
Advanced Networked Systems SS24
Data Center Transport

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://en.cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

Learning objectives

2

What are the new challenges in data center transport?

What design choices do we have for data centers transport design?

What is special about data center transport?

Diverse applications and workloads

- Large variety in performance requirements

Traffic patterns

- Large long-lived flows vs small short-lived flows

- Scatter-gather, broadcast, multicast

Built out of commodity components: no expensive/customized hardware

Network

- Extremely high speed (100+ Gbps)

- Extremely low latency (10-100s of us)

3

Congestion control recall

4

Network

Do you still remember the goal of congestion control?

Congestion control recall

5

Network

Congestion control aims to determine the rate to send data on a connection, such that
(1) the sender does not overrun the network capability and (2) the network is efficiently utilized

TCP

6

Sender Receiver

ACKACKACK

The transport layer in the network model:
• Reliable, in-order delivery using sequence numbers and

acknowledgements
• Make sure not to overrun the receiver (receive window,) and

the network (congestion window,)

• What can be sent =

rwnd
cwnd

min{cwnd, rwnd}

TCP

IP

Ethernet

Physical

Application
Reliable

Lossy

Network

Recall TCP AIMD

7

Time

Timeout
3 duplicate ACKs

(fast retransmission and fast recovery)

Do not re-enter slow-start

Slow-start

1

TCP Reno

cwnd

0

W

ssthresh = W/2

// for every received ACK
if cwnd < ssthresh: //slow-start

cwnd += 1
else: // AIMD

cwnd += 1 / cwnd

TCP incast problem

A data center application runs on multiple servers

- Storage, cache, data processing (MapReduce)

They use a scatter-gather (or partition-aggregate)
work pattern

- [scatter] A client sends a request to a bunch of
servers for data

- [gather] All servers respond to the client

More broadly, a client-facing query might have to
collect data from many servers

8

From a switch point of view

9

Commodity off-the-shelf switches typically have
shallow buffers. Do you know why?

Switch

Buffer size: 5 packets

From a switch point of view

10

Switch

Buffer size: 5 packets

Commodity off-the-shelf switches typically have
shallow buffers.

Scatter

From a switch point of view

11

Switch

Buffer size: 5 packets

Collision: queue capacity overrun at the
switch due to the large number of traffic flows

coming in at the same time

How does TCP handle this?

Gather

From a switch point of view

12

Switch

Buffer size: 5 packets
~100ms

The collision leads to packet loss which will be
recognized by the servers after a timeout.

From a switch point of view

13

Switch

Buffer size: 5 packets

After the timeout, all servers start again, at the
same time! TCP global synchronization problem!

Gather

TCP incast problem

14https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf

https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf

TCP incast

Packet drops due to the capacity overrun at shared commodify switches

- Can lead to TCP global synchronization and even more packet losses

- The link remains idle (hence, reduced capacity and poor performance)

- First discussed in Nagle et al., The Panasas ActiveScale Storage Cluster, SC 2004

Some potential solutions

- Use lower timeouts: (1) can lead to spurious timeouts and retransmissions, (2) high operating
system overhead

- Other variants of TCP (SACKS, Cubic): cannot avoid the basic phenomenon of TCP incast

- Larger switch buffer: helps to push the collapse point further, but is expensive and introduces
higher packet delay

15

Can we do better?

The basic challenge is that there are only limited number of things we can do once a
packet is dropped

- Various acknowledgements schemes (ACK, SACK)

- Various timeouts based optimizations

Whatever clever way you come up with can be over-optimized

- Imagine deploying that with multiple workloads, flow patterns, and switches

16

Can we try to avoid packet drops in the first place? If so, how?

Ethernet flow control

Pause Frame (IEEE 802.3x)

- An overwhelmed Ethernet receiver/NIC can send a
"PAUSE" Ethernet frame to the sender

- Upon receiving the PAUSE frame, the sender stops
transmission for a certain duration of time

Limitations

- Designed for end-host NIC (memory, queue) overruns, not
switches

- Blocks all transmission at the Ethernet-level (port-level,
not flow-level)

17

TCP

IP

Ethernet

Physical

Application

Priority-based flow control

PFC, IEEE 802.1Qbb

- Enhancement over PAUSE frames

- 8 virtual traffic lanes and one can be selectively stopped

- Timeout is configurable

Limitations

- Only 8 lanes: think about the number of flows we may have

- Deadlocks in large networks

- Unfairness (victim flows)

18
https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/
at_a_glance_c45-460907.pdf

https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf

Data Center TCP (DCTCP)

TCP-alike congestion control protocol

Basic idea: pass information about switch
queue buildup to senders

- From where to pass information?

- How to pass information?

At the sender, react to this information by
slowing down the transmission

- By how much?

- How frequent?

19

Explicit Congestion Notification (ECN)

ECN is a standardized way of passing "the presence
of congestion"

- Part of the IP packet header (2 bits): capability and
congestion indication (yes/no)

- Supported by most commodity switches

Idea: For a queue size of , when the queue
occupancy goes beyond , mark the passing
packet's ECN bit as "yes"

- There are more sophisticated logics (Random Early
Detection, RED) that can probabilistically mark packets

N
K

20

RFC 3168

ECN capable
transport (ECT)

Congest
encountered (CE)

ECN bit in action

21

Switch

Buffer size: 5 packets
B

A

C

Assume that B is sending TCP segments to A.
At some point of time, C also starts to send packets, and the queue is getting full.

The switch starts to mark packets with ECN bits.

How does B get to know there was a congestion at the switch?

ECN bit set

The ECN bits location in TCP header

22https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

The TCP congestion window logic:
• Additive increase: per RTT

• Multiplicative decrease:
- Packet loss
- A packet received with ECN marked

W ← W + 1
W ← W/2

https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

DCTCP main idea

Simple marking at the switch

- After threshold start marking packets with ECN (instantaneous vs. average marking)

- Uses instantaneous marking for fast notification

Typical ECN receiver

- Mark ACKs with the ECE flag, until the sender ACKs back using CWR flag bit

DCTCP receiver

- Only mark ACKs corresponding to the ECN-marked packet

Sender’s congestion control

- Estimate the packets that are marked with ECN in a running window

K

23

DCTCP congestion window calculations

24

In every RTT, calculate the percentage of
ECN-marked ACKs

Use a sliding window to estimate the
average percentage of ECN-marked ACKs

Decide the congestion window based on
the estimation

F =
#ECN-marked ACKs

#Total ACKs

cwnd ← cwnd × (1 − α /2)

α ← (1 − g) × α + g × F

DCTCP vs TCP example

25

ECN-marks on ACKs TCP MPTCP

0110001001

0000000001

Cut window by 50% (every time)

Cut window by 50%

Cut window by 40%

Cut window by 10%

t

cwnd

t

cwnd

DCTCP performance

26

At 1 Gbps, same bandwidth but
lower switch queue occupancy

At 10 Gbps, after certain (queue occupancy
parameter) threshold, the same bandwidth

K

Significantly lower queueing delay, similar throughput to TCP for large K

What about incast?

27

Better performance than TCP up to a point
where (#servers=35) where not even a single

packet can pass from the switch

DCTCP has very low packet losses
in comparison to TCP

Query: 1 machine sending 1 MB/ data to machines and waiting for the echon n

Can we use a different
congestion signal than the queue

occupancy on the switch?

Recall BBR

29

Can we directly apply BBR on data center networks?

TIMELY

Use Round Trip Time (RTT) as the indication of congestion signal

- RTT is a multi-bit signal indicating end-to-end congestion throughout the
network — no explicit switch support required to do any marking

- RTT covers ECN signal completely, but not vice versa!

30

However, getting precise RTT is challenging. Why?

RTT 3 2 1 0

ECN 1 1 0 0

RTT calculation challenges

31

OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx

delay

Forward fabric delay

Remote NIC
Rx delay

Remote NIC Tx delay

Reverse fabric delay

Local NIC Rx delay

ACKPacket

Remote host receive and
processing delay

1

2

3

4

5
6

7

Local host Rx delay 8

TCP segment
(64 KB)

RTT calculation challenges

32

OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket
TCP segment

(64 KB)

How to measurement the
Tx time?

How to avoid OS time-
stamping noise

(scheduling, jitter)?

How to account for congestion in
the reserve direction for the ACKs?

RTT calculation challenges

33

OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket
TCP segment

(64 KB)

NIC enables TCP Segmentation
Offload (TSO) and produces

completion timestamps

Tx NIC generates ACKs in
hardware without the OS

involvementHigh-priority separate
queue for ACKs

Separate ACK queuing to solve reverse congestion

34

One queue for
data and ACKs

Separate queues for
data and ACKs, ACKs

are prioritized

Can we measure RTTs precisely?

35

Yes, the random variance is much smaller than the
kernel TCP measurements

RTT calculation

36

ACK on NIC, negligible time

Propagation +
queueing delay

RTT = tcompletion − tsend − seg . size/NIC . linerate

tsend
tcompletion

TIMELY

Independent of the transport used

- Assumes an ACK-based protocol (TCP)

- Receivers must generate ACKs for incoming data

Key concept

- Absolute RTTs are not used, only the gradient of
the RTTs

- Positive gradient → rising RTT → queue buildup

- Negative gradient → decreasing RTT → queue
depletion

37

RTT gradient

38

TIMELY pacing engine

39

Pacing based on the rate, with
packet bursts of 64 KB

TIMELY performance: vs. DCTCP

40

TIMELY achieves much lower yet stable RTTs

TIMELY performance: incast

41

TIMELY throughput and latency stay the
same with and without incast traffic

UR: Uniform Random

TIMEly performance: application level

42

A (unknown) RPC latency of a data center storage benchmark

TIMELY issues

Gradient-based pacing

- Complex to tune the parameters

RTT measurement

- Only the fabric-related delay calculated with timestamps on NICs

- Does not differentiate between fabric congestion and end-host congestion

Extreme incast

- What happens if the number of flows is larger than the path BDP?

- Even one packet per flow would overrun the network

43

Swift

44

Swift designs

45

Simple target delay
window control

Fractional
congestion window

to handle large-scale
incast

Separating fabric
and host congestion

Simple target delay window control

46

Cumulative increase over
an RTT is equal to ai

Constrained to be max.
once per RTT

Proportional to the extent of
congestion

Deciding target delay

47

Topology-based scaling:
- Fixed base delay plus a fixed per-hop delay
- Forward path hop count measured with IP

TTL and reflected back with ACKs

Flow-based scaling:
- Target delay increases with the number of competing flows

- Average queue length grows as

- Adjust the target in proportion to
O(N)

1/ cwnd

Delay measurement in TIMELY

48

OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx

delay

Forward fabric delay

Remote NIC
Rx delay

Remote NIC Tx delay
Reverse fabric delay

Local NIC Rx delay

Packet

Local host Rx delay

TCP segment
(64 KB)

1

2

3

4
5

6

ACK generated
by NIC

Fabric vs. host congestion

49

OS (Tx)
OS (Rx)

Userspace stack Snap

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx

delay

Forward fabric delay

Remote NIC
Rx delay

Remote NIC Tx delay

Reverse fabric delay

Local NIC Rx delay

ACKPacket

Remote processing delay
Local host Rx delay

TCP segment
(64 KB)

Timestamps measurement

50

DATA

ACK

t1: t_sent

t2: t_remote_nic_rx

t3: t_remote_host_rx

t4: t_ack_sent

t5: t_local_nic_rx

t6: t_local_host_rx

Remote NIC Rx delay

Remote processing delay

Local NIC
Rx delay

Which part represents the remote queueing delay?

Timestamps measurement

51

DATA

ACK

t1: t_sent

t2: t_remote_nic_rx

t3: t_remote_host_rx

t4: t_ack_sent

t5: t_local_nic_rx

t6: t_local_host_rx

Remote NIC Rx delay

Remote processing delay

Local NIC
Rx delay

Remote queueing delay

Endpoint congestion control

52

Endpoint delay: (t4 − t2) + (t6 − t5) Fabric delay: RTT - endpoint_delay

Follow the same target delay window
control mechanism to decide ecwnd

Target delay for endpoints is decided
based on Exponential Weighted Moving

Average (EWMA) to remove noise

Actual cwnd = min(fcwnd, ecwnd)

: fabric congestion window based on the fabric delay
: endpoint congestion window based on the endpoint delay

fcwnd
ecwnd

Switch

Handling large-scale incast

53

cwnd = 1 BDP + buffer = 4

Even a congestion window of one is not able to prevent the incast congestion

cwnd = 1
cwnd = 1
cwnd = 1
cwnd = 1

Handling large-scale incast

54
[1] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, Amin Vahdat. Carousel: Scalable Traffic
Shaping at End Hosts. ACM SIGCOMM 2017.

Switch

inter-packet delay
= RTT / cwnd

Pacing implemented
with Timing Wheel [1]

High CPU overhead for
cases with cwnd > 1

Use ACK-clocking
in such cases

Why not a problem in
TIMELY?

cwnd = 0.5

Pacing overhead in TIMELY

55

OS (Tx)
OS (Rx)

Userspace stack Snap

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket

Local host Rx delay

TCP segment
(64 KB)

Pacing is done in chunks of 64KB in TIMELY, instead of MTU-size level in Swift

Summary

Congestion control challenges in data centers

- Network has low latency and high throughput

- Applications are diverse with different requirements

- Incast congestion

Transport in data centers

- PFC has limited capability

- DCTCP: ECN-based congestion control

- TIMELY: RTT-based congestion control

- Swift: simpler window control logic, handling endpoint congestion, and dealing with large-scale
incase

56

Switch

Further reading material

57

HULL
(ECN-based)

pFabric
(Packet scheduling)

DCQCN
(Explicit feedback)

Homa
(Credit-based)

Next week: software defined networking

How do we manage a complex network?

- Remember all the protocols

- Remember the configurations with every protocol

- Diagnose problems with networking tools like ping, traceroute, tcpdump?

58

