
Advanced Networked Systems SS24
Software Defined Networking

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://en.cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

CHE Ranking

Many of you received an email about CHE ranking on
the 6th of May

Please help us and give your honest feedback, it is
important to us!

More information: https://www.che.de/en/ranking-
germany/

Results with detailed feedback published on the
website Hey Studium: https://studiengaenge.zeit.de/

2

https://www.che.de/en/ranking-germany/
https://www.che.de/en/ranking-germany/
https://studiengaenge.zeit.de/

Marc Andreessen: co-author of Mosaic (the first widely used browser), co-
founder of Netscape, co-founder of VC firm Andreessen Horowitz (a16z).

2011

Learning objectives

4

Why software defined networking (SDN)? What is SDN?

How to use SDN for network slicing?

How to compose network control programs in SDN?

Why do we need SDN and
what is it?

Internet has become a critical infrastructure, but…

6https://www.thousandeyes.com/outages/

Surprisingly, most of these outages are due to human errors in network configuration!

https://www.thousandeyes.com/outages/

https://www.thousandeyes.com/outages/

We keep building a lot of complex artifacts…

7

A plethora of network protocols A stack of packet headers

A bunch of boxes and cables A ton of network tools

wireshark, ping,
traceroute, iperf,

tcpdump, whois, nmap,
dig, nslookup…

Complexity in networking

We need different functionalities, also new ones

- Different physical layers and applications, traffic engineering, congestion control, security

Networks run in a distributed, autonomous way

- Scalability is important

All these add to complexity, innovations are active in academia, but suffer from poor
adoption of deployment

- Example: IPv6

- Deadlock between innovation and adoption

8https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html

Network planes

9

HeaderPayload

Match Action
122.38.42.0/24 port-2

116.16.0.0/16 port-1
139.70.8.0/24 drop

RIB

RIB

RIB

RIB

RIB

Control plane: running
protocols, e.g., OSPF

Data plane: packet forwarding
with the match-action model

FIB

FIB
FIB

FIB

FIB

RIB: routing information base, or routing table
FIB: forwarding information base

Network planes on routers

10

Switching
fabric

Processor

Line card

Line card

Line card

Line card

Line card

Line card

Data plane
Control plane

Complexity in the control plane

Control plane needs to achieve goals such as connectivity, inter-domain policy, isolation,
access control...

Currently, these goals are achieved by many mechanisms/protocols:

- Globally distributed: routing algorithms

- Manual/scripted configuration: Access Control Lists, VLANs

- Centralized computation: traffic engineering (indirect control)

Even worse, these mechanisms/protocols interact with each other

- Routing, addressing, access control, QoS

11

Network control plane is a complicated mess!

How have we managed to survive?

Network administrators miraculously master
this complexity

- Understand all aspects of networks

- Must keep myriad details in mind

The ability to master complexity is both a
blessing and a curse!

The ability to master complexity is valuable but
not the same as the ability to extract simplicity

12

UX Magazine

How to extract simplicity?

Example: programming

Machine languages: no abstractions

- Hard to deal with low-level details

- Mastering complexity is crucial

High-level languages: operating systems and other abstractions

- File systems, virtual memory, abstract data types...

Modern languages: even more abstractions

- Object oriented, garbage collection...

13

"Modularity based on
abstractions is the way

things get done!"

Barbara Liskov
(MIT, ACM Turing Award 2008,

pioneer in programming
languages, operating systems,

distributed computing)

We need abstractions and ultimately, we should be able to
program the network as we do for computers.

The evolution: active networking (1990s)
First attempt making networks programmable: demultiplexing packets to software
programs

14

IPCodePayload

Router

Packet In-band approach: The packet encapsulates a
small piece of code that can be executed on the
router, based on which the router decides what to
do with the packet

Out-band approach: User injects the code to be
executed beforehand → the programmable network
approach which received a lot of attention recently.

The evolution: control/data plane separation (2003-2007)

4D (2004)

- Data, discovery, dissemination, decision

- Clean-slate: network-wide view, direct control, network-global objectives

RCP (2005)

- Routing Control Platform for centralized intra-AS routing, replacing iBGP

Ethane (2007)

- Flow-based switching with centralized control for enterprise

- Precursor of SDN

15

Software defined network

A network in which

- The control plane is physically separate from the data plane

- A single (logically centralized) control plane controls several
forwarding devices

16

Control plane

Data plane

Router

Traditional network

Controller
Forwarding

devices

Software define network

SDN architecture overview

17

Control Program Control Program Control Program

Network OS

Forwarding

Forwarding
Forwarding

Forwarding

Forwarding

Control Program Control Program Control Program

Network OS

Abstractions in SDN

18

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

1. Abstraction for
general

forwarding model

3. Abstraction that
simplifies

configuration
2. Abstraction for

network state

Abstraction #1: forwarding abstraction

Express intent independent of implementation

OpenFlow is the current proposal for forwarding

- Standardized interface to switch: non-proprietary COTS hardware and software

- Configuration in terms of flow entries: <header, action>

- No hardware modifications needed, simply a firmware update

Design details concern exact nature of match+action

Benefits

- Much cheaper, no more $27K for a single switch

- No vendor lock-in

19

OpenFlow

20

Control Program Control Program Control Program

Network OS

OpenFlow protocol

Flow tables:
match+action

OpenFlow switch https://www.opennetworking.org/
wp-content/uploads/2014/10/

openflow-switch-v1.5.1.pdf

OpenFlow example

21

Control Program Control Program Control Program

Network OS

If header = "p", send to port 4
If header = "q", rewrite header to "r", add
header "s", and send to port 5 and 6
If header = "?", send to me

match: "p", action: forward to 4
match: "q", action: rewrite..., forward to 5&6
match: "?", action: forward to Network OS

OpenFlow switch Flow table

Flow table(s) on OpenFlow switches

22

Rule (exact & wildcard) Action Statistics

Rule (exact & wildcard) Action

Rule (exact & wildcard) Action

Rule (exact & wildcard) Action

……

Flow 1

Flow 2

Flow 3

Flow N

Priority

Statistics Priority

Statistics Priority

Statistics Priority

Exploit the forwarding tables that are already in routers, switches, and chipsets

Match+action

Match arbitrary fields in headers

- Match on any header, or new header

- Allows any flow granularity

Action

- Forward to port(s), drop, send to the controller

- Overwrite header with mask, push or pop

- Forward at specific bit-rate

- Do not support payload-related network functions like deep packet inspection

23

Header Data

Match: 1000X01XX0101001X

Abstraction #2: network state abstraction

Global network view

- Annotated network graph provided through an API

- Control program: Configuration = Function(View)

Implementation: "Network Operating Systems"

- Runs on servers in network (as "controllers")

- Replicated for reliability

Information flows both ways

- Information from routers/switches to form view

- Configurations to routers/switches to control forwarding

24

Global network view

Abstraction #3: specification abstraction

Control mechanism expresses desired behavior

- Whether it be isolation, access control, or QoS

It should not be responsible for implementing that
behavior on physical network infrastructure

- Requires configuring the forwarding tables in each switch

Proposed abstraction: abstract view of the network

- Abstract view models only enough detail to specify goals

- Will depend on task semantics

25

A

B

A → B drop

A
B

A → B drop

A → B drop

Abstract network view

Global network view

SDN control plane layers

26

Control Program Control Program Control Program

Global network view

Network OS

Virtualization

Abstract network view

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

How to use SDN for network
slicing?

Network testing

28

Imagine you come up with a novel network service, e.g., a new routing protocol,
network load-balancer, how would you convince people that this is useful?

Hardware testbed

Expensive! Small-scale (fanout
is small due to limited port

number on NetFPGA)!

Software testbed

Large-scale (VINI/
PlanetLab, Emulab)

Performance is slow (CPU-based),
no realistic topology, hard to

maintain!

Wild test on the Internet

Convincing network operators to
try something new is very

difficult! (Outages are the worst)

Network testing problems

Realistically evaluating new network
services is hard

- Services that require changes to switches
and routers

- For example: routing protocols, traffic
monitoring services, IP mobility

Results

- Many good ideas do not get deployed

- Many deployed services still have bugs

29

Real networks

Test environments

Solution: network slicing

Divide the production network into logical slices

- Each slice/service controls its own packet forwarding

- Users pick which slice controls their traffic: opt-in

- Existing production services run in their own slice: spanning
tree, OSPF/BGP

Enforce strong isolation between slices

- Actions in one slice do not affect others

Allow the (logical) testbed to mirror the production network

- Real hardware, performance, topologies, scale, users

30

Traditional network

31

Data B
Control

Control

Control

Control

Distributed routing
algorithm (e.g., OSPF)

Forwarding

Forwarding

Forwarding

Forwarding

Slicing traditional network

32

Slicing

Slicing

Slicing

Slicing

Distributed routing
algorithm (e.g., OSPF)

Control

Control

Control

Control

Needs support/
modification on existing

network devices
Forwarding

Forwarding

Forwarding

Forwarding

Data B

Current network devices

33

Control Plane
Computes forwarding rules

Pushes rules down to data plane

Data Plane
Enforce forwarding rules

Exceptions pushed back to control plane

Switch/Router

R
ules

Ex
ce

pt
s

Slicing layer

34

Slice 1 Control
Plane

Data Plane
Enforce forwarding rules

Exceptions pushed back to control plane

Slice 2 Control
Plane

Slice 3 Control
Plane

Slicing layer
Slice

policies

Switch/Router

R
ules

Ex
ce

pt
s

Slicing policies

The slicing policy specifies the resource limit for
each slice:

- Link bandwidth

- Maximum number of forwarding rules (on switches)

- Topology

- Fraction of switch/router CPU

FlowSpace: which packet does the slice control?

- Maps packets to slices according to their "classes"
defined by the packet header fields

35

Real user traffic: opt-in

Allow users to opt-in to services in real time

- Users can delegate control of individual flows to slices

- Add new FlowSpace to each slice's policy

Examples

- "Slice 1 will handle my HTTP traffic"

- "Slice 2 will handle my VoIP traffic"

- "Slice 3 will handle everything else"

Creates incentives for building high-quality services!

36

Source: gacovinolack.com

Slice definition

Bob's experimental slice: all HTTP traffic to/from users who opted in

- Allow: tcp_port=80 and ip=user_ip

Alice's production slice: complementary to Bob's slice

- Deny: tcp_port=80 and ip=user_ip

- Allow: all

Alice's monitoring slice: all traffic in all slices

- Read-only: all

37

Bob-exp

Alice-pro

Alice-mon

Slicing with OpenFlow

Recall OpenFlow:

- API for controlling packet forwarding

- Abstraction of control/data plane protocols

- Works on commodity hardware (via firmware
upgrade)

38

OpenFlow
controller

OpenFlow
firmware

Data pathData plane

Control plane
stub

Custom control
plane

OpenFlow
protocol

Switch/router

How should we slice an OpenFlow-based
software defined network?

FlowVisor

39https://github.com/opennetworkinglab/flowvisor

OpenFlow
controller

Data pathData plane

Control plane
stub

Custom control
plane

OpenFlow protocol

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor
OpenFlow protocol

Interposing OpenFlow
control messages to

enforce network slicing

https://github.com/opennetworkinglab/flowvisor

FlowVisor packet handling

40

OpenFlow
controller

Data path

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor

FlowVisor packet handling

41

OpenFlow
controller

Data path

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor

Pacekt-In exception

Check “who controls
this packet (or flow)”

FlowVisor packet handling

42

OpenFlow
controller

Data path

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor
Generate rules

Check “if the rules
are allowed or not”

FlowVisor packet handling

43

OpenFlow
controller

Data path

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor

Install rules

FlowVisor packet handling

44

OpenFlow
controller

Data path

Network

Switch/router

OpenFlow
firmware

OpenFlow
controller

OpenFlow
controller

FlowVisor

Line-rate forwarding with the rules

How to compose control
programs in SDN?

Multiple management tasks in SDN

46

Controller

MAC learner, firewall,
gateway, monitor, IP router

OpenFlow

Option 1: Maintain one monolithic application

Option 2: Use composition operators (e.g., Frenetic
controller) to combine multiple applications

→ hard to debug and maintain

→ Require to use the Frenetic
language and runtime system

SDN reality

47

POX

MAC learner

Ryu

Firewall

Floodlight ONOS ODL

Gateway Monitor IP router

“Best of breed” control applications are developed by different parties,
using different languages, running on different controllers

How to mix-and-match
different controllers?

OpenFlow

CoVisor: a compositional hypervisor for SDN

Provide clean interface to compose multiple
controllers on the same network

Composition of multiple controllers

- Use composition operators to compose multiple
controllers

Constraints on individual controllers

- Visibility: virtual topology to each controller

- Capability: fine-grained access control to each
controller

48

Composition of multiple controllers

49

Monitor Router

Parallel operator (+): two controllers
process packets in parallel

Firewall Router

Sequential operator (>>): two controllers
process packets one after another

Special
router

Default
router

Override operator (▹): one controller chooses to act
or defer the processing to another controller

Firewall Monitor Router

Use multiple operators to compose
complex control behaviors

Constraints on topology visibility

50

Physical

Virtual

Firewall

Primitive 1: many-to-one

MAC learner

Ethernet island IP core

Gateway IP router

Primitive 2: one-to-many

Constraints on packet handling capability
Protect against buggy or malicious third-party control programs

51

Constraints on pattern: header fields, match type
E.g., MAC learner: srcMAC (exact), dstMAC (exact), in_port (exact)

Constraints on action: actions to take on matched packets
E.g., MAC learner: forward, drop

CoVisor design overview

52

Ethernet island IP core

Gateway

POX

MAC learner

Ryu

Firewall

Floodlight ONOS ODL

Gateway Monitor IP router

OpenFlow

OpenFlow

CoVisor

Compose/ACL

Devirtualize

Policy composition
Compile all control policies (lists of rules) from all controllers to the physical network

53

9. srcip=1.0.0.0/24 → count
0. * → drop

Monitor

7. dstip=2.0.0.0/30 → fwd(1)
0. * → drop

Router

Priority Match Action

?. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
?. srcip=1.0.0.0/24 → count
?. dstip=2.0.0.0/30 → fwd(1)
?. * → drop

How to assign
priorities to the

compiled policies?

Naïve solution
Assign priorities from top to bottom by decrement of one

54

9. srcip=1.0.0.0/24 → count
0. * → drop

Monitor

7. dstip=2.0.0.0/30 → fwd(1)
0. * → drop

Router

3. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
2. srcip=1.0.0.0/24 → count
1. dstip=2.0.0.0/30 → fwd(1)
0. * → drop

Update overhead
Sum up priorities for parallel composition

55

9. srcip=1.0.0.0/24 → count
0. * → drop

Monitor

7. dstip=2.0.0.0/30 → fwd(1)
3. dstip=2.0.0.0/26 → fwd(2)
0. * → drop

Router

3. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
2. srcip=1.0.0.0/24 → count
1. dstip=2.0.0.0/30 → fwd(1)
0. * → drop

5. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
4. srcip=1.0.0.0/24, dstip=2.0.0.0/26 → count, fwd(2)
3. srcip=1.0.0.0/24 → count
2. dstip=2.0.0.0/30 → fwd(1)
1. dstip=2.0.0.0/26 → fwd(2)
0. * → drop

Only two new rules, but three
more rules change priorities

High update overhead!

Incremental update
Sum up priorities for parallel composition

56

9. srcip=1.0.0.0/24 → count
0. * → drop

Monitor

7. dstip=2.0.0.0/30 → fwd(1)
3. dstip=2.0.0.0/26 → fwd(2)
0. * → drop

Router

9+7=16. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
9+0=9. srcip=1.0.0.0/24 → count
0+7=7. dstip=2.0.0.0/30 → fwd(1)
0+0=0. * → drop

9+7=16. srcip=1.0.0.0/24, dstip=2.0.0.0/30 → count, fwd(1)
9+3=12. srcip=1.0.0.0/24, dstip=2.0.0.0/26 → count, fwd(2)
9+0=9. srcip=1.0.0.0/24 → count
0+7=7. dstip=2.0.0.0/30 → fwd(1)
0+3=3. dstip=2.0.0.0/26 → fwd(2)
0+0=0. * → drop

Only two rule
updates

Incremental update
Concatenate priorities for sequential composition

57

3. srcip=0.0.0.0/2, dstip=3.0.0.0 → dstip=2.0.0.1
1. dstip=3.0.0.0 → dstip=2.0.0.2
0. * → drop

Load balancer

1. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
0. * → drop

Router

3>>1=25. srcip=0.0.0.0/2, dstip=3.0.0.0 → dstip=2.0.0.1, fwd(1)
 9. dstip=3.0.0.0 → dstip=2.0.0.2, fwd(2)
 0. * → drop

011001

Incremental update
Stack priorities for override composition

58

1. srcip=1.0.0.0, dstip=3.0.0.0 → fwd(3)

Special router

1. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
0. * → drop

Default router (max priority=8)

1+8=9. srcip=1.0.0.0, dstip=3.0.0.0 → fwd(3)
 1. dstip=2.0.0.1 → fwd(1)
 1. dstip=2.0.0.2 → fwd(2)
 0. * → drop

Compiling one-to-many virtualization

59

E1

E2

G1

G2

I1

I2

E1

E2 G1 I1

E2 G2 I2

Symbolic path generation
Sequential composition
Priority augmentation

Control Program Control Program Control Program

Network OS

Summary

60

Forwarding

Forwarding

Forwarding

Forwarding

Forwarding

FlowVisor CoVisor

Next time: programmable data plane

61

How to achieve complete software-defined networking?

