORN UNIVERSITY AxC.1 Version 20.09.21

Is AxC Really New? – Related Forms of AxC

- Finite machine precision
 - floating point data types always have limited precision
 - a floating point variable is an approximation of a real number
 - extensive work exists on studying quantization and rounding effects. error analysis, error propagation in longer computations, ...

Example: unsigned fixed-point number with precision (accuracy) of 2^{-m}

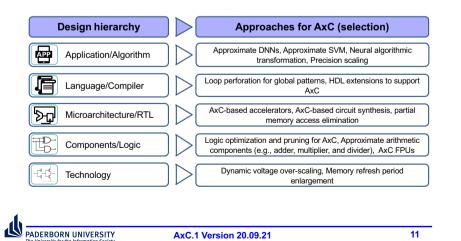
Example: floating-point number in single precision IEEE 754 standard format. precision is not constant over value range

PADERBORN UNIVERSITY

(n bits)

AxC.1 Version 20.09.21

8


Is AxC Something New? – Related Forms of AxC

- Heuristics and approximation algorithms
 - a heuristic is an efficient algorithm for a problem without a guarantee that the solution is accurate / exact / optimal
 - an approximation algorithm is an efficient algorithm with a proven distance between returned and optimal solution (approximation factor)
- · Anytime (iterative) algorithms
 - an anytime algorithm can return a valid solution to a problem even if it is interrupted before it ends
 - typically realized by iterative improvements of an initial valid solution
 - if running longer, the quality of the output increases
- Heuristics, approximation algorithms, and anytime algorithms compute approximated solutions

The (Re-)Emergence of AxC

 Current focus: Aggressively apply approximations on and across all levels of the computer design hierarchy, including hardware

Is AxC Something New? – Related Forms of AxC

- · Unconventional computing paradigms that approximate solutions
 - Stochastic Computing
 - represent numbers by streams of random bits: with n as number of bits in the stream, and m as the number of '1's, the value is m/n

0 0 1 1 0 1 0 0 3/8 = 0.375

 requires little hardware for many operations and is tolerant against bit flips, but also slow and requires bit streams to be uncorrelated

- (Electronic) Analog Computing

- computers built from electronic components, such as diodes, resistors, operational amplifiers, etc.
- can excel in speed and energy-efficiency, but suffer from low reliability, limited precision, errors, and cumbersome programming

- Probabilistic Computing

- analog computing where signals express probabilities
- basically, same pros and cons as analog computing

PADERBORN UNIVERSITY

AxC.1 Version 20.09.21

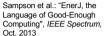
10

The (Re-)Emergence of AxC

- DARPA/ISAT Workshop 2012 on "Advancing computer systems without technology progress"
 - identified AxC as one approach for future performance gains

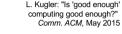
[C. Kozyrakis: "Advancing computer systems without technology progress", IEEE International Symposium on Performance Analysis of Systems and Software, 2013]

- AxC workshop series
 - Workshop on Probabilistic and Approximate Computing (APPROX)
 - Workshop on Approximate Computing (WAPCO)
 - Workshop on Approximate Computing Across the Stack (WACAS)
 - Workshop on Approximate Computing (AC)
 AC 2015 in Paderborn


• AxC sessions in several other conferences

The (Re-)Emergence of AxC

· Increasing number of publications, also in popular magazines



C. Plessl, M. Platzner, P. Schreier: "Aktuelles Schlagwort: Approximate Computing", Informatik Spektrum, 2015

PADERBORN UNIVERSITY

COMMUNICATIONS

Design&Test

Special Issue on Approximate Computing in *IEEE Design & Test*, 2016

AxC.1 Version 20.09.21

Approximate Computing

Goals

1.2 For Whom is this Course

- research-oriented advanced Master-level course
- introduce to the emerging field of Approximate Computing
- provide an overview over approximation approaches at different levels
- serve as a starting point for research activities
- · Addressed study programs
 - Computer Science (CS) master students
 - elective module in focus area "Computer Systems"
 - Computer Engineering (CE) master students
 - elective module in focus areas "Computer Systems" and "Embedded Systems"
- Prerequisites
 - no formal prerequisites with respect to other Master-level courses
 - HOWEVER: solid background in micro/nanoelectronics, digital design, computer architecture, and algorithms/applications is extremely helpful

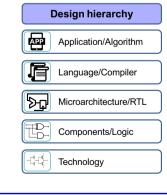
```
ADDERBORN UNIVERSITY
The University for the Information Society
```

15

13

Dependability vs. Approximation

- · Semiconductor technology progresses into low nm domain
 - fault-free operation difficult to achieve due to increasing densities and shrinking supply voltages
 - dependability of chips becomes a huge concern
 - guardbanding leads to diminishing returns
 - redundancy techniques show excessive overheads in hardware and/or software
 - currently unclear how long technology scaling will continue and when (and which) post-CMOS technologies will be ready
- · AxC does not combat 'faults', but intentionally insert them
 - yet, same techniques could be useful for both approaches


PADERBORN UNIVERSITY

AxC.1 Version 20.09.21

14

1.3 Course Content & Organization

- Lecture Topics (tentatively)
 - 1. Introduction
 - 2. Application / algorithm level
 - 3. Language / compiler level
 - 4. Microarchitecture / register-transfer level
 - 5. Components / logic level
 - 6. Technology level

PADERBORN UNIVERSITY

Course Content & Organization

Lecturers

Hassan Ghasemzadeh Mohammadi, O3.134, 🖀 60 4344, hgm@mail.upb.de

Marco Platzner, O3.207, 2 60 5250, platzner@upb.de

- · Lecture sessions
 - Thursday 11:15 13:45
- · Course uses the "inverted classroom model"
 - elements of lecture and post-processing are swapped (inverted)
 - learning activities that students can do well on their own are shifted to a preparation phase
 - the common attendance time is used for an active discussion

```
PADERBORN UNIVERSITY
```

```
AxC.1 Version 20.09.21
```

17

Course Content & Organization

- Lab sessions
 - two modules (successful participation of a module earns a bonus)
 - AxC for machine learning (ML)
 - AxC at the level of application/algorithm
 - get familiar with widely used ML libraries such as Scikit-learn and Tensor-flow
 - apply approximation on different groups of ML algorithms, e.g., clustering and classification
 - evaluate performance and quality of ML models using error analysis
 - AxC for digital signal processing (DSP) circuits
 - AxC at the levels of microarchitecture/RTL and components/logic
 - get familiar with a circuit AxC synthesis process
 - work with approximate component libraries
 - study quality evaluation of approximate DSP circuits
 - learn to work with commercial synthesis tools, e.g., Synopsys Design Compiler
 - start of lab sessions will be announced

PADERBORN UNIVERSITY The University for the Information Society

19

"Inverted Classroom" Model

- Advantage
 - instead of frontal teaching, a time window is created for joint discussion and deepening of understanding
 - the lecture material can be studied at any time, as often as desired, and from anywhere
- Implementation
 - The lecturers make material available in PANDA (slides, screencast+audio)
 - You prepare independently for the classroom sessions
 - We use the common attendance times for
 - clarification of <u>specific</u> questions, discussions
 - examples, possibly small exercises, quizzes
 - reflection of the learning process

AxC.1 Version 20.09.21

18

Course Content & Organization

- Course materials
 - all information is made available on PANDA: https://panda.uni-paderborn.de/course/view.php?id=27940
- Grading
 - successful participation in the lab improves grade by 1 or 2 grade steps (if exam is passed)
 - oral exam (~45') covering lecture + lab

Positional and Survey Papers (Selection)

- J. Han and M. Orhansky. <u>Approximate Computing: An Emerging Paradigm for</u> <u>Energy-Efficient Design</u>. IEEE European Test Symposium, 2013.
- A. Sampson, L. Ceze and D. Grossman. <u>Enerj, the Language of Good-Enough</u> <u>Computing</u>. IEEE Spectrum, Oct 2013.
- R. Nair. <u>Big Data Needs Approximate Computing</u>. Communications of the ACM, Dec 2014.
- L. Kugler. Is "Good Enough" Computing Good Enough? Communications of the ACM, Apr 2015.
- S. Mittal. <u>A Survey of Techniques for Approximate Computing</u>. ACM Computing Surveys, Nr. 62, 2016.
- S. Davidson. <u>Good Enough Computing</u>. IEEE Design & Test, 33(1), 2016.
- Q. Xu, T. Mytkowicz, and N.S. Kim. <u>Approximate Computing: A Survey</u>. IEEE Design & Test, 33(1), 2016.
- G. Rodrigues, F.L. Kastensmidt, and A. Bosio. <u>Survey on Approximate Computing</u> and Its Intrinsic Fault Tolerance. Electronics, 9(4):557, 2020.

AxC.1 Version 20.09.21

21