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Learning objectives
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What are the new challenges in data center transport?

What design choices do we have for data centers transport design?



What is special about data center transport?

Diverse applications and workloads 

- Large variety in performance requirements 

Traffic patterns 

- Large long-lived flows vs small short-lived flows 

- Scatter-gather, broadcast, multicast 

Built out of commodity components: no expensive/customized hardware 

Network 

- Extremely high speed (100+ Gbps) 

- Extremely low latency (10-100s of us)

3



Congestion control recall
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Network

Do you still remember the goal of congestion control?



Congestion control recall
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Network

Congestion control aims to determine the rate to send data on a connection, such that  
(1) the sender does not overrun the network capability and (2) the network is efficiently utilized



TCP
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Sender Receiver

ACKACKACK

The transport layer in the network model: 
• Reliable, in-order delivery using sequence numbers and  

acknowledgements 
• Make sure not to overrun the receiver (receive window, ) and 

the network (congestion window, ) 

• What can be sent = 

rwnd
cwnd

min{cwnd, rwnd}

TCP

IP

Ethernet

Physical

Application
Reliable

Lossy

Network



Recall TCP AIMD
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Time

Timeout
3 duplicate ACKs 

(fast retransmission and fast recovery)

Do not re-enter slow-start

Slow-start

1

TCP Reno

cwnd

0

W

ssthresh = W/2

// for every received ACK 
if cwnd < ssthresh:    //slow-start 

cwnd += 1 
else:                  // AIMD 

cwnd += 1 / cwnd



TCP incast problem

A data center application runs on multiple servers 

- Storage, cache, data processing (MapReduce) 

They use a scatter-gather (or partition-aggregate) 
work pattern 

- [scatter] A client sends a request to a bunch of 
servers for data 

- [gather] All servers respond to the client 

More broadly, a client-facing query might have to 
collect data from many servers
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From a switch point of view
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Commodity off-the-shelf switches typically have 
shallow buffers. Do you know why?

Switch

Buffer size: 5 packets



From a switch point of view
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Switch

Buffer size: 5 packets

Commodity off-the-shelf switches typically have 
shallow buffers.

Scatter



From a switch point of view
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Switch

Buffer size: 5 packets

Collision: queue capacity overrun at the 
switch due to the large number of traffic flows 

coming in at the same time

How does TCP handle this?

Gather



From a switch point of view
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Switch

Buffer size: 5 packets
~100ms

The collision leads to packet loss which will be 
recognized by the servers after a timeout.



From a switch point of view
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Switch

Buffer size: 5 packets

After the timeout, all servers start again, at the 
same time! TCP global synchronization problem!

Gather



TCP incast problem

14https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf 

https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf


TCP incast

Packet drops due to the capacity overrun at shared commodify switches 

- Can lead to TCP global synchronization and even more packet losses 

- The link remains idle (hence, reduced capacity and poor performance) 

- First discussed in Nagle et al., The Panasas ActiveScale Storage Cluster, SC 2004 

Some potential solutions 

- Use lower timeouts: (1) can lead to spurious timeouts and retransmissions, (2) high operating 
system overhead 

- Other variants of TCP (SACKS, Cubic): cannot avoid the basic phenomenon of TCP incast 

- Larger switch buffer: helps to push the collapse point further, but is expensive and introduces 
higher packet delay
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Can we do better?

The basic challenge is that there are only limited number of things we can do once a 
packet is dropped 

- Various acknowledgements schemes (ACK, SACK) 

- Various timeouts based optimizations 

Whatever clever way you come up with can be over-optimized 

- Imagine deploying that with multiple workloads, flow patterns, and switches
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Can we try to avoid packet drops in the first place? If so, how?



Ethernet flow control

Pause Frame (IEEE 802.3x) 

- An overwhelmed Ethernet receiver/NIC can send a 
"PAUSE" Ethernet frame to the sender 

- Upon receiving the PAUSE frame, the sender stops 
transmission for a certain duration of time 

Limitations 

- Designed for end-host NIC (memory, queue) overruns, not 
switches 

- Blocks all transmission at the Ethernet-level (port-level, 
not flow-level)
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TCP

IP

Ethernet

Physical

Application



Priority-based flow control 

PFC, IEEE 802.1Qbb 

- Enhancement over PAUSE frames 

- 8 virtual traffic lanes and one can be selectively stopped 

- Timeout is configurable 

Limitations 

- Only 8 lanes: think about the number of flows we may have 

- Deadlocks in large networks  

- Unfairness (victim flows)
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https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/
at_a_glance_c45-460907.pdf 

https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf


Data Center TCP (DCTCP)

TCP-alike congestion control protocol 

Basic idea: pass information about switch 
queue buildup to senders 

- From where to pass information? 

- How to pass information? 

At the sender, react to this information by 
slowing down the transmission 

- By how much? 

- How frequent?

19



Explicit Congestion Notification (ECN)

ECN is a standardized way of passing "the presence 
of congestion" 

- Part of the IP packet header (2 bits): capability and 
congestion indication (yes/no) 

- Supported by most commodity switches 

Idea: For a queue size of , when the queue 
occupancy goes beyond , mark the passing 
packet's ECN bit as "yes" 

- There are more sophisticated logics (Random Early 
Detection, RED) that can probabilistically mark packets

N
K

20

RFC 3168

ECN capable 
transport (ECT)

Congest 
encountered (CE)



ECN bit in action
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Switch

Buffer size: 5 packets
B

A

C

Assume that B is sending TCP segments to A. 
At some point of time, C also starts to send packets, and the queue is getting full. 

The switch starts to mark packets with ECN bits.

How does B get to know there was a congestion at the switch?

ECN bit set



The ECN bits location in TCP header

22https://en.wikipedia.org/wiki/Explicit_Congestion_Notification 

The TCP congestion window logic: 
• Additive increase:  per RTT 

• Multiplicative decrease:  
- Packet loss 
- A packet received with ECN marked

W ← W + 1
W ← W/2

https://en.wikipedia.org/wiki/Explicit_Congestion_Notification


DCTCP main idea

Simple marking at the switch 

- After threshold  start marking packets with ECN (instantaneous vs. average marking) 

- Uses instantaneous marking for fast notification 

Typical ECN receiver 

- Mark ACKs with the ECE flag, until the sender ACKs back using CWR flag bit 

DCTCP receiver 

- Only mark ACKs corresponding to the ECN-marked packet 

Sender’s congestion control 

- Estimate the packets that are marked with ECN in a running window

K

23



DCTCP congestion window calculations
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In every RTT, calculate the percentage of 
ECN-marked ACKs

Use a sliding window to estimate the 
average percentage of ECN-marked ACKs

Decide the congestion window based on 
the estimation

F =
#ECN-marked ACKs

#Total ACKs

cwnd ← cwnd × (1 − α /2)

α ← (1 − g) × α + g × F



DCTCP vs TCP example
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ECN-marks on ACKs TCP MPTCP

0110001001

0000000001

Cut window by 50% (every time)

Cut window by 50%

Cut window by 40%

Cut window by 10%

t

cwnd

t

cwnd



DCTCP performance
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At 1 Gbps, same bandwidth but 
lower switch queue occupancy

At 10 Gbps, after certain  (queue occupancy 
parameter) threshold, the same bandwidth

K

Significantly lower queueing delay, similar throughput to TCP for large K



What about incast?
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Better performance than TCP up to a point 
where (#servers=35) where not even a single 

packet can pass from the switch 

DCTCP has very low packet losses 
in comparison to TCP

Query: 1 machine sending 1 MB/  data to  machines and waiting for the echon n



Can we use a different 
congestion signal than the queue 

occupancy on the switch?



Recall BBR
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Can we directly apply BBR on data center networks?



TIMELY

Use Round Trip Time (RTT) as the indication of congestion signal 

- RTT is a multi-bit signal indicating end-to-end congestion throughout the 
network — no explicit switch support required to do any marking 

- RTT covers ECN signal completely, but not vice versa!
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However, getting precise RTT is challenging. Why?

RTT 3 2 1 0

ECN 1 1 0 0



RTT calculation challenges
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OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx 

delay

Forward fabric delay

Remote NIC 
Rx delay

Remote NIC Tx delay

Reverse fabric delay

Local NIC Rx delay

ACKPacket

Remote host receive and 
processing delay

1

2

3

4

5
6

7

Local host Rx delay 8

TCP segment 
(64 KB)



RTT calculation challenges
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OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket
TCP segment 

(64 KB)

How to measurement the 
Tx time?

How to avoid OS time-
stamping noise 

(scheduling, jitter)?

How to account for congestion in 
the reserve direction for the ACKs?



RTT calculation challenges
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OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket
TCP segment 

(64 KB)

NIC enables TCP Segmentation 
Offload (TSO) and produces 

completion timestamps

Tx NIC generates ACKs in 
hardware without the OS 

involvementHigh-priority separate 
queue for ACKs



Separate ACK queuing to solve reverse congestion
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One queue for 
data and ACKs

Separate queues for 
data and ACKs, ACKs 

are prioritized



Can we measure RTTs precisely?
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Yes, the random variance is much smaller than the 
kernel TCP measurements 



RTT calculation
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ACK on NIC, negligible time

Propagation + 
queueing delay

RTT = tcompletion − tsend − seg . size/NIC . linerate

tsend
tcompletion



TIMELY

Independent of the transport used 

- Assumes an ACK-based protocol (TCP) 

- Receivers must generate ACKs for incoming data  

Key concept 

- Absolute RTTs are not used, only the gradient of 
the RTTs 

- Positive gradient → rising RTT → queue buildup 

- Negative gradient → decreasing RTT → queue 
depletion

37



RTT gradient
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TIMELY pacing engine
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Pacing based on the rate, with 
packet bursts of 64 KB



TIMELY performance: vs. DCTCP
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TIMELY achieves much lower yet stable RTTs



TIMELY performance: incast
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TIMELY throughput and latency stay the 
same with and without incast traffic 

UR: Uniform Random



TIMEly performance: application level
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A (unknown) RPC latency of a data center storage benchmark 



TIMELY issues

Gradient-based pacing  

- Complex to tune the parameters 

RTT measurement 

- Only the fabric-related delay calculated with timestamps on NICs 

- Does not differentiate between fabric congestion and end-host congestion 

Extreme incast 

- What happens if the number of flows is larger than the path BDP? 

- Even one packet per flow would overrun the network

43



Swift
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Swift designs
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Simple target delay 
window control

Fractional 
congestion window 

to handle large-scale 
incast

Separating fabric 
and host congestion



Simple target delay window control
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Cumulative increase over 
an RTT is equal to ai

Constrained to be max. 
once per RTT

Proportional to the extent of 
congestion



Deciding target delay
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Topology-based scaling: 
- Fixed base delay plus a fixed per-hop delay 
- Forward path hop count measured with IP 

TTL and reflected back with ACKs

Flow-based scaling: 
- Target delay increases with the number of competing flows 

- Average queue length grows as  

- Adjust the target in proportion to 
O( N )

1/ cwnd



Delay measurement in TIMELY
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OS (Tx) OS (Rx)

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx 

delay

Forward fabric delay

Remote NIC 
Rx delay

Remote NIC Tx delay
Reverse fabric delay

Local NIC Rx delay

Packet

Local host Rx delay

TCP segment 
(64 KB)

1

2

3

4
5

6

ACK generated 
by NIC



Fabric vs. host congestion
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OS (Tx)
OS (Rx) 

Userspace stack Snap

Switch

Switch

NIC (Tx) NIC (Rx)
Local NIC Tx 

delay

Forward fabric delay

Remote NIC 
Rx delay

Remote NIC Tx delay

Reverse fabric delay

Local NIC Rx delay

ACKPacket

Remote processing delay
Local host Rx delay

TCP segment 
(64 KB)



Timestamps measurement
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DATA

ACK

t1: t_sent

t2: t_remote_nic_rx

t3: t_remote_host_rx

t4: t_ack_sent

t5: t_local_nic_rx

t6: t_local_host_rx

Remote NIC Rx delay

Remote processing delay

Local NIC 
Rx delay

Which part represents the remote queueing delay?



Timestamps measurement
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DATA

ACK

t1: t_sent

t2: t_remote_nic_rx

t3: t_remote_host_rx

t4: t_ack_sent

t5: t_local_nic_rx

t6: t_local_host_rx

Remote NIC Rx delay

Remote processing delay

Local NIC 
Rx delay

Remote queueing delay



Endpoint congestion control
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Endpoint delay: (t4 − t2) + (t6 − t5) Fabric delay: RTT - endpoint_delay

Follow the same target delay window 
control mechanism to decide ecwnd 

Target delay for endpoints is decided 
based on Exponential Weighted Moving 

Average (EWMA) to remove noise

Actual cwnd = min( fcwnd, ecwnd )

: fabric congestion window based on the fabric delay 
: endpoint congestion window based on the endpoint delay

fcwnd
ecwnd



Switch

Handling large-scale incast
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cwnd = 1 BDP + buffer = 4

Even a congestion window of one is not able to prevent the incast congestion

cwnd = 1
cwnd = 1
cwnd = 1
cwnd = 1



Handling large-scale incast
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[1] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, Amin Vahdat. Carousel: Scalable Traffic 
Shaping at End Hosts. ACM SIGCOMM 2017.

Switch

inter-packet delay 
= RTT / cwnd

Pacing implemented 
with Timing Wheel [1]

High CPU overhead for 
cases with cwnd > 1

Use ACK-clocking 
in such cases

Why not a problem in 
TIMELY?

cwnd = 0.5



Pacing overhead in TIMELY
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OS (Tx)
OS (Rx) 

Userspace stack Snap

Switch

Switch

NIC (Tx) NIC (Rx)

ACKPacket

Local host Rx delay

TCP segment 
(64 KB)

Pacing is done in chunks of 64KB in TIMELY, instead of MTU-size level in Swift



Summary

Congestion control challenges in data centers 

- Network has low latency and high throughput 

- Applications are diverse with different requirements 

- Incast congestion  

Transport in data centers 

- PFC has limited capability 

- DCTCP: ECN-based congestion control 

- TIMELY: RTT-based congestion control 

- Swift: simpler window control logic, handling endpoint congestion, and dealing with large-scale 
incase
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Switch



Further reading material
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HULL 
(ECN-based)

pFabric 
(Packet scheduling)

DCQCN 
(Explicit feedback)

Homa 
(Credit-based)



Next week: software defined networking

How do we manage a complex network? 

- Remember all the protocols 

- Remember the configurations with every protocol 

- Diagnose problems with networking tools like ping, traceroute, tcpdump?
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