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Learning objectives
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How to interconnect millions of servers in a data center?

How to achieve flexible management in a data center network?



Cloud computing

Elastic resources 

- Expand and contract resources  

- Pay-per-use, infrastructure on demand 

Multi-tenancy 

- Multiple independent users, resource isolation 

- Amortize the cost of the shared infrastructure 

Flexible service management 

- Resilience: isolate failures of server and storage 

- Workload migration: move work to other locations
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What is behind cloud computing?



Large-scale data centers

4https://www.datacentermap.com/germany/ 

Do you know why Frankfurt is the most 
popular location for data centers?

https://www.datacentermap.com/germany/


Internet exchange points
Facilitate efficient interconnection between ISP networks

5https://www.datacentermap.com/ixp/g/frankfurt/ 

DE-CIX

AMS-IX

https://www.datacentermap.com/ixp/g/frankfurt/


Aggregated server traffic in Google’s data centers
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How to interconnect the servers 
with sufficient bandwidth?



How to interconnect many servers?
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Build a giant switch and connect 
all servers with the switch

What problems can you think of with such a design?



How to interconnect many servers?
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Build a giant switch and connect 
all servers with the switch

Limited port density, monetary cost, broadcast storms, isolation…



A dedicated network for the data center
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Line Bus Mesh

Ring Star Fully connected Tree

Which ones are more suitable for a data center?



A dedicated network for the data center
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Line Bus Mesh

Ring Star Fully connected Tree

Tradeoff between connectivity and complexity



A tree-based data center network
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A 3-tier tree architecture

Core switches 
(10Gbps)

Aggregation 
switches (10Gbps)

Top-of-rack (ToR) 
switches (1Gbps)

What if ToR switches go for 10 Gbps or beyond? Nowadays 
we are talking about 400 GbE links.



Bottleneck in tree-based networks
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Less bandwidth available due 
to the excessive sharing

More bandwidth available since the 
sharing is limiteed locally

How to quantitatively measure the connectivity?



Network performance metrics

14

Bisection width

Bisection bandwidth

Full bisection bandwidth

The minimum number of links cut to divide the network 
into two halves

The minimum bandwidth of the links that divide the 
network into two halves

Nodes in one half can communicate simultaneously with 
nodes in the other half, at their full uplink capacity



Oversubscription ratio

Definition 

- Ratio of worst-case required aggregate bandwidth to 
the total uplink bandwidth of a network device 

- Ability of hosts to fully utilize its uplink capabilities 

Examples 

- 1:1 → All hosts can use full uplink capacity 

- 5:1 → Only 20% of host bandwidth may be available 

Typical data center oversubscription ratio is 2.5:1 
to 8:1
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What is the oversubscription ratio 
in the above topology?

1Gbps

1Gbps

1Gbps



Oversubscription ratio

Definition 

- Ratio of worst-case required aggregate bandwidth to 
the total uplink bandwidth of a network device 

- Ability of hosts to fully utilize its uplink capabilities 

Examples 

- 1:1 → All hosts can use full uplink capacity 

- 5:1 → Only 20% of host bandwidth may be available 

Typical data center oversubscription ratio is 2.5:1 
to 8:1
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1Gbps

1Gbps

1Gbps

Oversubscription ratio at the 
aggregation layer: 16 x 6 / 48 = 2:1 

Oversubscription ratio at the core 
layer: 8 x 6 / 48 = 1:1



Factors behind data center network designs

Commoditization in the data center 

- Inexpensive, commodity servers and storage devices 

- Highly specialized network with proprietary devices 

Data center is not a “small Internet” 

- One admin domain, not adversarial, limited policy routing, etc… 

Bandwidth is often the bottleneck 

- Data-intensive workloads (big data, graph processing, 
machine learning) 

- Low traffic locality
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Large-fanout proprietary switch

Low traffic locality



Fat-tree
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A special instance of a Clos network, instead of the traditional fat-tree; 
but generally referred to as fat-tree by researchers



Fat-tree topology

A special instance of the Clos topology 

- Clos networks are originally designed for telephone switches 

- Emulate a single huge switch with many smaller switches 

- Invented in 1938 by Edson Erwin and formalized by Charles Clos in 1953 

- Fat-tree was proposed by Charles Leiserson in 1985, which means a 
different topology (shown in the right side)
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An original fat-tree, not to 
be confused with the data 

center fat-tree topology



Fat-tree: design goals

Scalable interconnection bandwidth 

- Full bisection bandwidth between all pairs of hosts (oversubscription ratio?) 

Economies-of-scale 

- Price/port is constant with the number of hosts, leverage commodity merchant silicon 

Compatibility 

- Support Ethernet and IP without host modifications 

Easy management 

- Modular design, avoid manual management

20



Fat-tree example
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A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge



Fat-tree pod
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A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge

Pod (2-ary 2-tree): full bandwidth among 
hosts directly connected to the pod



Fat-tree bisection bandwidth
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A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge

Full bisection bandwidth



Fat-tree scalability
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Core

Aggregation

Edge

Suppose we use k-port switches, how many servers can we 
interconnect with fat-tree, and how many switches are needed?



Fat-tree scalability
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Core

Aggregation

Edge

#switches: 5k2 /4

#servers: k3/4

Fat-tree can scale to any link capacity at the edge: 40 Gbps, 100 Gbps, 400 Gbps …



Why this has not been done before?

Needs to be backward compatible with IP/Ethernet 

- Existing routing and forwarding protocols do not work for fat-tree 

- Scalability challenges with millions of end points 

Management 

- Thousands of individual elements that must be programmed individually 

Cabling explosion at each level of fat-tree 

- Tens of thousands of cables running across the data center

26



Challenges with fat-tree

Backward compatible with IP/Ethernet 

- Routing algorithms (such as OSPF) will naively choose 
a single shortest path to use between subnets 

- Leads to bottleneck quickly 

-  shortest paths available, should use them all 
equally 

Complex wiring due to lack of high-speed ports

(k /2)2
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Hints: take advantage of the regularity of the fat-tree structure to 
simplify protocol design and improve performance



Addressing in fat-tree
Use 10.0.0.0/8 private address block
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Core

Aggregation

Edge
Pod switches: 

10.pod.switch.1

Hosts: 10.pod.switch.id

0 1

2 3

0 1 2 3

0 1

1.1 1.2 2.1 2.2
Core switches: 10.k.j.i

What factors could limit the max. size of a fat-tree network?



Addressing in fat-tree
Use 10.0.0.0/8 private address block
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Core

Aggregation

Edge
Pod switches: 

10.pod.switch.1

Hosts: 10.pod.switch.id

0 1

2 3

0 1 2 3

0 1

1.1 1.2 2.1 2.2
Core switches: 10.k.j.i

k < 256



Forwarding on fat-tree

Two-level lookup table 

- Prefixes used to forward intra-pod traffic 

- Suffixes used to forward inter-pod traffic
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Hosts in different pods are 
forwarded based on the host ID

TCAM-based implementation

Host IP: 10.pod.switch.id



Ternary content addressable memory (TCAM)

Supports to match on a set of records in constant time (one iteration) 

- CAM supports only two states (0/1) in each bit position: widely used in switches for MAC address 
matching 

- TCAM extends CAM by allowing for 3 states (0/1/?) in each position: useful for IP prefix matching 

- Disadvantages: expensive, power-consuming
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IP prefix records

010011010100

01001100 ????

0101 ????????

0100110010101

Why IP prefix, not IP addresses?
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Output port



Routing on fat-tree

Prefixes in two-level lookup table prevent intra-pod traffic 
from leaving the pod 

Inter-pod traffic is handled by suffix table 

- Suffixes based on host IDs, ensuring spread of traffic across 
core switches 

- Prevent packet reordering by having static path 

Each host-to-host communication has a single static path 

- Not perfect, but better than having a single static path between 
two subnets (as in OSPF)
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Routing example
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10.0.1.2

10.0.1.1

10.0.2.1

10.4.1.2

10.2.2.1

10.2.0.1

10.2.0.3

What are the forwarding rules to install on the switches?



Routing example
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10.0.1.2

10.0.1.1

10.0.2.1

10.4.1.2

10.2.2.1

10.2.0.1

10.2.0.3

(10.pod.switch.0/24, port) 
(0.0.0.id, port)

(10.pod.switch.0/24, port) 
(0.0.0.id, port)

(10.pod.0.0/16, port)



Flow collision
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Hard-coded traffic diffusion can lead to bad collisions 
→ performance bottleneck



Solutions to flow collisions

Equal-cost multi-path (ECMP) 

- Static path between end-hosts → static path for each flow 

Flow scheduling 

- Have a centralized scheduler to assign flows to paths 
(leveraging software defined networking)

36

IP MACPortPayload

Hashing

0

1

2

3

Next hop A

Next hop B

Next hop C

Next hop D

Hash bucket Next hops

Packet 



Fat-tree cabling solution
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Organize switches into pod racks leveraging the regular structure of fat-tree



Fat-tree is quite regular, can we take the other extreme?

38

Can we general a completely random topology for the data center network?



How does Google build its data center networks?

39

Firehose 1.0 (never 
in production)

Firehose 1.1 (first production 
Clos, bag on the side)

Watchtower (inter-cluster 
networking, depop)



How does Google build its data center networks?
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Jupiter, 2015 (uniform bandwidth, 
incremental deployment)

OCS: Optical Circuit Switches

Jupiter, 2022 (direct 
connect, reconfigurable)

Saturn (first 10G possible 
between servers)



Factors driven Google's designs

Motivation 

- Bandwidth demands in the data center are doubling 12-15 months 

- Cost and operational complexity become prohibitive 

- Availability requirements not strict in data centers (due to abundant, cheap bandwidth) 

- Interoperability is not a big concern (single-operator) 

Design principles 

- Clos topologies (can scale to nearly arbitrary size, in-built path diversity and redundancy) 

- Merchant silicon (general purpose, commodity priced, exponential growth in bandwidth capacity) 

- Centralized control protocols (to replace distributed protocols) 

41



Google’s data center network evolution
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VP for systems and cloud AI 
@ Google

Yes, I also 
designed fat-tree



How to achieve flexible management 
of data center networks?



Issues in fat-tree
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VM

No support for seamless VM migration 
IP addresses are location-dependent and 

migration would break the TCP connection

Plug-and-play not possible 
IP addresses have to be pre-

assigned to both switches and hosts

It seems that the location-dependent IP address is the 
culprit. How to address this issue?

Add a new server



L2 vs L3 data center network fabric
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Technique Plug-and-play Scalability
Small switch 

state
Seamless VM 

migration

Layer 2: flat MAC 
addresses

Layer 3: IP 
addresses



L2 vs L3 data center network fabric
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Technique Plug-and-play Scalability
Small switch 

state
Seamless VM 

migration

Layer 2: flat MAC 
addresses

Layer 3: IP 
addresses

Broadcast 
strom

Location-dependent addresses 
mandate manual configuration

IP endpoint 
changes

Exact match leads to 
too many entries



Switch state: L2 vs L3

Commodity switches have ~640KB of low latency, power hungry, expensive on chip 
memory (e.g., TCAM): can store 32-64K forwarding entries 

In a data center with 500K servers, there could be 10 million virtual endpoints that need 
to be addressed 

- Flat address (MAC address) 

- Hierarchical address (IP address)

47

10 million address mappings
~100 MB on-chip 

memory
~150x over the limit

100-1000 address mappings 
(using prefix/suffix matching)

~10 KB of memory
easily accommodated 

in today’s switches



PortLand

Main idea: separate node location from node identifier 

- Host IP: node identifier 

- Pseudo MAC (PMAC): node location 

Fabric manager 

- Maintains IP → PMAC mapping for ARP 

- Facilitates fault tolerance 

PMAC sufficient for positional forwarding
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PortLand design
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IP: 10.5.1.2 

AMAC: 00:19:B9:FA:88:E2

IP: 10.5.1.2 

AMAC: 00:19:B9:FA:88:E2 

PMAC: 00:00:01:02:00:01

Fabric Manager

IP: 10.5.1.2 

PMAC: 00:00:01:02:00:01



PMAC and location discovery

PMAC: pod.position.port.vmid 

Switches self-discover location by exchanging Location Discovery Messages (LDMs): 

- Tree-level/role: based on neighbor identity 

- Pod number: fetch from the Fabric manager 

- Position number: aggregation switches help ToR switches choose unique position number 

Advantages 

- Plug-and-play 

- Small switch state
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Fabric manager
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IP: 10.5.1.2 

AMAC: 00:19:B9:FA:88:E2

IP: 10.5.1.2 

AMAC: 00:19:B9:FA:88:E2 

PMAC: 00:00:01:02:00:01

Fabric Manager

IP: 10.5.1.2 

PMAC: 00:00:01:02:00:01

Network map 
ARP mappings

Only soft state: no 
need for manual 
configurations!



PortLand workflow
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Fabric Manager

Step 1: source 
issues an ARP



PortLand workflow
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Fabric Manager

Step 1: source issues an ARP 
for the destination IP

Step 2: edge switch 
intercepts the ARP to get the 
PMAC for the destination IP



PortLand workflow
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Fabric Manager

Step 1: source issues an ARP 
for the destination IP

Step 2: edge switch 
intercepts the ARP to get the 
PMAC for the destination IP

In case of no matching 
entries, FM broadcasts the 

ARP to all core switches



PortLand workflow
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Fabric Manager

Step 1: source issues an ARP 
for the destination IP

Step 2: edge switch 
intercepts the ARP to get the 
PMAC for the destination IP

Step 3: packet is forward on 
the network with PMAC



PortLand workflow
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Fabric Manager

Step 1: source issues an ARP 
for the destination IP

Step 2: edge switch 
intercepts the ARP to get the 
PMAC for the destination IP

Step 3: packet is forward on 
the network with PMAC

Step 4: destination edge switch 
rewrites PMAC to AMAC and forward 
the packet to the destination host



PortLand workflow
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Fabric Manager

Step 1: source issues an ARP 
for the destination IP

Step 2: edge switch 
intercepts the ARP to get the 
PMAC for the destination IP

Step 3: packet is forward on 
the network with PMAC

Step 4: destination edge switch 
rewrites PMAC to AMAC and forward 
the packet to the destination host

Straightforward hardware support: 
• No modification needed for hosts 
• PMAC <-> AMAC translation on edge switches 
• Other switches forward based on prefix-matching on PMAC



PortLand workflow
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Fabric Manager

How is the table on 
FM populated?



PortLand workflow
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Fabric Manager

How is the table on 
FM populated?

Recall learning switch: an IP-PMAC entry is forwarded to the FM 
every time the edge switch sees a new IP



Summary

Data center networking 

- Topology, performance (bisection bandwidth, over-subscription ratio) 

- Architecture design: fat-tree 

- Routing in fat-tree 

- L2 vs. L3 addressing for data center networking 

- PortLand design 

- Forwarding and routing in PortLand
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Next time: data center transport
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Congestion ahead!

How to deal with congestions in data center networks?


