
Advanced Networked Systems SS24

Lab5: Switches Do Dream of Machine Learning

Maximum points: 15

Submission: zipped source code on PANDA

Deadline: 10.07.2024 23:59

Contact: lin.wang@upb.de

1 Introduction

In this lab, we will use in-network computing to accelerate AllReduce [5], an important collective operation,

and central to data-parallel distributed deep neural network (DNN) training [4]. The main goal of this lab is to

implement a simplified version of SwitchML [8] at three levels of complexity:

1. In-network AllReduce over Ethernet

2. In-network AllReduce over UDP

3. In-network AllReduce over UDP with reliability

This lab will put your overall networking (and P4) knowledge to the test, as you will need to implement every-

thing (almost) from scratch. Waste no time and start immediately!

Please run git pull in the labs codebase to retrieve the code template for this lab. You will see a new folder

lab5 and you are supposed to work in that directory for this lab. Note that you should use the same VM as

for Lab4, since the P4 environment is required. If you reinstall the VM, please remember to rerun the script

./install_p4_env.sh from Lab4 before you proceed in this lab.

2 In-Network Aggregation

Before reading any further please make sure you have read, and understood, what AllReduce is [5], and, to a

reasonable degree, the main ideas of the SwitchML paper [8].

There are𝑁 workers (i.e., servers here) connected to a single Top-of-Rack (ToR) switch that is P4-programmable.

Workers are identified by a unique rank 𝑟 ∈ {0, 1, ..., 𝑁 − 1}. Each worker is connected to the switch port that

corresponds to its rank. Each worker is running a loop to train the DNN on its local subset of the data. At

iteration 𝑖, worker with rank 𝑟 produces a vector 𝑉 𝑟
𝑖 that holds its contribution to the DNN update. To be able

to proceed to the next iteration, each worker must receive the global DNN update 𝑉𝑖 by aggregating the local

updates from all the workers:

𝑉𝑖 = 𝑉
0
𝑖 + 𝑉

1
𝑖 + ... + 𝑉

𝑁−1
𝑖 (1)

To compute 𝑉𝑖 all workers collectively invoke AllReduce on their local vectors. That is, for each rank 𝑟 , 𝑉𝑖 =

AllReduce(𝑉 𝑟
𝑖 ). Your task for this assignment is to implement this function using a host-network co-design,

following a simplified version of the SwitchML protocol.

2.1 In-network Aggregation à la SwitchML

In-network AllReduce works by having workers stream their local vectors, in chunks of size 𝐶, to the switch.

The switch aggregates those chunks, and after 𝑁 aggregations, it broadcasts the result to all the workers. In

particular, for every AllReduce(𝑉 𝑟
𝑖 ) call, the behavior of worker 𝑟 is as follows. Until 𝑉

𝑟
𝑖 is entirely streamed out:

1. Send 𝑉 𝑟
𝑖 [𝑠 ∶ 𝑡], where 𝑡 − 𝑠 = 𝐶 and wait for a response

2. Write the response to 𝑉𝑖[𝑠 ∶ 𝑡]

3. Increase 𝑠 and 𝑡 by chunk size 𝐶 and repeat the above
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The switch behavior is as follows. Upon receiving a chunk:

1. If it is not the last chunk for this aggregation round, aggregate the values in the chunk, store the aggregation

result on the switch, and drop the packet.

2. If it is the last chunk,

a. aggregate the values,

b. write the aggregation result to the packet,

c. prepare the memory for reuse, and

d. multicast the packet to the involved workers.

In the above scheme, each worker sends a single packet containing one chunk at a time, and waits for a single

response (the aggregation result for this round) in order to proceed. Thus, the switch only needs enoughmemory

to aggregate only a single chunk at a time. This is equivalent to a single-slot version of the SwitchML protocol.

More elaborate schemes (closer to the real SwitchML implementation) are offered as bonuses (see §7).

2.2 Requirements and Assumptions

You solutions to all three levels of this lab are required to respect the following:

1. Vector elements are 32-bit unsigned integers.

2. Vectors at the workers may have arbitrary lengths, although all vectors involved in the same AllReduce

invocation will always have equal lengths.

3. Your solution should work with any value of 𝑁 ∈ [1, 8].

4. Chunk size 𝐶 should always be greater than one.

5. A single switch pipeline can perform at most 32 aggregations per packet traversal. You can double that

amount by doing 64-bit register accesses, but you are not required to.

6. A general requirement is that your P4 code respects (as much as possible) a real switch architecture.

Some of the constraints to respect for a real switch architecture are listed below.

Operations. On a real Intel Tofino switch, the multiplication (×), division (/) and modulo (%) operations are not

available. Although P4 and the BMv2 software switch (we are currently using for Lab5) allow these, using them

in your code will cost you points. Fortunately, the remaining operators (see [1, §8]) are more than enough for a

correct implementation.

Accessing memory. A byproduct of the the stage-local resources model for the RMT architecture is that a real

Tofino switch allows accessing a register (stateful memory as an extern) exactly once, at the exact time when

the packet is processed by the stage the register is allocated to. The Tofino Native Architecture (TNA) exposes a

RegisterAction extern [2, §7.13] for performing atomic read-modify-write operations on registers. The code

inside a RegisterAction can read the register exactly once, perform limited logic (e.g., to decide if a new value

should be written), and potentially write the register, exactly once. In contrast, BMv2 switches allow unrestricted

register accesses through a register’s read and write methods [7]. This not only allows to write code that will

never compile to real hardware but creates an additional complication: data races. Fortunately, the P4 language

defines an @atomic annotation [1, §18.4.1] that allows to group statements for atomic execution w.r.t. other

packets that might be processed and thus access the same memory concurrently. A good solution is expected to

access registers atomically, exactly once
1
, and with minimal logic.

 You can use a @atomic control blocks to create your own read-modify-write primitives for registers, effec-

tively emulating TNA’s RegisterAction :

control MyAtomicAction (in register<T> r, out T old, ... ) {
apply {

@atomic {
r.read(old);

1
Your code may branch arbitrarily, but no path should attempt more than one read and write.
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/* other code */
}

}}

In addition, the BMv2 simple_switch_grpc [3] software switch we use comes with its own set of restrictions,

the most important of which are listed below (but do check [3] for more):

1. Header sizes must be multiples of 8 bits.

2. You can only shift by an 8-bit value.

3. No branching is allowed in the deparser (see the hint below for some inspiration).

 pkt.emit(hdr.x) will emit header x only if x.isValid() is true.

You may make the following assumptions to make your job easier:

1. Number of workers 𝑁 and chunk size 𝐶 are compile time constants that do not change at run time.

2. Vector lengths are always even multiples of 𝐶, and greater than 0.

3. Vector values are always in range [ 0x0 , 0xffff ], so aggregation overflow is impossible.

4. You do not have to deal with other network traffic (e.g., normal IP traffic) and may just drop those packets

not intended for SwitchML.

5. Workers are always correct (assuming you programmed them correctly). That is, you do not have to con-

sider Byzantine faults.

6. You are free to use any P4 construct available to simple_switch_grpc .

7. Any P4 trickery is allowed. Surprise us!

2.3 Project Skeleton

Each level of this lab has its own (sub)directory. In general you are expected to follow the comments in the

provided code template and complete the following files:

1. network.py : Mininet and control plane initialization code

2. worker.py : your worker code

3. p4/main.p4 : your switch code

To run your solution you should first run in your terminal:

$ sudo ./start.sh

This will start Mininet, run your control plane configuration, and open a Mininet CLI. Then from the Mininet

CLI, you type in

mininet> py net.run_workers()

which will run your workers and wait for their completion. A basic version of this function is already imple-

mented for you, but feel free to modify it. To debug your code you may inspect the logs and pcaps under the

logs/ directory. A very useful file is the switch’s log p4s.<switch_name>.log . You may also manually start

workers, each on its own xterm . To do so, first open xterm windows for workers:

mininet> xterm w0 w1

and then run one worker at each window:

$ python worker.py <rank>
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Our framework uses p4app [6] to create a Mininet network of P4Runtime-enabled switches, automatically com-

pile your P4 code and run it, etc. For the biggest part you will not interact with p4app at all. However, p4app

does expose a simplified P4Runtime API that allow you to programmatically control the switch, which youmight
find useful. You can find the relevant functions in lib/p4app/src/p4_mininet.py and you can easily invoke

them like this:

s = net.get("my_switch_name").do_something()

We have also included a testing infrastructure. Worker code, before invoking AllReduce , will write its data to

a file, and after the AllReduce invocation, it will check if the received aggregation result is correct. The test

outcome is written in files found under logs/test/<test_name> . An example output of a passing test for an

AllReduce with two workers looks like this:

[+] Running test: udp-iter-0, rank: 0, ts: 17:17:09.908774
[+] From data files:

/home/acn22/acn-sml-solution/sml-udp-reliable/logs/test/test-udp-iter-0/data-rank-0.csv
/home/acn22/acn-sml-solution/sml-udp-reliable/logs/test/test-udp-iter-0/data-rank-1.csv

[+] Result: PASS

Currently, it is set up such that every worker runs a test in the data it receives. You can find the testing infras-

tructure and other utilities you will be using throughout the lab under lib/*.py . They are all well-documented

so feel free to read them!

3 Level 1: In-network AllReduce Over Ethernet

For the first level of this assignment your should implement AllReduce directly over Ethernet. You should

design an aggregation protocol, including a packet format that carries aggregation data and control, as well as

how such packets are processed by both the switch and the workers. The protocol you design here will form the

basis for the other two levels of the lab later.

Your worker code should craft Ethernet frames, whose payload is your own AllReduce protocol header. You

should use Scapy APIs to craft, send and receive packets directly to/from eth0 . Your switch code should be

able to understand your protocol, perform the required aggregations, and communicate the results.

 The addMulticastGroup function from lib/p4app/src/p4_mininet.py allows you to create a multicast

group standard_metadata.mcast_grp for multicasting packets (see here).

You can assume the network is reliable and congestion-free. That is, every packet sent, by both the workers and

the switch, is guaranteed to be received intact.

Some questions you will need to answer for this level include:

• Where does a worker actually send to?

• How do hosts and switch distinguish your protocol over other Ethernet frames?

• How much state should the switch and workers maintain and/or share?

• What should be the value of chunk size 𝐶 and how many values should a packet contain?

• How to allocate stateful memory to store intermediate aggregations on the switch?

• How to (correctly) update and reuse stateful memory?

4 Level 2: In-network AllReduce Over UDP

You will now transfer your Level 1 solution to a more realistic setting. That is, all communication should now

happen over UDP sockets. Thus, you can no longer use Scapy for L2 communication. However, if you wish, you

may still use Scapy to craft packets of your custom protocol.
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 bytes(p) will return a byte array from a given Scapy packet p .

Socket communication raises some important complications that you now need to deal with. First of all, a socket

sends to, and receives from, an ip:port pair. But to actually put bits on the wire, your hosts’ network stack

needs to know the MAC address for a given target IP. But, unlike Level 1, you no longer have access to the

Ethernet frames. How can you solve this? Additionally, if you sniff eth0 and see that data is received, but not

delivered to your socket, what could be the reason?

In Level 1, Scapy took care of endianess. Since you are no longer using scapy to send/receive packets, you now

have to explicitly deal with this issue. You may find Python’s struct module useful for this task.

You may still assume the network is reliable and congestion-free. That is, every packet sent, by both the workers

and the switch, is guaranteed to be received intact.

Some of the questions you will need to answer here include:

• How do hosts and switch distinguish packets in your protocol over other IP packets?

• Should the switch know the workers’ IP addresses? And if so how?

• How to make sure a broadcast is correctly received by all workers’ sockets?

 The insertTableEntry function from lib/p4app/src/p4_mininet.py allows you to insert entries from the

control plane to any table defined in your P4 program.

5 Level 3: In-network AllReduce Over UDP with Reliability

In the final level, you will extend your Level 2 solution to handle packet loss. In our considered network, packet

loss may occur in two places and for two reasons:

1. The switch will drop a packet if the packet is corrupted, or there is congestion (buffers are full) at the switch

ingress or egress ports.

2. A host’s NIC will drop a packet if the packet is corrupted or if the NIC receive buffer is full.

Your solution is expected to be able to handle both.

SwitchML handles packet loss at the hosts with a simple timeout mechanism. A worker starts a timer when it

sends out a packet. If the (expected) response is received before the timeout then the worker proceeds to the

next chunk. If a timeout occurs, the worker re-sends the same packet, until the correct response is received.

Since a broadcast packet may not reach all the workers (i.e., a retransmission will be triggered), the switch can

no longer discard a result right after the broadcast. Instead, the switch needs to store the result until the result

is no longer needed. When the switch receives a re-transmitted packet, it simply copies the result and unicasts

the result to the sender. This copy is maintained until no more retransmissions are possible for the given chunk.

Workers proceed to chunk 𝑗 , only after having received the result for chunk 𝑗 − 1. Hence, a worker can never

be (and retransmit for) two or more chunks behind.

However, a retransmitted packet may be for a chunk whose aggregation is not yet complete. The switch should

be able to recognize this and not aggregate the sender’s data more than once. To this end, a simple counter is no

longer enough to ensure correctness, and a more involved mechanism is required in order to keep track of which

worker’s chunk has been aggregated. Incorporating this while respecting the hardware switch restrictions as

outlined in §2.2 will (most likely) significantly complicate your switch logic.

To help you test your program we have included the unreliable_send and unreliable_receive functions

in lib/comm.py . You may use these instead of the normal send/receive to exchange packets with delay, or

simulate packet drops. Please consult their docs for how to use them!

Some additional questions you will need to answer here include:

• What does it mean for a packet to be corrupted, and how do you recognize this?
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• How should the protocol be adapted for reliability and how much extra state (on both the switch and the

workers) is required?

• How to update the switch state following the single-access memory semantics discussed in §2.2?

6 Grading Criteria

The grading will be done based on an in-person interview-style oral examination. The detailed schedule for the

interview will be announced when the submission deadline approaches. For fairness consideration, you must

upload your code in a zip file. Please use the naming convention Lab5_GroupX_LastName1_LastName2.zip and

rename the folder before you zip it. Here X is your group number and LastName2 can be omitted if you are

alone in the group. by the specified deadline and use the uploaded version for the interview. No interview will

be scheduled for you if there is no code upload; this is a strict rule.

There are in total 15 points for this lab (excluding the bonuses) and these points are distributed as follows:

• Your implementation of “L1: AllReduce over Ethernet” works correctly and passes the tests with different

numbers of workers (1 to 8), and different vector sizes. (5 points)

• Your implementation of “L2: AllReduce over UDP” works correctly and passes the tests with different num-

bers of workers (1 to 8), and different vector sizes. (4 points)

• Your implementation of “L3: AllReduce over UDP with reliability” works correctly and passes the tests with

different numbers ofworkers (1 to 8), different vector sizes, and different parameters in the unreliable_send
and unreliable_receive functions. (6 points)

Please note that quality of your solution matters. This includes things like, good usage of switch resources,

whether or not you respect hardware switch restrictions in your P4 code, doing unnecessary things that would

hamper performance in a real setting, and so on.

7 Bonuses

 You can do the bonuses after the exam. The deadline for the bonuses is July 30, 2024. Please inform us in the

lab5 interview if you want to attempt the bonuses.

In order for a bonus to be considered, you must have successfully implemented Level 3 of the basic assignment.

That is, any bonus should be implemented by extending your Level 3 solution. For each bonus you attempt, you

should create a new folder under the root folder of this lab.

7.1 B1: Handling Other Traffic

For this bonus your switch has to be able to handle other, non-SwitchML, network traffic. In particular, while

the switch is performing aggregations, the following should also work:

1. pingall from the mininet CLI should succeed.

2. The client and server from Lab 4 should be able to stream a video.

Your control plane logic should go in network.py . You may extend the topology to add more hosts, e.g., a

streaming server and client from Lab 4.

You will receive 2 extra points if you complete this bonus task successfully.

7.2 B2: Multi-slot SwitchML

So far, you have implemented a single-slot version of SwitchML. That is, workers send a single chunk, and wait

for a single response, at a time. For this bonus you will have to implement the multi-slot version of the SwitchML

protocol. That is, workers now have multiple chunks in flight, expecting multiple responses, but also dealing

with (potentially) multiple packet losses.

Another major problem you have to solve is how chunks are mapped to aggregation slots on the switch and who
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decides which slot a chunk will be aggregated to. You are free to implement the solution from the SwitchML

paper, modify it, or devise your own.

You will receive 3 extra points if you complete this bonus task successfully.

7.3 B3: Recirculation

SwitchML uses all four pipes of a Tofino switch to quadruple the number of values that can be aggregated at a

time. This effectively increases aggregation throughput because:

1. Chunk size 𝐶 × 4 × 4 bytes do fit in a packet, and

2. Link latency is a couple of microseconds, whereas the combined processing time of all pipes is a couple

hundred nanoseconds.

For this bonus you will have to extend your solution such that it uses recirculation to aggregate 4× the elements

per packet. BMv2 switches are single-pipe, but we can easily emulate 3 more with the following idea.

Packets are recirculated in the same pipe, and each time your program should be able to distinguish which

(virtual) pipe it is processing a packet for. For example, if you are doing pipe 0 processing (first time you see a

packet for a new chunk), then you should only aggregate part of the chunk, at indices 0 to 𝐶/4, then recirculate

the packet to (virtual) pipe 1 which aggregates indices 𝐶/4 to 𝐶/2, and so on. You will also need to increase your

register sizes such that aggregations for different pipes happen at different register indices.

In this scheme, a packet takes the following (virtual) path inside the switch:

ingress 0 → ingress 1 → ingress 2 → ingress 3 → egress 0

In reality, every recirculation is to pipe 0, but each time different data is accessed. You may read more about the

recirculation behavior of the BMv2 switch(es) here.

To make your job easier, you may assume that, on the switch side, congestion may only occur at the ingress and

egress of pipe 0 only. That is, your packet will either traverse all 4 (virtual) pipes, or none. Thus, there is never

the case that only part of a chunk is aggregated.

If you are combining B1 with this bonus, you may assume that there are more ports than the number of workers

𝑁 available, per pipe, and the extra servers you connect to the switch are all connected to ports in pipe 0.

You will receive 4 extra points if you complete this bonus task successfully.

7.4 B4: AggregatingQuantized Weights

In SwitchML, vectors contain floating point weights of a DNN layer. However, the switch, having no FPUs, only

aggregates 32 bit integers. This works by having workers quantize the weights before invoking AllReduce . For

this bonus you will have to implement SwitchML’s quantization approach. You may now use the GenFloats
functions from lib/gen.py instead of GenInts , to generate floating point values. Then, you have to extend

your protocol such that all workers quantize those values correctly (see the paper for more details). Then, you

perform AllReduce on integers and de-quantize the result back to an array of floating points. You can use

RunFloatTest instead of RunIntTest , to check if you received the correct values (with some precision loss).

You will receive 4 extra points if you complete this bonus task successfully.

7.5 B5: Combining Two (or More) Bonuses

This is not a standalone bonus, but rather, if you combine two bonuses you will receive 2 extra points on top of

the bunus points you have already received, if the result works correctly. You are advised to deliver each bonus

separately before attempting to combine them. You can deliver a combined bonus solution, but you will not get

partial points for the individual parts if the solution does not work.

7/8

https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md#pseudocode-for-what-happens-at-the-end-of-ingress-and-egress-processing


Advanced Networked Systems SS24 Prof. Dr. Lin Wang

References

[1] The P4 Language Consortium. P4_16 Language Specification. 2022. url: https://p4.org/p4-spec/docs/
P4-16-v-1.2.3.html.

[2] Intel. P4_16 Intel TofinoNative Architecture - Public Version. 2021.url: https://github.com/barefootnetworks/
Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf.

[3] P4Lang - Behavioral Model. The BMv2 Simple Switch target. 2019. url: https://github.com/p4lang/
behavioral-model/blob/main/docs/simple_switch.md.

[4] Preferred Networks. Technologies behind Distributed Deel Learning: AllReduce. 2018. url: https://tech.
preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce.

[5] NVIDIA. NCCL Collective Operations, AllReduce. 2024. url: https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/usage/collectives.html.

[6] P4Lang - p4app. p4app. url: https://github.com/p4lang/p4app/tree/rc-2.0.0.

[7] P4Lang - P4C. v1model.p4. 2021. url: https://github.com/p4lang/p4c/blob/main/p4include/v1model.
p4#L305.

[8] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim, Arvind Krish-

namurthy, Masoud Moshref, Dan R. K. Ports, and Peter Richtárik. “Scaling Distributed Machine Learning

with In-Network Aggregation”. In: USENIX Symposium on Networked Systems Design and Implementation
(NSDI). USENIX Association, 2021, pp. 785–808.

8/8

https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce
https://tech.preferred.jp/en/blog/technologies-behind-distributed-deep-learning-allreduce
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html
https://github.com/p4lang/p4app/tree/rc-2.0.0
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4#L305
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4#L305

	Introduction
	In-Network Aggregation
	In-network Aggregation à la SwitchML
	Requirements and Assumptions
	Project Skeleton

	Level 1: In-network AllReduce Over Ethernet
	Level 2: In-network AllReduce Over UDP
	Level 3: In-network AllReduce Over UDP with Reliability
	Grading Criteria
	Bonuses
	B1: Handling Other Traffic
	B2: Multi-slot SwitchML
	B3: Recirculation
	B4: Aggregating Quantized Weights
	B5: Combining Two (or More) Bonuses


