Advanced Networked Systems SS24

Software Defined Networking

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University
https://en.cs.uni-paderborn.de/cn

>
)

https://en.cs.uni-paderborn.de/cn

CHE Ranking

Many of you received an email about CHE ranking on
the 6th of May

Please help us and give your honest feedback, it is
important to us!

More information: https://www.che.de/en/ranking-

germany/

Results with detailed feedback published on the
website Hey Studium: https://studiengaenge.zeit.de/

CHE

CHE Ranking
The most comprehonsive and detalled ranking of
Gorman univershtios and univarsitios of appilod D g
......

° Methodology

o Advisery comemittees of the CHE University Ranking

s

Karisruher Inst. f. Technologie KIT

Vbl
Aaftiorin
L8 3 & 844 & watpwinn € wmon *kkk
Stutienginge anzeige:
TU Munchen/@arching
Unterstutzung om Forsonungzgeldse
uuuuuuuuuuuu Fo
L 2 2 81 & msrunan € usico F'S B 2 S

Uni Pacierporm

o % W oW o7 & 1zuiunin € Wi ok Kk

rranmr TR Y
mSTudium Stodim v Ote v Inleressentest Renking StudienfGhrer m C

https://www.che.de/en/ranking-germany/
https://www.che.de/en/ranking-germany/
https://studiengaenge.zeit.de/

Marc Andreessen: co-author of Mosaic (the first widely used browser), co-
founder of Netscape, co-founder of VC firm Andreessen Horowitz (a16z).

Learning objectives

Why software defined networking (SDN)? What is SDN?

How to use SDN for network slicing?

How to compose network control programs in SDN?

Why do we need SDN and
what is it?

Internet has become a critical infrastructure, but...

- 8BC Internet Insights | ThousandEyes&

Outage Events
Kenya, Tanzania, Uganda internet outage: Africa's

vulnerability and how to fix it

The intemet outage in East Africa highlights the fragility of the continent's online Outages Locations

Last 24 hours

connections.

V— 57 31

on Africanews
Time Warner Cable Int... (AS 10796)

1 hour ago] 1 location

US embassy in Tanzania closed as the country faces internet
outage

The United States Embassy in Tanzania has declared a temporary closure for two days

LINTASARTA (AS 4800)

due to ongoing network problems in the country. 11 ; t
go C or

10 hours ago

Telecom Italia Sparkl... (AS 6762)

@ 0T Business News e
1 Ir ago 1 locatior

Prevent outages with built-in network resilience

Qur world today is defined by digital dependence and constant connectivity, and Amazon.com, Inc. (AS 16509)

enterprises face many challenges, including cyber threats... 21 Ir's ago 1 location
4 hours ago
SoftLayer Technologie... (AS 36351)

") The EastAfrican 2 hours 200 cation
US embassy in Tanzania closed over internet outage

The US Embassy in Tanzania has closed for two days because of an internet outage
which hit East African countries on Sunday.

,
<
Affected IP Addresses

7 hours ago

Surprisingly, most of these outages are due to human errors in network configuration!

https://www.thousandeyes.com/outages/

https://www.thousandeyes.com/outages/

We keep building a lot of complex artifacts...

twork Protocols Map
e - - - =

Veneon

=
- = a []
B 5 O 7 e 3

—
) - @om 4 4 5.2

4an ® ORR Re=SFE[Q]

Tene Ceta Souce Destration TCP Segme Protecal Sequence Cake Wi

wireshark, ping,

T traceroute, iperf,
tcpdump, whois, nmap,
dig, nslookup..

D7 e 2020600031000, S50 scagng Fachata: 100 - Cvagayed. |

A bunch of boxes and cables A ton of network tools

Complexity in networking

We need different functionalities, also new ones

- Different physical layers and applications, traffic engineering, congestion control, security

Networks run in a distributed, autonomous way

- Scalability is important

All these add to complexity, innovations are active in academia, but suffer from poor
adoption of deployment

Native: 44.33% | May 12, 2024

45.00% | l

- Example: IPv6 oo

- Deadlock between innovation and adoption .

0.00% i -Z(HU) 2020

https://www.google.com/intl/en/ipv6/statistics.html

https://www.google.com/intl/en/ipv6/statistics.html

Network planes

Payload
Match
122.38.42.0/24 | port-2
116.16.0.0/16 port-1
139.70.8.0/24 drop

Control plane: running
protocols, e.g., OSPF

RIB: routing information base, or routing table
FIB: forwarding information base

Network planes on routers

Data plane

Q

A

v

Line card

A

v

Line card

Line card

A

v

Processor

Switching
fabric

Control plane

Line card

Line card

Line card

A

v

A

v

A

v

10

Complexity in the control plane

Control plane needs to achieve goals such as connectivity, inter-domain policy, isolation,
access control...

Currently, these goals are achieved by many mechanisms/protocols:

- Globally distributed: routing algorithms
- Manual/scripted configuration: Access Control Lists, VLANs

- Centralized computation: traffic engineering (indirect control)

Even worse, these mechanisms/protocols interact with each other

- Routing, addressing, access control, QoS

Network control plane is a complicated mess!

n

How have we managed to survive?

Network administrators miraculously master
this complexity

- Understand all aspects of networks

- Must keep myriad details in mind

The ability to master complexity is both a
blessing and a curse!

The ability to master complexity is valuable but
not the same as the ability to extract simplicity

How to extract simplicity?

12

Example: programming

Machine languages: no abstractions "Modularity based on

abstractions is the wa
things get done!"

- Hard to deal with low-level details

- Mastering complexity is crucial

High-level languages: operating systems and other abstractions

- File systems, virtual memory, abstract data types..

Modern languages: even more abstractions

- Object oriented, garbage collection..

We need abstractions and ultimately, we should be able to
program the network as we do for computers.

y

Barbara Liskov
(MIT, ACM Turing Award 2008,
pioneerin programming
languages, operating systems,
distributed computing)

13

The evolution: active networking (1990s)

First attempt making networks programmable: demultiplexing packets to software

programs
Packet In-band approach: The packet encapsulates a
small piece of code that can be executed on the
Payload Code [HI¥ : .
router, based on which the router decides what to

do with the packet

Out-band approach: User injects the code to be
executed beforehand — the programmable network
approach which received a lot of attention recently.

Router

14

The evolution: control/data plane separation (2003-2007)

4D (2004) I‘Jet'v'mrkJe'v[I objectives
- Data, discovery, dissemination, decision Decicion
Metwark-wide Dissemination Direct control
views Discovery
- Clean-slate: network-wide view, direct control, network-global objectives e
/ ReP |
L i.—jig;sep,:i . NG

. \

- Routing Control Platform for centralized intra-AS routing, replacing iBGP

Ethane (2007)

- Flow-based switching with centralized control for enterprise

- Precursor of SDN

15

Software defined network

The Road to SDN: An Intellectual History
of Programmable Networks

Nick Feamster
Georgia Tech

A network in which

ABSTRACT

Software Defined Networking (SDN) is an exciting technol-
ogy that cnables innovation in bow we design and manage
networks. Although this technology seems to have eppeared
suddenly, SDN is part of a long history of efforts to make com
puter networks more programmable. In this paper, we trace
the intellecual history of programmable networks, including
active networks, early efforts to separate the control and deta
plane, and more recent wark on OpenFlow and petwork op
crating systems. We highlight key concepts, as well as the

- The control plane is physically separate from the data plane

technology pushes and application pulls that spurred each in
novation. Along the way, we debunk common myths and mis
i larify the ionshi

netwar viem

- Asingle (logically centralized) control plane controls several

1oh e

forwarding devices

Forwarding
Control plane _
devices

/ .-
L
.
.
.
.

Data plane

Router

Traditional network

Jennifer Rexford
Princeton University
feamster@cc.gatech.edu jrex@cs princeton.edu ewz@cc.gatech edu

Ellen Zegura
Georgia Tech

makes), Second, an SDN consolidates the control plane, so
that a single software control program coatrols muliiple data-
plane elements. The SDN contrel plane exercises direct con-
ol over the state in the network's data-plane elements (i.e.,
routers, switches, and other middleboxes) viu a well-defined
Application Programming Interface (APT). OpenFlow [51] is
4 promineat example of such an APL An OpenFlow switch
has one or more tables of packet-hundling rules. Esch rule
matches a subset of traffic and performs certain actions on
the traffic that matches a rule; actions include dropping, for-
warding, or flooding. Depending on the rules installed by a
controller application, 2n OpenFlow switch can behave like a
router, switch, firewall, network address translator, or some-
thing in between.

Controller

Software define network
16

SDN architecture overview

Control Program Control Program Control Program

Network OS

Forwarding

/ Forwarding
Forwarding 5 /

\ . /Forwarding
orwardin

17

Abstractions in SDN

3. Abstraction that
simplifies
configuration

Control Program Control Program Control Program 2. Abstraction for
, network state

1. Abstraction for ' C)
general 5 : Forwarding OpenFlow

forwarding model : / Forwérding
Forwarding i /

\ /Forwardlng
orwardm

18

Abstraction #1: forwarding abstraction

Express intent independent of implementation

OpenFlow is the current proposal for forwarding
- Standardized interface to switch: non-proprietary COTS hardware and software
- Configuration in terms of flow entries: <header, action>

- No hardware modifications needed, simply a firmware update
Design details concern exact nature of match+action

Benefits
- Much cheaper, no more $27K for a single switch

- No vendor lock-in

/Open Flow

19

OpenFlow

Control Program Control Program Control Program

Network OS

s
Scape of Openfiow Stch Specification
A OpenFlow . :
Py S 1itch : Controller
Flow: [
.......... =
\-

~> OpenFlow switch

A

=
C OpenFlow

OpenFlow protocol

v

i Flow tables:

match+action

OPEN NETWORKING
FOUNDATION

OpenFlow Switch Specification

Version 1.5.1 (Protocol version 0z06)

March 26, 2015

ONF TS-025

https://www.opennetworking.org/
wp-content/uploads/2014/10/
openflow-switch-v1.5.1.pdf

20

OpenFlow example

Control Program Control Program Control Program
Network OS

If header = "p", send to port 4

If header ="q", rewrite header to "r", add
header "s", and send to port 5 and 6

If header = "?", send to me

match: "p", action: forward to 4

match: "q", action: rewrite.., forward to 5&6
match: "?", action: forward to Network OS

OpenFlow switch Flow table

21

Flow table(s) on OpenFlow switches

Flow 1 Rule (exact & wildcard) Action

Flow 2 Rule (exact & wildcard) Action

Flow 3 Rule (exact & wildcard) Action

Flow N Rule (exact & wildcard) Action

Exploit the forwarding tables that are already in routers, switches, and chipsets

Match+action

Match arbitrary fields in headers

- Match on any header, or new header In
Port

VLAN
ID

Ethernet

IP

TCP

SA l DA I Type

SA I DA l Proto

Src | Dst

- Allows any flow granularity

Action
- Forward to port(s), drop, send to the controller
- Overwrite header with mask, push or pop

- Forward at specific bit-rate

- Do not support payload-related network functions like deep packet inspection

Match: 1000X01XX0101001X

Data

23

Abstraction #2: network state abstraction

Global network view

- Annotated network graph provided through an API Global network view
- Control program: Configuration = Function(View) Qk

Implementation: "Network Operating Systems"
- Runs on servers in network (as "controllers")

- Replicated for reliability

Information flows both ways

- Information from routers/switches to form view

- Configurations to routers/switches to control forwarding

24

Abstraction #3: specification abstraction

Abstract network view

A
Control mechanism expresses desired behavior

- Whether it be isolation, access control, or QoS A — B drop

It should not be responsible for implementing that
behavior on physical network infrastructure

B

- Requires configuring the forwarding tables in each switch
Global network view

Proposed abstraction: abstract view of the network A
- Abstract view models only enough detail to specify goals A — B drop

- Will depend on task semantics

A — B drop

25

SDN control plane layers

Control Program Control Program Control Program

Abstract network view

Virtualization . ‘ . .

Global network view

o
Network OS . ‘ . ‘

Forwarding

/ Forwarding
Forwarding 5 /

\ _ /Porwarding
orwardin

26

How to use SDN for network
slicing?

Network testing

Imagine you come up with a novel network service, e.g., a new routing protocol,
network load-balancer, how would you convince people that this is useful?

Hardware testbed Software testbed Wild test on the Internet

Large-scale (VINI/
PlanetLab, Emulab)

Expensive! Small-scale (fanout Performance is slow (CPU-based), Convincing network operators to
iIs small due to limited port no realistic topology, hard to try something new is very
number on NetFPGA)! maintain! difficult! (Outages are the worst)

28

Network testing problems

Realistically evaluating new network rm !

il |
JAER,

- Services that require changes to switches =

and routers
Real networks

services is hard

- For example: routing protocols, traffic
monitoring services, IP mobility

Results

- Many good ideas do not get deployed

- Many deployed services still have bugs
Test environments

29

Solution: network slicing

Divide the production network into logical slices
- Each slice/service controls its own packet forwarding
- Users pick which slice controls their traffic: opt-in
- Existing production services run in their own slice: spanning
tree, OSPF/BGP
Enforce strong isolation between slices

- Actionsin one slice do not affect others

Allow the (logical) testbed to mirror the production network

- Real hardware, performance, topologies, scale, users

Can the Production Network Be the Testbed?

Rob Sherwood®, Glen Gibb', Kok-Kiong Yap', Guido Appenzeller *,
Martin Casado®, Nick McKeown', Guru Parulkar'
* Deutsche Telekom Inc. R&D Lab, Los Altos, CA' Stanford University, Palo Alto, CA

? Nicira Networks, Palo Alto, CA

Abstract

A persistent problem in computer network research is
validation. When deciding how to evaluate a new feature
or bug fix, a rescarcher or operator must trade-off real-
ism (in terms of scale, actual user traffic, real equipment)
and cost (larger scale costs more money, real user traf-
fic likely requires downtime, and real equipment requires
vendor adoption which can take years). Building a realis-
tic testbed is hard because “real” networking takes place
on closed, commercial switches and routers with spe-
cial purpose hardware. But if we build our testbed from
software switches, they run several orders of magnitude
slower. Even if we build a realistic network testbed, it

t Big Switch Networks, Palo Alto, CA

Today 777

. »
7 ™0 Goar path 1o
5
E
g
Ll
..... - ne2 e
P O Cmub Fow yordar
......... G e Ao
ot < > hetan

Figure 1: Today’s evaluation process is a continuum
from controlled but synthetic to uncontrolled but realistic
testing, with no clear path to vendor adoption.

30

Traditional network

Forwarding .

- Distributed routing
w algorithm (e.g., OSPF)

Forwarding

Data

; >
\w Forwarding

Forwarding

31

Slicing traditional network

: m Distributed routing
algorithm (e.g., OSPF)
w\ Forwarding

Needs support/

Forwarding modification on existing

Data

. network devices
Forwarding

Forwarding

32

Current network devices

Switch/Router

Control Plane

Computes forwarding rules

Pushes rules down to data plane

sa|ny
Excepts

Data Plane
Enforce forwarding rules
Exceptions pushed back to control plane

33

Slicing layer

Switch/Router

Slice 2 Control | Slice 3 Control §
Plane Plane

Slice 1 Control
Plane

Slice
policies

sa|ny
Excepts

Data Plane
Enforce forwarding rules
Exceptions pushed back to control plane

Slicing policies

The slicing policy specifies the resource limit for
each slice:

- Link bandwidth
- Maximum number of forwarding rules (on switches)

- Topology

- Fraction of switch/router CPU

FlowSpace: which packet does the slice control?

- Maps packets to slices according to their "classes”
defined by the packet header fields

TCP port#
4 Slice 2

|P address

35

Real user traffic: opt-in

Allow users to opt-in to services in real time
- Users can delegate control of individual flows to slices

- Add new FlowSpace to each slice's policy

Examples
- "Slice 1 will handle my HTTP traffic"
- "Slice 2 will handle my VolP traffic"

- "Slice 3 will handle everything else"

Creates incentives for building high-quality services!

Source: gacovinolack.com

36

Slice definition

Bob's experimental slice: all HTTP traffic to/from users who opted in

- Allow: tcp_port=80 and ip=user_ip

Alice's production slice: complementary to Bob's slice

, , Bob-exp Alice-mon
- Deny: tcp_port=80 and ip=user_ip

- Allow: all -.

Alice's monitoring slice: all traffic in all slices Alice-pro

- Read-only: all

37

Slicing with OpenFlow

Recall OpenFlow:
- API for controlling packet forwarding
- Abstraction of control/data plane protocols

- Works on commodity hardware (via firmware
upgrade)

How should we slice an OpenFlow-based
software defined network?

Custom control
plane

Control plane
stub

Data plane

OpenFlow

controller

OpenFlow
protocol

OpenFlow

firmware

Data path

Switch/router

38

FlowVisor

Custom control
plane

Interposing OpenFlow
control messages to
enforce network slicing

OpenFlow OpenFlow OpenFlow

controller controller controller

OpenFlow protocol
Network | FlowVisor

T OpenFlow protocol

Control plane OpenFlow

stub firmware

Data plane Data path

Switch/router

https://github.com/opennetworkinglab/flowvisor

https://github.com/opennetworkinglab/flowvisor

FlowVisor packet handling

OpenFlow OpenFlow OpenFlow

controller controller controller

Network | FlowVisor

T

OpenFlow
firmware

> Data path

Switch/router

40

FlowVisor packet handling

OpenFlow

controller

OpenFlow
controller

OpenFlow
controller

Network

FlowVisor

OpenFlow
firmware

Data path

Switch/router

T

Check “who controls
this packet (or flow)”

41

FlowVisor packet handling

OpenFlow OpenFlow OpenFlow

controller controller controller

Network | FlowVisor
T Check “if the rules

are allowed or not”
OpenFlow
firmware

> Data path

Switch/router

42

FlowVisor packet handling

OpenFlow OpenFlow OpenFlow

controller controller controller

Network | FlowVisor

T

OpenFlow
firmware

> Data path

Switch/router

43

FlowVisor packet handling

OpenFlow OpenFlow OpenFlow

controller controller controller

Network | FlowVisor

T

OpenFlow
firmware

Data path

Switch/router

44

How to compose control
programs in SDN?

Multiple management tasks in SDN

MAC learner, firewall,
gateway, monitor, IP router

Controller

OpenFlow

Option 1: Maintain one monolithic application

— hard to debug and maintain

Option 2: Use composition operators (e.g., Frenetic
controller) to combine multiple applications

— Require to use the Frenetic
language and runtime system

46

SDN reality

“Best of breed” control applications are developed by different parties,

using different languages, running on different controllers

IP router

~
N

MAC learner Firewall Gateway Monitor
POX Ryu Floodlight ONOS
OpenFlow

ODL

How to mix-and-match

different controllers?

47

CoVisor: a compositional hypervisor for SDN

Provide clean interface to compose multiple
controllers on the same network

Composition of multiple controllers

- Use composition operators to compose multiple
controllers

Constraints on individual controllers
- Visibility: virtual topology to each controller

- Capability: fine-grained access control to each
controller

CoVisor: A Compositional Hypervisor for Software-Defined Networks

Xin Jin, Jennifer Gossels, Jennifer Rexford, David Walker
Princeton University

Abstract

We present CoVisor, a new kind of network hypervisor
that enables, in a single network, the deployment of mul-
tiple control applications written in different program-
ming languages and operating on different controller
platforms. Unlike past hypervisors, which focused on
slicing the network into disjoint parts for separate control
by separate entitics, CoVisor allows multiple controllers
to cooperate on managing the same shared traffic. Con-

quently, network admini s can use CoVisor to as-
semble a collection of independently-developed “best of
breed” applications—a firewall, a load balancer, a gate-
way, a router, a traffic monitor—and can apply those ap-
plications in combination, or scparately, to the desired
traffic. CoVisor also abstracts concrete topologies, pro-
viding custom virtual topologies in their place, and al-
lows administrators to specify access controls that regu-
late the packets a given controller may see, modify, mon-

distinct slice of network traffic. While useful in scenar-
ios like multi-tenancy in which each tenant controls its
own traffic, they do not enable multiple applications to
collaboratively process the same traffic. Thus, an SDN
hypervisor must be capable of more than just slicing.
More specifically, in this paper, we show how to bring
together the following key hypervisor features and im
plement them efficiently in a single, coherent system.

(1) Assembly of multiple controllers. A nctwork ad-
ministrator should be able to assemble multiple con-
trollers in a flexible and configurable manner. Inspired
by network programming languages like Frenetic [5],
we compose data plane policies in three ways: in par-
allel (allow multiple controllers to act independently on
the same packets at the same time), sequentially (allow
one controller to process certain traffic before another),
and by overriding (allow one controller to choose to act
or to defer control to another controller). However, un-

48

Composition of multiple controllers

Monitor + Router

Parallel operator (+): two controllers
process packets in parallel

Special } Default

router router

Override operator (P): one controller chooses to act
or defer the processing to another controller

Firewall)) Router

Sequential operator (>>): two controllers
process packets one after another

Firewall)) Monitor + Router

Use multiple operators to compose
complex control behaviors

49

Constraints on topology visibility
Primitive 1: many-to-one Primitive 2: one-to-many

Firewall
MAC learner Gateway

Virtual >.7 s
>. . ~

Physical Ethernetisland>.<

50

Constraints on packet handling capability

Protect against buggy or malicious third-party control programs

Constraints on pattern: header fields, match type
E.g., MAC learner: srcMAC (exact), dstMAC (exact), in_port (exact)

Constraints on action: actions to take on matched packets
E.g.. MAC learner: forward, drop

51

CoVisor design overview

OpenFlow ‘

' ' K
Y '
+ ' 'l
‘ H K
' .
.
.
’
T
0
. D
v .
. .
. .
' .
v .
. '
.
P K
L]
LY
'

* Devirtualize

MAC learner Firewall Gateway Monitor IP router
POX Ryu Floodlight ONOS ODL
v v v v v OpenFIOW
Ethernet island IP core compose/ACL
CoVisor

52

Policy composition

Compile all control policies (lists of rules) from all controllers to the physical network

Monitor Router
9. srcip=1.0.0.0/24 -+ count I 7. dstip=2.0.0.0/30 -+ fwd(1)
0. * -+ drop 0. * -+ drop
Priority Match Action
- : 7. srcip=1.0.0.0/24, dstip=2.0.0.0/30 -+ count, fwd(1)
ow to assign
o & 7. srcip=1.0.0.0/24 -+ count
BTETIEIEs 0 Erie ?. dstip=2.0.0.0/30 5 fud(1)
compiled policies? 7 % - drop

53

Naive solution

Assign priorities from top to bottom by decrement of one

Monitor Router

9. srcip=1.0.0.0/24 -+ count I 7. dstip=2.0.0.0/30 -+ fwd(1)
0. * =+ drop 0. * -+ drop

3. srcip=1.0.0.0/24, dstip=2.0.0.0/30 -+ count, fwd(1)
2. srcip=1.0.0.0/24 -+ count

1. dstip=2.0.0.0/30 -+ fwd(1)

0. * -+ drop

54

Update overhead

Sum up priorities for parallel composition

(@]

O = N W

O r N W & O

. srcip=1.

. srcip=1.
. srcip=1.
. dstip=2.

. srcip=1.
. srcip=1.
. srcip=1.
. dstip=2.
. dstip=2.

Monitor

0.0.0/24 -+ count

(@)
(@)

@)
@)

O O O O O
O O O O O

-+ drop

.0/24, dstip=2.0.0.0/30
.0/24
.0/30

.0/24, dstip=2.0.0.0/30
.0/24, dstip=2.0.0.0/26
.0/24
.0/30
.0/26

Router

7. dstip=2.0.0.0/30 = fwd(1)

+ 3. dstip=2.0.0.0/26 -+ fwd(2)

-

-

-

4 4L 1L 1L 1l

0. * -+ drop

count, fwd(1l)
count

fwd (1)

drop

count, fwd(1)

count, fwd(2) Only two new rules, but three
count

more rules change priorities
fwd (1)

fwd (2) High update overhead!

drop

55

Incremental update

Sum up priorities for parallel composition

Monitor Router
. 7. dstip=2.0.0.0/30 - fwd(1)
9. srcip=1.0.0.0/24 -+ count _
3. dstip=2.0.0.0/26 =+ fwd(2)
0. * -+ drop
0. * -+ drop
9+7=16. srcip=1.0.0.0/24, dstip=2.0.0.0/30 -+ count, fwd(1)
9+0=9. srcip=1.0.0.0/24 -+ count
0+7=7. dstip=2.0.0.0/30 -+ fwd (1)
0+0=0. * -+ drop
9+7=16. srcip=1.0.0.0/24, dstip=2.0.0.0/30 =+ count, fwd(1)
9+3=12. srcip=1.0.0.0/24, dstip=2.0.0.0/26 -+ count, fwd(2)
9+0=9. srcip=1.0.0.0/24 -+ count
0+7=7. dstip=2.0.0.0/30 5 fud(1) ol e sule
0+3=3. dstip=2.0.0.0/26 + fwd(2) updates
0+0=0. * -+ drop

56

Incremental update

Concatenate priorities for sequential composition

Load balancer Router
3. srcip=0.0.0.0/2, dstip=3.0.0.0 = dstip=2.0.0.1 1. dstip=2.0.0.1 -+ fwd(1)
1. dstip=3.0.0.0 -+ dstip=2.0.0.2 » 1. dstip=2.0.0.2 = fwd(2)
0. * -+ drop 0. * -+ drop
011001

3>>1=25. srcip=0.0.0.0/2, dstip=3.0.0.0 -+ dstip=2.0.0.1, fwd(1)
9. dstip=3.0.0.0 -+ dstip=2.0.0.2, fwd(2)

0. + drop

57

Incremental update

Stack priorities for override composition

Special router Default router (max priority=8)
1. dstip=2.0.0.1 = fwd(1)
1. srcip=1.0.0.0, dstip=3.0.0.0 = fwd(3) } 1. dstip=2.0.0.2 =+ fwd(2)
0. * -+ drop

1+8=9. srcip=1.0.0.0, dstip=3.0.0.0 =+ fwd(3)
1. dstip=2.0.0.1 -+ fwd (1)
1. dstip=2.0.0.2 -+ fwd(2)
0. * -+ drop

58

Compiling one-to-many virtualization

El

2 » G »
2 » G2 »

N

12

Symbolic path generation
Sequential composition
Priority augmentation

59

Summary

FlowVisor

Forwarding

IS

Network OS

c ?,OpenFIow

Forwarding

Control Program Control Program Control Program

CoVisor

Forwa rding

/

C orwarding
orwardin

60

Next time: programmable data plane

P
™\ N
G
./

How to achieve complete software-defined networking?

61

