
Advanced Networked Systems SS24
Data Center Networks

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://en.cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

Learning objectives

2

How to interconnect millions of servers in a data center?

How to achieve flexible management in a data center network?

Cloud computing

Elastic resources

- Expand and contract resources

- Pay-per-use, infrastructure on demand

Multi-tenancy

- Multiple independent users, resource isolation

- Amortize the cost of the shared infrastructure

Flexible service management

- Resilience: isolate failures of server and storage

- Workload migration: move work to other locations

3

What is behind cloud computing?

Large-scale data centers

4https://www.datacentermap.com/germany/

Do you know why Frankfurt is the most
popular location for data centers?

https://www.datacentermap.com/germany/

Internet exchange points
Facilitate efficient interconnection between ISP networks

5https://www.datacentermap.com/ixp/g/frankfurt/

DE-CIX

AMS-IX

https://www.datacentermap.com/ixp/g/frankfurt/

Aggregated server traffic in Google’s data centers

6

How to interconnect the servers
with sufficient bandwidth?

How to interconnect many servers?

8

Build a giant switch and connect
all servers with the switch

What problems can you think of with such a design?

How to interconnect many servers?

9

Build a giant switch and connect
all servers with the switch

Limited port density, monetary cost, broadcast storms, isolation…

A dedicated network for the data center

10

Line Bus Mesh

Ring Star Fully connected Tree

Which ones are more suitable for a data center?

A dedicated network for the data center

11

Line Bus Mesh

Ring Star Fully connected Tree

Tradeoff between connectivity and complexity

A tree-based data center network

12

A 3-tier tree architecture

Core switches
(10Gbps)

Aggregation
switches (10Gbps)

Top-of-rack (ToR)
switches (1Gbps)

What if ToR switches go for 10 Gbps or beyond? Nowadays
we are talking about 400 GbE links.

Bottleneck in tree-based networks

13

Less bandwidth available due
to the excessive sharing

More bandwidth available since the
sharing is limiteed locally

How to quantitatively measure the connectivity?

Network performance metrics

14

Bisection width

Bisection bandwidth

Full bisection bandwidth

The minimum number of links cut to divide the network
into two halves

The minimum bandwidth of the links that divide the
network into two halves

Nodes in one half can communicate simultaneously with
nodes in the other half, at their full uplink capacity

Oversubscription ratio

Definition

- Ratio of worst-case required aggregate bandwidth to
the total uplink bandwidth of a network device

- Ability of hosts to fully utilize its uplink capabilities

Examples

- 1:1 → All hosts can use full uplink capacity

- 5:1 → Only 20% of host bandwidth may be available

Typical data center oversubscription ratio is 2.5:1
to 8:1

15

What is the oversubscription ratio
in the above topology?

1Gbps

1Gbps

1Gbps

Oversubscription ratio

Definition

- Ratio of worst-case required aggregate bandwidth to
the total uplink bandwidth of a network device

- Ability of hosts to fully utilize its uplink capabilities

Examples

- 1:1 → All hosts can use full uplink capacity

- 5:1 → Only 20% of host bandwidth may be available

Typical data center oversubscription ratio is 2.5:1
to 8:1

16

1Gbps

1Gbps

1Gbps

Oversubscription ratio at the
aggregation layer: 16 x 6 / 48 = 2:1

Oversubscription ratio at the core
layer: 8 x 6 / 48 = 1:1

Factors behind data center network designs

Commoditization in the data center

- Inexpensive, commodity servers and storage devices

- Highly specialized network with proprietary devices

Data center is not a “small Internet”

- One admin domain, not adversarial, limited policy routing, etc…

Bandwidth is often the bottleneck

- Data-intensive workloads (big data, graph processing,
machine learning)

- Low traffic locality

17

Large-fanout proprietary switch

Low traffic locality

Fat-tree

18

A special instance of a Clos network, instead of the traditional fat-tree;
but generally referred to as fat-tree by researchers

Fat-tree topology

A special instance of the Clos topology

- Clos networks are originally designed for telephone switches

- Emulate a single huge switch with many smaller switches

- Invented in 1938 by Edson Erwin and formalized by Charles Clos in 1953

- Fat-tree was proposed by Charles Leiserson in 1985, which means a
different topology (shown in the right side)

19

An original fat-tree, not to
be confused with the data

center fat-tree topology

Fat-tree: design goals

Scalable interconnection bandwidth

- Full bisection bandwidth between all pairs of hosts (oversubscription ratio?)

Economies-of-scale

- Price/port is constant with the number of hosts, leverage commodity merchant silicon

Compatibility

- Support Ethernet and IP without host modifications

Easy management

- Modular design, avoid manual management

20

Fat-tree example

21

A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge

Fat-tree pod

22

A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge

Pod (2-ary 2-tree): full bandwidth among
hosts directly connected to the pod

Fat-tree bisection bandwidth

23

A fat-tree network built from 4-port identical switches

Core

Aggregation

Edge

Full bisection bandwidth

Fat-tree scalability

24

Core

Aggregation

Edge

Suppose we use k-port switches, how many servers can we
interconnect with fat-tree, and how many switches are needed?

Fat-tree scalability

25

Core

Aggregation

Edge

#switches: 5k2 /4

#servers: k3/4

Fat-tree can scale to any link capacity at the edge: 40 Gbps, 100 Gbps, 400 Gbps …

Why this has not been done before?

Needs to be backward compatible with IP/Ethernet

- Existing routing and forwarding protocols do not work for fat-tree

- Scalability challenges with millions of end points

Management

- Thousands of individual elements that must be programmed individually

Cabling explosion at each level of fat-tree

- Tens of thousands of cables running across the data center

26

Challenges with fat-tree

Backward compatible with IP/Ethernet

- Routing algorithms (such as OSPF) will naively choose
a single shortest path to use between subnets

- Leads to bottleneck quickly

- shortest paths available, should use them all
equally

Complex wiring due to lack of high-speed ports

(k /2)2

27

Hints: take advantage of the regularity of the fat-tree structure to
simplify protocol design and improve performance

Addressing in fat-tree
Use 10.0.0.0/8 private address block

28

Core

Aggregation

Edge
Pod switches:

10.pod.switch.1

Hosts: 10.pod.switch.id

0 1

2 3

0 1 2 3

0 1

1.1 1.2 2.1 2.2
Core switches: 10.k.j.i

What factors could limit the max. size of a fat-tree network?

Addressing in fat-tree
Use 10.0.0.0/8 private address block

29

Core

Aggregation

Edge
Pod switches:

10.pod.switch.1

Hosts: 10.pod.switch.id

0 1

2 3

0 1 2 3

0 1

1.1 1.2 2.1 2.2
Core switches: 10.k.j.i

k < 256

Forwarding on fat-tree

Two-level lookup table

- Prefixes used to forward intra-pod traffic

- Suffixes used to forward inter-pod traffic

30

Hosts in different pods are
forwarded based on the host ID

TCAM-based implementation

Host IP: 10.pod.switch.id

Ternary content addressable memory (TCAM)

Supports to match on a set of records in constant time (one iteration)

- CAM supports only two states (0/1) in each bit position: widely used in switches for MAC address
matching

- TCAM extends CAM by allowing for 3 states (0/1/?) in each position: useful for IP prefix matching

- Disadvantages: expensive, power-consuming

31

M
at

ch
 e

nc
od

erIP address
Address

IP prefix records

010011010100

01001100 ????

0101 ????????

0100110010101

Why IP prefix, not IP addresses?

D
ec

od
er

Output port

Routing on fat-tree

Prefixes in two-level lookup table prevent intra-pod traffic
from leaving the pod

Inter-pod traffic is handled by suffix table

- Suffixes based on host IDs, ensuring spread of traffic across
core switches

- Prevent packet reordering by having static path

Each host-to-host communication has a single static path

- Not perfect, but better than having a single static path between
two subnets (as in OSPF)

32

Routing example

33

10.0.1.2

10.0.1.1

10.0.2.1

10.4.1.2

10.2.2.1

10.2.0.1

10.2.0.3

What are the forwarding rules to install on the switches?

Routing example

34

10.0.1.2

10.0.1.1

10.0.2.1

10.4.1.2

10.2.2.1

10.2.0.1

10.2.0.3

(10.pod.switch.0/24, port)
(0.0.0.id, port)

(10.pod.switch.0/24, port)
(0.0.0.id, port)

(10.pod.0.0/16, port)

Flow collision

35

Hard-coded traffic diffusion can lead to bad collisions
→ performance bottleneck

Solutions to flow collisions

Equal-cost multi-path (ECMP)

- Static path between end-hosts → static path for each flow

Flow scheduling

- Have a centralized scheduler to assign flows to paths
(leveraging software defined networking)

36

IP MACPortPayload

Hashing

0

1

2

3

Next hop A

Next hop B

Next hop C

Next hop D

Hash bucket Next hops

Packet

Fat-tree cabling solution

37

Organize switches into pod racks leveraging the regular structure of fat-tree

Fat-tree is quite regular, can we take the other extreme?

38

Can we general a completely random topology for the data center network?

How does Google build its data center networks?

39

Firehose 1.0 (never
in production)

Firehose 1.1 (first production
Clos, bag on the side)

Watchtower (inter-cluster
networking, depop)

How does Google build its data center networks?

40

Jupiter, 2015 (uniform bandwidth,
incremental deployment)

OCS: Optical Circuit Switches

Jupiter, 2022 (direct
connect, reconfigurable)

Saturn (first 10G possible
between servers)

Factors driven Google's designs

Motivation

- Bandwidth demands in the data center are doubling 12-15 months

- Cost and operational complexity become prohibitive

- Availability requirements not strict in data centers (due to abundant, cheap bandwidth)

- Interoperability is not a big concern (single-operator)

Design principles

- Clos topologies (can scale to nearly arbitrary size, in-built path diversity and redundancy)

- Merchant silicon (general purpose, commodity priced, exponential growth in bandwidth capacity)

- Centralized control protocols (to replace distributed protocols)

41

Google’s data center network evolution

42

VP for systems and cloud AI
@ Google

Yes, I also
designed fat-tree

How to achieve flexible management
of data center networks?

Issues in fat-tree

44

VM

No support for seamless VM migration
IP addresses are location-dependent and

migration would break the TCP connection

Plug-and-play not possible
IP addresses have to be pre-

assigned to both switches and hosts

It seems that the location-dependent IP address is the
culprit. How to address this issue?

Add a new server

L2 vs L3 data center network fabric

45

Technique Plug-and-play Scalability
Small switch

state
Seamless VM

migration

Layer 2: flat MAC
addresses

Layer 3: IP
addresses

L2 vs L3 data center network fabric

46

Technique Plug-and-play Scalability
Small switch

state
Seamless VM

migration

Layer 2: flat MAC
addresses

Layer 3: IP
addresses

Broadcast
strom

Location-dependent addresses
mandate manual configuration

IP endpoint
changes

Exact match leads to
too many entries

Switch state: L2 vs L3

Commodity switches have ~640KB of low latency, power hungry, expensive on chip
memory (e.g., TCAM): can store 32-64K forwarding entries

In a data center with 500K servers, there could be 10 million virtual endpoints that need
to be addressed

- Flat address (MAC address)

- Hierarchical address (IP address)

47

10 million address mappings
~100 MB on-chip

memory
~150x over the limit

100-1000 address mappings
(using prefix/suffix matching)

~10 KB of memory
easily accommodated

in today’s switches

PortLand

Main idea: separate node location from node identifier

- Host IP: node identifier

- Pseudo MAC (PMAC): node location

Fabric manager

- Maintains IP → PMAC mapping for ARP

- Facilitates fault tolerance

PMAC sufficient for positional forwarding

48

PortLand design

49

IP: 10.5.1.2

AMAC: 00:19:B9:FA:88:E2

IP: 10.5.1.2

AMAC: 00:19:B9:FA:88:E2

PMAC: 00:00:01:02:00:01

Fabric Manager

IP: 10.5.1.2

PMAC: 00:00:01:02:00:01

PMAC and location discovery

PMAC: pod.position.port.vmid

Switches self-discover location by exchanging Location Discovery Messages (LDMs):

- Tree-level/role: based on neighbor identity

- Pod number: fetch from the Fabric manager

- Position number: aggregation switches help ToR switches choose unique position number

Advantages

- Plug-and-play

- Small switch state

50

Fabric manager

51

IP: 10.5.1.2

AMAC: 00:19:B9:FA:88:E2

IP: 10.5.1.2

AMAC: 00:19:B9:FA:88:E2

PMAC: 00:00:01:02:00:01

Fabric Manager

IP: 10.5.1.2

PMAC: 00:00:01:02:00:01

Network map
ARP mappings

Only soft state: no
need for manual
configurations!

PortLand workflow

52

Fabric Manager

Step 1: source
issues an ARP

PortLand workflow

53

Fabric Manager

Step 1: source issues an ARP
for the destination IP

Step 2: edge switch
intercepts the ARP to get the
PMAC for the destination IP

PortLand workflow

54

Fabric Manager

Step 1: source issues an ARP
for the destination IP

Step 2: edge switch
intercepts the ARP to get the
PMAC for the destination IP

In case of no matching
entries, FM broadcasts the

ARP to all core switches

PortLand workflow

55

Fabric Manager

Step 1: source issues an ARP
for the destination IP

Step 2: edge switch
intercepts the ARP to get the
PMAC for the destination IP

Step 3: packet is forward on
the network with PMAC

PortLand workflow

56

Fabric Manager

Step 1: source issues an ARP
for the destination IP

Step 2: edge switch
intercepts the ARP to get the
PMAC for the destination IP

Step 3: packet is forward on
the network with PMAC

Step 4: destination edge switch
rewrites PMAC to AMAC and forward
the packet to the destination host

PortLand workflow

57

Fabric Manager

Step 1: source issues an ARP
for the destination IP

Step 2: edge switch
intercepts the ARP to get the
PMAC for the destination IP

Step 3: packet is forward on
the network with PMAC

Step 4: destination edge switch
rewrites PMAC to AMAC and forward
the packet to the destination host

Straightforward hardware support:
• No modification needed for hosts
• PMAC <-> AMAC translation on edge switches
• Other switches forward based on prefix-matching on PMAC

PortLand workflow

58

Fabric Manager

How is the table on
FM populated?

PortLand workflow

59

Fabric Manager

How is the table on
FM populated?

Recall learning switch: an IP-PMAC entry is forwarded to the FM
every time the edge switch sees a new IP

Summary

Data center networking

- Topology, performance (bisection bandwidth, over-subscription ratio)

- Architecture design: fat-tree

- Routing in fat-tree

- L2 vs. L3 addressing for data center networking

- PortLand design

- Forwarding and routing in PortLand

60

Next time: data center transport

61

Congestion ahead!

How to deal with congestions in data center networks?

