

Reconfigurable Computing

1. Introduction

Marco Platzner Computer Engineering Group Computer Science Department

Chapter Overview

- 1.1 What is Reconfigurable Computing?
- 1.2 For whom is this course?
- 1.3 Course content & organization

1.1 What is Reconfigurable Computing? (1)

General-Purpose Computer Systems

- Classically, computers consist of hardware and software
 - hardware (processor) fixed at fabrication time \rightarrow hardware is static
 - software (programs) loaded after fabrication time \rightarrow software is dynamic
- Reconfigurable computers change this
 - reconfigurable computers can adapt their hardware to the application after fabrication time \rightarrow hardware is now dynamic

What is Reconfigurable Computing? (2) Embedded Systems

- Fixed-function device (eg. MP3 decoder chip)
 - computes <u>one function</u> which is defined <u>at fabrication time</u>
 high performance for this function by customizing the hardware
 totally inflexible because function cannot be changed after fabrication
- Programmable device (eg. ARM microprocessor)
 - computes <u>any computable function</u> which is defined <u>after fabrication time</u>
 very flexible because we can change to any computable function anytime
 low performance because the hardware is not customized to a specific function
- Reconfigurable device combines fixed-function and programmable

igh performance for in any computable function anytime by customizing the hardware to the function after fabrication time

High-performance?

Any function anytime?

Reconfigurable Computing - History (1)

 1960: G. Estrin at UCLA, "The Fixed Plus Variable Structure Computer"

G. Estrin. "<u>Reconfigurable Computer Origins: The UCLA</u> <u>Fixed-Plus-Variable (F+V) Structure Computer</u>", IEEE Annals of the History of Computing, pages 3-9, Oct-Dec 2000.

Reconfigurable Computing - History (2)

- 1985: Xilinx Inc. introduces the first SRAM-based Field-programmable Gate Array (FPGA)
 - FPGAs are positioned as high-end programmable logic devices
 - they are programmed by writing static RAM cells
 - the resulting volatility was considered a weakness for logic implementation

Reconfigurable Computing - History (3)

- Late '80s / early '90s
 - researchers realize that the volatility of SRAM-based FPGAs is key to FPGA-based computing systems
 - first FPGA-based custom computing machines
 - PAM @ DEC Paris Research Lab, Splash @ Supercomputing Research Center
 - beat supercomputers in signal processing, en/decryption, pattern matching
 - workshop on field-programmable logic founded in 1991 (FPL)
 - conference on FPGA-based computing machines founded in 1993 (FCCM)

RC.1 Version 23.09.24

Potential of Computing in Hardware

• Bioinformatics example: substring search in genome sequences

Reconfigurable Computing – History (4)

 ~1995: dynamic reconfiguration techniques: change hardware functionality at runtime

full dynamic reconfiguration

FPGA

partial dynamic reconfiguration

FPGA

Reconfigurable Computing – History (5)

• 1997-2003: DARPA program "Adaptive Computing Systems"

Reconfigurable Computing – History (6)

 2003-2009: Priority Program "Rekonfigurierbare Rechensysteme" of the German Research Foundation

M. Platzner, J. Teich, and N. Wehn (Eds.). "Dynamically Reconfigurable Systems Architectures, Design Methods and Applications" Springer 2010.

- Today, FPGAs ...
 - are one of the fastest growing sectors of the semiconductor market
 - are being used for computing tasks in both embedded systems and high-performance computers
- In the last 30 years, many startups entered (and left) the market with new types of devices and tools

Reconfigurable Computing - History (7)

- Research community
 - has rapidly grown over the last 30 years, includes microelectronics, computer science & engineering, and many application domains
 - conference/workshop series
 - FPL Field-programmable Logic and Applications
 - FCCM Field-programmable Custom Computing Machines
 - FPGA Field-programmable Gate Arrays
 - FPT Field-Programmable Technology
 - and many more ...
 - journals (started 2007/08)
 - Transactions on Reconfigurable Technology and Systems (ACM)
 - International Journal on Reconfigurable Computing (Hindawi)

1.2 For Whom is this Course

- Goals
 - introduce to the field of Reconfigurable Computing
 - provide an overview over FPGA architectures and design tools
 - give first practical experience in programming FPGAs
 - serve as a starting point for research activities
- Addressed study programs
 - Computer Science (CS) master students
 - elective module in focus area "Computer Systems"
 - Computer Engineering (CE) master students
 - elective module in focus areas "Computer Systems" and "Embedded Systems"
- Prerequisites
 - this course covers a wide range of topics from micro/nano-electronics to algorithms, the lab includes programming of hardware and software
 - no formal prerequisites w.r.t other Master-level courses
 - BUT: you need solid Bachelor-level knowledge in digital design, algorithms and programming

1.3 Course Content & Organization (1)

- Lecture Chapters (tentatively)
 - 1. Introduction
 - 2. Evolution of programmable logic devices
 - 3. Computer-aided design for FPGAs
 - 4. FPGA architectures
 - 5. High-level languages for programming FPGAs
 - 6. Comparison of devices and technologies
 - 7. Reconfigurable systems
 - 8. (Selected) research topics
- We use a PANDA course for providing all materials.

Course Content & Organization (2)

- Classroom times
 - Wednesday 11:15 12:45, room O2
 - contact: Marco Platzner
 O3.207, 2 60 5250, platzner@upb.de
- Lab sessions and times
 - lab dates/times announced in PANDA
 - there will be two lab groups with physical presence
 - contact: Aniruddh P Rao

O3.116, 2 60 4347, aniruddh.p.rao@uni-paderborn.de

Course Content & Organization (3)

- Lab modules
 - module #1: FPGA design tool flow (Xilinx Vivado)

 \rightarrow required course achievement (!)

- − module #2: Hw/sw codesign and high-level synthesis (Xilinx PYNQ) → bonus: one grade step improvement in the final grade
- module #3: TBD

 \rightarrow bonus: one grade step improvement in the final grade

- Grading
 - passing lab module #1 is a required course achievement
 - passing lab module #2 improves grade by 1 grade step (if exam passed)
 - passing lab module #3 improves grade by 1 grade step (if exam passed)
 - oral exam (~45') covering lecture + exercises + lab