PADERBORN
'Ll UNIVERSITY <

>
)

Advanced Networked Systems SS24

Data Center Transport

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University

https://en.cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

Learning objectives

What are the new challenges in data center transport?

What design choices do we have for data centers transport design?

What is special about data center transport?

Diverse applications and workloads &
S APACHE

- Large variety in performance requirements pqr
Traffic patterns

- Large long-lived flows vs small short-lived flows <) Py-l_O rCh

- Scatter-gather, broadcast, multicast
Built out of commodity components: no expensive/customized hardware

Network

- Extremely high speed (100+ Gbps)

- Extremely low latency (10-100s of us)

Congestion control recall

9. »0
Re s

Do you still remember the goal of congestion control?

Congestion control recall

9. »0
Re s

Congestion control aims to determine the rate to send data on a connection, such that
(1) the sender does not overrun the network capability and (2) the network is efficiently utilized

TCP

Sender Receiver

v
v

A
A

ACK ACK ACK

Application Reliable The transport layer in the network model:
- Reliable, in-order delivery using sequence numbers and

acknowledgements
IP . Make sure not to overrun the receiver (receive window, rwnd) and

TCP

the network (congestion window, cwnd)

Ethernet Loss .
y . What can be sent = min{cwnd, rwnd}

Physical

Recall TCP AIMD

3 duplicate ACKs

cwnd Timeout (fast retransmission and fast recovery)
W ...)
Slow-start
sSthresh = W/[2 |77 oy A e
0] —
Time

if cwnd < ssthresh:
cwnd += 1
else:
cwnd += 1 / cwnd 7

TCP incast problem

A data center application runs on multiple servers

- Storage, cache, data processing (MapReduce)

They use a scatter-gather (or partition-aggregate)
work pattern

- [scatter] A client sends a request to a bunch of
servers for data

- [gather] All servers respond to the client

More broadly, a client-facing query might have to
collect data from many servers

reduce

request deadline=250ms

output
HDFS

o parto HDFS
replication

i replication

deadline =50ms

Aggregator

From a switch point of view

Buffer size: 5 packets

Switch

Commodity off-the-shelf switches typically have

shallow buffers. Do you know why?

From a switch point of view

Scatter

Buffer size: 5 packets

A\

Switch

v

\
Commodity off-the-shelf switches typically have\
shallow buffers.

/TN
XY XY

10

From a switch point of view

Buffer size: 5 packets .

VN

A
|

Gather
Switch

N [W O I

/

Collision: queue capacity overrun at the
switch due to the large number of traffic flows

/

coming in at the same time

How does TCP handle this?

n

From a switch point of view

. ~100ms
Buffer size: 5 packets

Switch
‘ RN

The collision leads to packet loss which will be
recognized by the servers after a timeout.

A

VAN

12

From a switch point of view

Buffer size: 5 packets .

VN

A
|

Gather
Switch

N [W O I

/

After the timeout, all servers start again, at the
same time! TCP global synchronization problem!

/

13

TCP incast problem

1000
900
800
700
600
500
400
300
200
100

Goodput (Mbps)

+

HP lProcurvé 2848

i e e e . S

Number of Servers

https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf

35

Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems

Amar Phanishayee, Elie Krevat, Vijay Vasudevan,
David G. Andersen, Gregory R. Ganger, Garth A. Gibson, Srinivasan Seshan

Carnegie Mellon University

Abstract

Cluster-based and iSCSI-based storage systems rely on
standard TCP/IP-over-Ethernet for client access Lo data.
Unfortunately, when data is striped over multiple net-
worked storage nodes, a client can experience a TCP
throughput collapse that results in much lower read band-
width than should be provided by the available network
links. Conceptually, this problem arises b the client
simultaneously reads fragments of a data block from mul-
tiple sources that together send enough data to overload
the switch buffers on the client’s link. This paper analyzes
this Incast problem, explores its sensitivity to various sys-
tem parameters, and examines the effectiveness of alterna-

Aiona TOD. aed Dileaceah Lossal abuatesios So eeldl eetiee e

client increases past the ability of an Ethernet switch to
buffer packets. As we explore further in §2, the problem
arises [rom a subtle interaction between limited Ethernet
switch buffer sizes, the communication patterns common
in cluster-based storage systems, and TCP’s loss recovery
mechanisms. Briefly put, data striping couples the behav-
ior of multiple storage servers, so the system is limited
by the request completion time of the slowest storage
node [7]. Small Ethernet buffers are exhausted by a con-
current flood of traffic from many servers, which results
in packet loss and one or more TCP timeouts. These
timeouts impose a delay of hundreds of milliseconds—
orders of magnitude greater than typical data fetch times—
significantly degrading overall throughput.

14

https://www.pdl.cmu.edu/PDL-FTP/Storage/FASTIncast.pdf

TCP incast

Packet drops due to the capacity overrun at shared commodify switches
- Can lead to TCP global synchronization and even more packet losses
- The link remains idle (hence, reduced capacity and poor performance)

- Firstdiscussed in Nagle et al.,, The Panasas ActiveScale Storage Cluster, SC 2004

Some potential solutions

- Use lower timeouts: (1) can lead to spurious timeouts and retransmissions, (2) high operating
system overhead

- Other variants of TCP (SACKS, Cubic): cannot avoid the basic phenomenon of TCP incast

- Larger switch buffer: helps to push the collapse point further, but is expensive and introduces
higher packet delay

15

Can we do better?

The basic challenge is that there are only limited number of things we can do once a
packet is dropped

- Various acknowledgements schemes (ACK, SACK)

- Various timeouts based optimizations

Whatever clever way you come up with can be over-optimized

- Imagine deploying that with multiple workloads, flow patterns, and switches

Can we try to avoid packet drops in the first place? If so, how?

16

Ethernet flow control

Pause Frame (IEEE 802.3x)

- An overwhelmed Ethernet receiver/NIC can send a
"PAUSE" Ethernet frame to the sender

- Upon receiving the PAUSE frame, the sender stops
transmission for a certain duration of time

Limitations

- Designed for end-host NIC (memory, queue) overruns, not
switches

- Blocks all transmission at the Ethernet-level (port-level,
not flow-level)

Sending Device

Receiving Device

PAUSE -
hammetnme Receive Port
' |

Sending Port

—N\l| Receive Buffer

Frames

<%= Pause threj

Application
TCP

P

Ethernet

Physical

hold

17

Priority-based flow control

PFC, IEEE 802.1be Transmci)tnjze;[i Ethernet Link . Receiv;;tif;leis,l
Two Two
- Enhancement over PAUSE frames ' unedIIIE.
Lol il &
- 8virtual traffic lanes and one can be selectively stopped |||Ei||[@ - |||F'|vi||||§
W - || seven I
- Timeout is configurable 1Edlin e I

Limitations
- Only 8 lanes: think about the number of flows we may have
- Deadlocks in large networks

- Unfairness (victim flows)

https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/
at_a_glance_c45-460907.pdf 18

https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/data-center-virtualization/ieee-802-1-data-center-bridging/at_a_glance_c45-460907.pdf

Data Center TCP (DCTCP)

TCP-alike congestion control protocol

Basic idea: pass information about switch
queue buildup to senders

- From where to pass information?

- How to pass information?

At the sender, react to this information by
slowing down the transmission

- By how much?

- How frequent?

Data Center TCP (DCTCP)

Mohammad Alizadeh:!, Albert Greenberg', David A. Maltz', Jitendra Padhye',
Parveen Patel', Balaji Prabhakar:, Sudipta Sengupta‘, Murari Sridharan'

TMicrosoft Research

*Stanford University

{albert, dmaltz, padhye, parveenp, sudipta, muraris}@microsoft.com
{alizade, balaji}@stanford.edu

ABSTRACT

Cloud data centers host diverse applications, mixing workloads that
require small predictable latency with others requiring large sus-
tained throughput. In this environment, today’s state-of-the-art TCP
protocol falls short. We present measurements of a 6000 server
production cluster and reveal impairments that lead to high applica-
tion latencies, rooted in TCP's demands on the limited buffer space
available in data center switches. For example, bandwidth hungry
“background™ flows build up queues at the switches, and thus im-
pact the performance of latency sensitive “foreground” traffic.

To address these problems, we propose DCTCP, a TCP-like pro-
tocol for data center networks. DCTCP leverages Explicit Conges-
tion Notification (ECN) in the network to provide multi-bit feed-

back to the end hosts. We evaluate DCTCP at 1 and 10Gbps speeds
neing fitu_challaws huffemd cwitchae W find DOTOP An.

eral recent research proposals envision creating economical, easy-
to-manage data centers using novel architectures built atop these
commodity switches [2, 12, 15].

Is this vision realistic? The answer depends in large part on how
well the commodity switches handle the traffic of real data cen-
ter applications. In this paper, we focus on soft real-time applica-
tions, supporting web search, retail, advertising, and recommenda-
tion systems that have driven much data center construction. These
applications generate a diverse mix of short and long flows, and
require three things from the data center network: low latency for
short flows, high burst tolerance, and high utilization for long flows.

The first two requirements stem from the Partition/Aggregate
(described in §2.1) workflow pattern that many of these applica-
tions use. The near real-time deadlines for end results translate into
latency targets for the individual tasks in the workflow. These tar-

19

Explicit Congestion Notification (ECN)

ECN is a standardized way of passing "the presence
of congestion"

- Part of the IP packet header (2 bits): capability and
congestion indication (yes/no)

- Supported by most commodity switches

Idea: For a queue size of N, when the queue
occupancy goes beyond K, mark the passing
packet's ECN bit as "yes"

- There are more sophisticated logics (Random Early
Detection, RED) that can probabilistically mark packets

Updated by: 4301, 6040, 8311 PROPOSED STANDARD
Errata Exist

Network Working Group K. Ramakrishnan
Request for Comments: 3168 TeraOptic Networks
Updates: 2474, 2401, 793 S. Floyd
Obsoletes: 2481 ACIRI
Category: Standards Track D. Black
EMC

September 2001

The Addition of Explicit Congestion Notification (ECN) to IP

Status of this Memo

This document specifies an Internet standards track protocol for the

Internet community, and requests discussion and suggestions for

improvements. Please refer to the current edition of the "Internet

Official Protocol Standards" (STD 1) for the standardization state

and status of this protocol. Distribution of this memo is unlimited.
Copyright Notice

Copyright (C) The Internet Society (2@01). ALl Rights Reserved.
Abstract

This memo specifies the incorporation of ECN (Explicit Congestion

Notification) to TCP and IP, including ECN's use of two bits in the
IP header.

S BB 2

Version | IHL |' DSCP i_EC Total Length []

ABinary [bin] [Keyword]
00 Not-ECT

of ECT(1) ECN capable

10 | ECT(0)

L= transport (ECT)

Congest
encountered (CE)

20

ECN bit in action

Assume that B is sending TCP segments to A.
At some point of time, C also starts to send packets, and the queue is getting full.
The switch starts to mark packets with ECN bits.

Buffer size: 5 packets

Switch /
\

4\

-

/

ECN bit set

How does B get to know there was a congestion at the switch?

21

The ECN bits location in TCP header

0 16 31

16-bit source port number I 1 6-bit destination port number

32-bit sequence number

2-bit acknowledgment number 20 bytes
4-bit header reserved R \\
length (6 bits) “ N
\H\ 16-bit TCP chec ks‘l\ 16-bit urgent pointer

z \ options (if any) ¥4

\
7 \\ \\ data (if any) 4
1 \ \]

\
0o 1 2 3\ 4 5 6 7 8 %10 11 12 |3 M |5
R T S S S LR EE TEEE T
| ICIEIUIAIPIRISIFI
| Header Length | Reserved || C|R|C|S|S|Y]|I]|
| IF‘IEIGIKIHITININI
+-~~+---+-»-#---6»-§‘ ‘

ECE flag - ECN-Echo flag

CWR flag - Congestion Window
Reduced flag

https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

The TCP congestion window logic:
16t window size l . Additive increase: W <~ W+ 1 per RTT
: ‘ . Multiplicative decrease: W «— W/2

- Packet loss
- A packet received with ECN marked

22

https://en.wikipedia.org/wiki/Explicit_Congestion_Notification

DCTCP main idea

Simple marking at the switch

- After threshold K start marking packets with ECN (instantaneous vs. average marking)

- Uses instantaneous marking for fast notification

Typical ECN receiver

- Mark ACKs with the ECE flag, until the sender ACKs back using CWR flag bit

- Only mark ACKs corresponding to the ECN-marked packet

Sender’s congestion control

- Estimate the packets that are marked with ECN in a running window

23

DCTCP congestion window calculations

In every RTT, calculate the percentage of _ #ECN-marked ACKs

ECN-marked ACKs #Total ACKs

Use a sliding window to estimate the a—(—-g)Xa+gxF
average percentage of ECN-marked ACKs

Decide the congestion window based on

_ _ cwnd <« cwnd X (1 —al2)
the estimation

24

DCTCP vs TCP example

ECN-marks on ACKs TCP MPTCP
0110001001 Cut window by 50% (every time) Cut window by 40%
0000000001 Cut window by 50% Cut window by 10%
cwnd cwnd

v
v

25

DCTCP performance

At1Gbps, same bandwidth but At 10 Gbps, after certain K (queue occupancy
lower switch queue occupancy parameter) threshold, the same bandwidth
1 [—DCTCP 2 flows | - 10
S 5 =y
% - | ocTCP 20 flows @ 81
L 061} : = 6 |
2 i/ TCP 2 flows=' a
g 04 - 5 4]
§ TCP 20ﬂows‘, g 2 |
o 92[il =
il A — 0 i i i i i
0 s " I A A N
0 100 200 300 400 500 O 20 40 60 80 100
Queue Length (packets) K

Significantly lower queueing delay, similar throughput to TCP for large K

26

What about incast?

Query: 1 machine sending 1 MB/n data to n machines and waiting for the echo

1
1024 =
bl £ _ g |TCP(300ms)
= e B0 »
E = % 3 TCP (10ms) | / DCTCP (300ms)
& 64 - TCP10ms g 906 »
o O E
: $ S04
S 16 S = DCTCP (10ms)
g 4% .
o 4 I Ry
DCTCP 10ms w
2 . ‘ 0
1 5 10 15 20 25 30 35 40 1 5 10 15 20 25 30 35 40
Number of servers Number of Servers

Better performance than TCP up to a point
where (#servers=35) where not even a single
packet can pass from the switch

DCTCP has very low packet losses
in comparison to TCP

Can we use a different
congestion signal than the queue
occupancy on the switch?

Recall BBR

Congestion-Based
Congestion Control

MEASURING

BOTTLENECK

BANDWIDTH

NEAL CARDWELL y all accounts, today’s AND ROUND-TRIP
YUCHUNG CHENG Internet is not moving data PROPAGATION
% as well as it should. Most TIME

C. STEPHEN GUNN
SOHEIL HASSAS YEGANEH
VAN JACOBSON

Iof the world's cellular

users experience delays of seconds to minutes;
public Wi-Fiinairports and conference venues is often
worse. Physics and climate researchers need to exchange
petabytes of data with global collaborators but find

their carefully engineered multi-Gbps infrastructure
often delivers at only a few Mbps over intercontinental

distances.®

Can we directly apply BBR on data center networks?

29

TIMELY

RTT is a multi-bit signal indicating end-to-end congestion throughout the
network — no explicit switch support required to do any marking ECN

Use Round Trip Time (RTT) as the indication of congestion signal RTT

RTT covers ECN signal completely, but not vice versal

TIMELY: RTT-based Congestion Control for the
Datacenter

Radhika Mittal(UC Berkeley), Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi‘(Microsoft), Amin Vahdat, Yaogong Wang, David Wetherall, David Zats

Google, Inc.

ABSTRACT

Datacenter transports aim 10 deliver low latency messag-
ing together with high throughput. We show that simple
ured as round-trip times at hosts, is an
stion signal without the need for switch feed-
show that advances in NIC hardware have
made RTT measurement possible with microsecond accu-
racy, and that these RTTs are sufficient to estimate switch
queueing. Then we describe how TIMELY can adjust trans-
mission rates using RTT gradicnts to keep packet latency low
while delivering high bandwidth. We implement our design

L. INTRODUCTION

Datacenter networks run tightly-coupled computing tasks
that must be responsive to users, ¢.g., thousands of back-
end computers may exchange information to serve a user
request, and all of the transfers must complete quickly
enough to let the complete response 10 be satisfied within
100 ms [24]. To meet these requirements, datacenter trans-
ports must s deliver high (:>Gbps)
and utilization at low latency (< msec), even though these
aspects of performance are at odds. Consistently low la
tency matters because even a small fraction of late operations

CDF
OO0
ohvhrmo=

Queue Length +
| ' Measured RTT |

0 200 400 600 800 1000
RTT (us)

However, getting precise RTT is challenging. Why?

30

RTT calculation challenges

Remote host receive and 0
Local host Rx delay e processing delay

0S (Tx) 0S (Rx)
TCP segment e
O i Packet [B ACK
(64 KB) Forward fabric delay
NIC (T) Switch 16 (55
Local NIC Tx — 1111 JTTTT] TITT] Remote NIC
delay (1T - Rx delay
\ Switch / e
‘ Local NIC Rx delay - Remote NIC Tx delay

31

e Reverse fabric delay e

RTT calculation challenges

How to avoid OS time-
0S (Tx) stamping noise 0S (Rx)
(scheduling, jitter)?

TCP segment

[] Packet [B ACK
(64 KB)
NIC (Tx) Switch NIC (Rx)
X " - X
T LLTL T
(I TT BT
\ Switch /
N e

How to measurement the

Tx time? How to account for congestion in

the reserve direction for the ACKs? 32

RTT calculation challenges

0S (Tx) 0S (Rx)
TCP t
©P segmen [Packet [] B ACK
(64 KB)

NIC (T) Switch 1B (G

X . — X

_ [TT1 ENEEE TII11]

(B TT T
NIC enables TCP Segmentation - Tx NIC generates ACKs in
Offload (TSO) and produces , o hardware without the 0S

High-priority separate involvement

completion timestamps
queue for ACKs

33

Separate ACK queuing to solve reverse congestion

Congestion in ACK path ACK prioritization
| |l Separate queues for
One queue for
data and ACKs, ACKs
data and ACKs o
are prioritized
Data ACKs]
Higher QoS
1 o = UV =
L 08 ¥ - ; ; l
0 0-2 Y No reverse congestion —=—
o 0. ACK prioritization ——
0.2 . ~ Reverse congestion ——
0 500 1000 1500 2000 2500
RTT (us)

34

Can we measure RTTs precisely?

1 ! HJ,.P"-H_M— ! |
O 047 Kernel TCP
0-3 ~/ HW Timestamp
0 50 100 150 200-
RTT (us)

Yes, the random variance is much smaller than the
kernel TCP measurements

250

35

RTT calculation

l

tsen d completion
Completion Time
|
Serialization Delay RTT
; : \l : \E
Host A i
Propagation + P
queueing delay
Host B A A A A A A A
ACK on NIC, negligible time
RTT = t.pmpietion = Lsena — S€8 - Size/NIC . linerate

36

TIMELY

Independent of the transport used
- Assumes an ACK-based protocol (TCP)

- Receivers must generate ACKs for incoming data

Key concept

- Absolute RTTs are not used, only the gradient of
the RTTs

- Positive gradient = rising RTT = queue buildup

- Negative gradient = decreasing RTT = queue
depletion

Data
1
TIMELY Congestion Control Engine v
_ RTT § § Rate , ; :
: Measurement :——>: Computation :—> Pacing Engine :
Engine © RTT Engine -Allowed:
iiieeieenosignal s T Rate et

Timestamps Paced Data

37

RTT gradient

RTT

RTT

gradient = 0

Time

gradient < 0

N

Time

RTT

RTT

gradient > 0

/

Time

AR

Time

38

TIMELY pacing engine

Algorithm 1: TIMELY congestion control.
Data: new_rtt
Result: Enforced rate
new_rtt_diff = new_rtt - prev_rtt ;
prev_rtt = new_rtt ;
rtt_diff = (1 - @) - rtt_diff + o - new_rtt_diff ;

> o: EWMA weight parameter Additive Gradient-based Multiplicative
normalized_gradient = rtt_diff / minRTT ; Increase Increase/Decrease Decrease
if new_rtt < T, then C——) N)
rate < rate + 4 ; ‘ :
> 4: additive increment step T T
return: 0 T o high

if new_rtt > Tz then
rate < rate - (1-ﬁ~(l-ﬂ¥";));

new_rtt

> 3: multiplicative decrement factor Pacing based on the rate, with
packet bursts of 64 KB

| return;
if normalized_gradient < 0 then
rate < rate+ N - 0 ;
> N =5 if gradient<0 for five completion events
_ (HAI mode); otherwise N =1

else
| rate < rate - (1 - 3 - normalized_gradient)

TIMELY performance: vs. DCTCP

1 1 1 | l I 1)
" 0.8 i
a 0.6 » ‘ —
O 04 S TIMELY i .
O% ; | , ; DCTCP]
200 400 600 800 1000 1200 1400

RTT (us)

TIMELY achieves much lower yet stable RTTs

40

TIMELY performance: incast

Throughput
(normalized)

0000
oA =

UR: Uniform Random

pFC‘/oZMELp}'F

5
’310
I: 103 3
0)10 -

1L
2 10 :
o 100

UR(W/ M-to-1) mm

Cmetel . itte

Lk
e

TIMELY throughput and latency stay the
same with and without incast traffic

"UR =

~ UR(W/ M-to-1) m |

41

TIMEly performance: application level

] l " I
L Lkl "
: B) i

1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. of days

A (unknown) RPC latency of a data center storage benchmark

TIMELY issues

Gradient-based pacing

- Complex to tune the parameters

RTT measurement
- Only the fabric-related delay calculated with timestamps on NICs

- Does not differentiate between fabric congestion and end-host congestion

Extreme incast

- What happens if the number of flows is larger than the path BDP?

- Even one packet per flow would overrun the network

43

Sw

ft

Swift: Delay is Simple and Effective for Congestion Control in
the Datacenter

Gautam Kumar, Nandita Dukkipati, Keon Jang (MPI-SWS)", Hassan M. G. Wassel, Xian Wu, Behnam Montazeri,
Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat
Google LLC

ABSTRACT

We report on experiences with Swift congestion control in Google
datacenters. Swift targets an end-to-end delay by using AIMD con-
trol, with pacing under extreme congestion. With accurate RTT
measurement and care in reasoning about delay targets, we find
this design is a foundation for excellent performance when network
distances are well-known. Importantly, its simplicity helps us to
meet operational challenges. Delay is easy to decompose into fabric
and host components to separate concerns, and effortless to deploy
and maintain as a congestion signal while the datacenter evolves.
In large-scale testbed experiments, Swift delivers a tail latency of
<50ps for short RPCs, with near-zero packet drops, while sustaining
~100Gbps throughput per server. This is a tail of <3x the minimal
latency at a load close to 100%. In production use in many different
clusters, Swift achieves consistently low tail completion times for
short RPCs, while providing high throughput for long RPCs. It has
loss rates that are at least 10x lower than a DCTCP protocol, and
handles O(10k) incasts that sharply degrade with DCTCP.

CCS CONCEPTS

« Networks — Transport protocols; Data center networks;
KEYWORDS

Congestion Control, Performance Isolation, Datacenter Transport
ACM Reference Format:

Gautam Kumar, Nandna Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian
‘Wu, Bel M i, Yaogong Wang, Kevin Springborn, Christopher

Alfeld, Michael Ryan, David WetheralL and Amin Vahdat. 2020. Swift: Delay
is Simple and Effective for Congestion Control in the Datacenter. In Annual
confcrence of the ACM Spmal Interest Group on Data Communication on the

archi s, and protocols for computer communi-
cahon (SIGCOMM ’20) August 10-14, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3387514.3406591

at 1M+ IOPS, else expensive servers sit idle while they wait for
1/O [9]. Tight tail latency is also important because datacenter
applications often use partition-aggregate communication patterns
across many hosts [16]. For example, BigQuery [51], a query engine
for Google Cloud, relies on a shuffle operation [11] with high IOPS
per server [36]. Congestion control is thus a key enabler (or limiter)
of system performance in the datacenter.

In this paper, we report on Swift congestion control that we
use in Google datacenters. We found protocols such as DCTCP [1]
inadequate because they commonly experience milliseconds of
tail latency, especially at scale. Instead, Swift is an evolution of
TIMELY [38] based on Google’s production experience over the
past five years. It is designed for excellent low-latency messaging
performance at scale and to meet key operational needs: deploying
and maintaining protocols while the datacenter is changing quickly
due to technology trends; isolating the traffic of tenants in a shared
fabric; efficient use of host CPU and NIC resources; and handling a
range of traffic patterns including incast.

Swift is built on a foundation of hosts that independently adapt
rates to a target end-to-end delay. We find that this design achieves
high levels of performance when we accurately measure delay
with NIC timestamps and carefully reason about targets, and has
many other advantages. Delay corresponds well to the higher-level
service-level objectives (SLOs) we seek to meet. It neatly decom-
poses into fabric and host portions to respond separately to different
causes of congestion. In the datacenter, it is easy to adjust the delay
target for different paths and competing flows. And using delay as a
signal lets us deploy new generations of switches without concern
for features or configuration because delay is always available, as
with packet loss for classic TCP.

Compared to other work, Swift is notable for leveraging the
simplicity and effectiveness of delay. Protocols such as DCTCP [1],
PFC [49], DCQCN [59] and HPCC [34] use explicit feedback from

44

Swift designs

Simple target delay
window control

Separating fabric
and host congestion

Fractional
congestion window
to handle large-scale
incast

45

Simple target delay window control

3 bool can_decrease «—

> Enforces MD once every RTT
(now — t_last decrease > rtt)

4 On Receiving ACK

5]

e 0 N SN

10
11

12
13

14

retransmit_cnt «— 0
target_delay « TargetDelay()

if delay < target_delay then
if cwnd > 1 then _
| cwnd «— cwnd + ﬁ - num_acked
n

> See S3.5
> Additive Increase (Al)

else
L cwnd < cwnd + ai - num_acked

else > Multiplicative Decrease (MD)
if can_decrease then

\\ cwnd «— max(l _ ,B . (delay—target_delay),

delay
1 —max_mdf) - cwnd

congestion

Cumulative increase over
an RTT is equal to ai

Constrained to be max.
once per RTT

Proportional to the extent of

46

Deciding target delay

NIC Hop 1 -~-._N Flows Hop H

= -

82 83 53 g & ¥ 88

= 0 [() = Q0 c O = 0

Sa | 8o =al e f¥a) Sa

® g C © o @

(%] o (%] n.‘ w
Topology-based scaling: Flow-based scaling:

- Fixed base delay plus a fixed per-hop delay - Target delay increases with the number of competing flows

- Forward path hop count measured with IP - Average queue length grows as O(\/ﬁ)
TTL and reflected back with ACKs - Adjust the target in proportion to 1/4/cwnd

47

Delay measurement in TIMELY

Local host Rx delay

0S (Tx) 0S (Rx)
TCP segment H
[] [] i Packet [e
(64 KB) Forward fabric delay
. Remote NIC
NIC (Tx) Switeh NIC (Rx) Rx del
X " - X x delay
Local NICTx —TTT] _EuEE T
dela [T BT
y \ Switch / ACK generated

by NIC
Local NIC Rx delay I Y
Remote NIC Tx delay

e Reverse fabric delay 0

48

Fabric vs. host congestion

Remote processing delay

Local host Rx delay

0S (Tx) 0S (Rx)
) Userspace stack Snap
TCP segment
O i Packet [B ACK
(64 KB) Forward fabric delay
NIC (T) Switch 16 (55
Local NIC Tx — 1111 JTTTT] TITT] Remote NIC
delay (1T - Rx delay
Local NIC Rx delay - Remote NIC Tx delay

Reverse fabric delay

49

Timestamps measurement

tl: t_sent DATA
t2: t_remote_nic_rx
I Remote NIC Rx delay
t3: t_remote_host_rx I
Remote processing dela
t4: t_ack_sent P & y
ACK

Local NIC I t5: t_local_nic_rx

Rx delay t6: t_local_host_rx

Which part represents the remote queueing delay?

50

Timestamps measurement

tl: t_sent DATA

ACK

t2: t_remote_nic_rx
I Remote NIC Rx delay
t3: t_remote_host_rx

Remote processing delay
t4: t_ack_sent I

' ' Remote queueing delay
Local NIC I t5: t_local_nic_rx

Rx delay t6: t_local_host_rx

51

Endpoint congestion control

e e N e

10
11

12
13

14

Endpoint delay: (#; — 1,) + (f5 — t5) Fabric delay: RTT - endpoint_delay
bool can_decrease « > Enforces MD once every RTT
(now — t_last_decrease > rtt) .

On Recelving ACK Follow the same target delay window
retransmit_cnt - 0 , control mechanism to decide ecwnd
target_delay < TargetDelay() > See S3.5
if delay < target_delay then > Additive Increase (AI)

if cwnd > 1 then

’ cwnd «— cwnd + =%

cwn.

R num_acked
else
|_ cwnd < cwnd + ai - num_acked

else > Multiplicative Decrease (MD)
if can_decrease then

L cwnd «— max(l _,B . (delay—target_delay)’

delay

1 —max_mdf) - cwnd

Target delay for endpoints is decided
based on Exponential Weighted Moving
Average (EWMA) to remove noise

Actual cwnd = min(fcewnd, ecwnd)

fcewnd: fabric congestion window based on the fabric delay

ecwnd: endpoint congestion window based on the endpoint delay

52

Handling large-scale incast

cwnd =1

cwnd = 1 BDP + buffer = 4
cwnd =1 \
cwnd =1 > Switch >

cwnd =1

Even a congestion window of one is not able to prevent the incast congestion

53

Handling large-scale incast

inter-packet delay

=RTT / cwnd \
Switch
cwnd = 0.5 J«—>"0] TTTT
;E
Pacing implemented High CPU overhead for
with Timing Wheel [1] cases with cwnd > 1

Why not a problem in
TIMELY?

v

Use ACK-clocking
In such cases

[1] Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, Amin Vahdat. Carousel: Scalable Traffic

Shaping at End Hosts. ACM SIGCOMM 2017.

54

Pacing overhead in TIMELY

Local host Rx delay

TCP segment

(64 KB)

0S (Tx)

NIC (Tx)
_[TT]
[T

//—-b

\

Switch
I TTT]

Switch
B

0S (Rx)

Userspace stack Snap

Packet []
———— ., NIC(RX)
TTTT]
BT

/

B ACK

Pacing is done in chunks of 64KB in TIMELY, instead of MTU-size level in Swift

55

Summary

Congestion control challenges in data centers

- Network has low latency and high throughput

- Applications are diverse with different requirements

-

- Incast congestion Switch ~ ‘
Transport in data centers a : - | j a
- PFC has limited capability L ‘

DCTCP: ECN-based congestion control

TIMELY: RTT-based congestion control

Swift: simpler window control logic, handling endpoint congestion, and dealing with large-scale
incase

56

Further reading material

Less is More: Trading a little Bandwidth for Ultra-Low Latency
in the Data Center

Mohammad Alizadeh, Abdul Kabbani', Tom Edsall*, Balaji Prabhakar,
Amin Vahdat™, and Masato Yasudal

Stanford University

Abstract

Traditional measures of network goodness—goodput,
quality of service, faimess—are expressed in terms of
handwidth, Netwark latency has rarely heen a primary
cancern heczuse delivering the highest level of hand
width essentizlly entails driving up latency—st the mean
and, especially, ar the wil. Recently, however, there has
been renewed interest in latency as a primary metric
for mainstream applications. Tn this paper, we present
the HULL (High-bandwidth Ultre-Low Latency) archi-
ecture W balance (wo seemingly contradiclory goals:
near bascline fabric latency and hich bardwidth utiliza-

TGoogle *Cisco Systems

fU.C. San Diego INEC Corporation, Japan

of-service capability (o the Intemet resulied i propos-
als such as RSVP [35]. IntServ [10] and DiffServ [35],
which again focussed on bandwidth provisioning.

“This focus on bandwidth efficiency bes been well jus-
tified &5 most Internet applications typically fall into
two categocies. Throughput-oniented applications, such
as file trunsfer or email, are not sensitive © the debiv
ery times of individual peckets. Even the overall com-
pletion times of individusl operations can vary by mul-
tiple integer factors in the interests of increasing overall
network throughput. On the other hand, latency-sensitive
applications — such s web browsing and remate login

HULL
(ECN-based)

Congestion Control for Large-Scale RDMA

Deployments
Yibo Zhu'* Haggai Eran’ Daniel Firestone' Chuamdorg Guo' Marina menyn
Yehonatan Liron* Jitendra Padhye’ Shachar Raindel’ Mchamad Haj Yahia* Ming Zhang'
'‘Merasoft “Maellancx ‘UL C Santa Bastara
ABSTRACT PU
s come

(80Gtps) and whea-low lancscy (< 10 o pix hep) froes the
Deswork, with low CPU overhead. Stambard TCPIP sacks
canmae. meet these sequicements, b Resose Direct Mers-
vy Accrws (RDMA) can. On [P-eted detacemes retwirks.
RDMA <

Fricesty-based] Flow Control (FFC) ko crabie s deep-fice cet-
work. However, FFC can lead 8 pooe applicaton pertor

mance dae to problcme liks heed-of-lne bhocking wnd ur-
fmess. To daes these e imedice DC

-.-.mum.., N TP wcagryt s s or ot e
ot be sold 0 VML licatoen wach o dstribunl
meey caches (10, X\] wnd lugoacele oachine leasing
demand uhradow lacecy Oess than 10 4o per hog) mes-
soge tromsders. Traditoral TOMTP sacks have far highee
ey (1)

We ane deploying Remete Direct Momery Accens (RDMA)
techmalogy in s detacenlers o peevide dlire dew
ey and high throughput o appications, ith very kew
CPU onread. With RDMA,

2
'(l'(nk DCQCN perfa !lll‘ctw“l‘llﬂllml.
0 oo pikiates fox ke i et e,
anx et provocal pacamesers. Using 3 W-tier Clos ncaurk
tewbed, we show 2t DOQEN dramatically rmpruves darugh-
Jut asd ficness of RuCEv2 RDMA waffe. DOQON i v
phemestd in Mellanox NICs. and is beleg deployed i Mi-
cromoft's dasaceaver

traner ducs in snd 0 of pre-regatered mesory buflers a1

inedy on the NICs, bypassizg the Most aerworkng stack. The
yposs sigbicanedy muces CPU overhead w0d overal e
ey, Tosielily dovign sad iepiarcatation., the protanl
e o lovaless
“While the HPC communty bas ou g wsed RDMA e specied-
ourmone cusens 111, 24,36, 12. . decinire KOMA 0 8

DCQCN
(Explicit feedback)

pFabric: Minimal Near-Optimal Datacenter Transport

Mohammad Alizadeh™, Shuang Yan
Nick McKeown', Balaji Prabh:

', Milad Sharif', Sachin Katti',
r', and Scott Shenker*

'Stanford University *Insieme Networks *U.C. Bsﬂwlay:’ ICS|

{alizade, shyang, msharif, skatti, nickm, b

ford.edu sh

ABSTRACT

In this peper we present pFabric, + minimalistic Gataconer trans-
poet design that prowides near theoretically optimal flow comple-
tion times even at the 99th percentile for shert flows, while still
minimiring sverage Bow completion tme for long fows. More-
over, pEabiric delivers this performance with a very simple design
that s based on a key coaceptial imsight: datacenter transpar: should
decouple fiow scheduling from rate control. For flow scheduling,
packets carty u singe prority nusnber set independently by each
flow; switches have very small baffers and implement o very sim-
pile priarity-based scheduling/dmpping mochanism. Rate control is

also comrespendingly simpler; flows stan ot Ene rate and thrortle
hask anle smden Siok s ol

e manbiar Ance \lia mans

rkeley.edu

Mecivated hy this ohservaticn, ncent research bas propased new
datacenter tramsport desigas that, broadly spesking, wse male con
trol to reduce FCT for short flows. One line of wark [3, 4
proves FCT by keeping queses near empry through a variety of
meckanisms (adaptive congesticn control, ECN-based feedback.
pacieg, etc) 30 that latency-seesitive flows see small buffers and
cousequently simall liicacses. These implici teshnsques geocrally
impeove FCT for short flows but they can never precisely determine
the right flow rates 1o optimally schedule Bows. A secand live of
ok [21, 4] explichy computes and siegns rs fom the pec
fow in arder ows hased
or &udlln:c. s appeoach can pamnnx]ly provide very good per-
formance, bt it is rather complex and challenging to implement in

pFabric
(Packet scheduling)

port P

Homa A Reeotveroriven Low-utency
| Using Ni

k Priorities

Behnam Montazer, Yilong Li, Mohummad Alizadeh', and John Ousterhout
Stanford University, 'MIT

ABSTRACT

Horsa s datacenter networks, It pro-

vides exceptionally low latency, especially for workloads with

ahigh volame of very short messages, and it also supports large
in-network

these canditions, so the latency they provide for short messages
i far higher than the hardware potential, perticularly uncer high
network loads.

Recent y:xs have seen numerous propasals foe betor trans-
TCP(2.3,31) and

utilization,

Iatency for
allocation is managed dynsmically by each receiver und inte
grated with & receiver-driven flow control o, Homs
also uses controlled overcomenitment ul‘mnvu downlinks o
ensure eflicient bandwiddh utilization st high load, Our llnplt-

ncluding
a variety duvpmw:oh [~l 6,14, 15, 17, 25, 32). However,
none of these desi gns considers today’s small message sizes;
they are based o heavy-ailed workloads where 100 Kbyte mes-
‘small,” and latenc; Fien measured
in nulum.od: wot microseconds. As a result, there is still no

mentation of Homa delivers 99th percentile d-trip

less than 15 10Gbps

1 80% Joad. These latencies are almost 100x lower thas the best
Fublished of ani In

messages under high network loads. For example, we know of
1o cxisting implementation with tail Intencies of 100 jis o less
a1 high network load (within 20x of the hardware potestial).

Homa's latency is roughly equal to pFabeic and si
bmnh-plh!l. PIAS, and NDP for almost all message sizes

wockloads. Homa can &lso sustain higher network losds
u"n pFabric. pHost, or PIAS,

in low- latency
of Homs uummwrumnm.nuw Jatcucios ks trn
1S s for smsal] messages at 80% network Joad with 10 Gbps
link soeeds. and it does this even in the oresence of competing

Homa

(Credit-

based)

57

Next week: software defined networking

How do we manage a complex network?

- Remember all the protocols
- Remember the configurations with every protocol

- Diagnose problems with networking tools like ping, traceroute, tcpdump?

betanews

Hot Topics: Windows 10 Windows 11 Microsoft Apple Cloud Linux Android Security

Facebook outage 2021: A simple mistake
with global consequences

l By Cody Michaels Published 5 days ago

1 Comment

58

