Advanced Networked Systems SS24

Programmable Data Plane

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University

https://cs.uni-paderborn.de/cn

>
)

https://en.cs.uni-paderborn.de/cn

Learning objectives

Why we need programmable data plane?

How to enable data plane programmability?

Why do we need data plane
programmability?

Evolution of the computer industry

Dooo

Open interface

Open interface

applications

Proprietary \
i\

Proprietary OS

Proprietary
hardware

The computing industry has been evolving from proprietary hardware/software
towards more general-purpose hardware/software with open standards/interfaces.

Evolution of networking industry

Do
Proprietary

Open interface
- — —
| A : : , : :
Al Disaggregation Merchant switch chips

features

Open interface
Proprietary

hardware

The networking industry has also been evolving from proprietary hardware/software
towards more general-purpose hardware/software with open standards/interfaces.

Recap: software define networking

Control Program Control Program Control Program

Abstract network view

Virtualization

Global network view

o
Network OS ‘ . . ’

; C OpenFlow
Forwarding '

/ Forwarding
Forwarding 5 /

\ _ g/Forwarding
orwardin

A deep dive into OpenFlow

class
def

end
end

flow_mod(message.match, PORT_S)
packet_out(message, PORT_S5)

Control Application

Forwarder < Controller
packet_in dpid, message

OF Control Platform
(e.g. Floodlight, Ryu, Trema, yanc)

T

packet_in={port=2, msg=...}

!

stats={{flowid=1, packet_#=123}}

action={output: 5}

match={dst.ip==128.138.5.233},

TCP Session

/

¥ v

Switch with OF Interface

Port 2 l—l Port 5 }—

OF Protocol

OpenFlow is designed around
the match+action abstraction:
a set of header match fields and

forwarding actions

OpenFlow v1.5: 41
match header fields

Most hardware/software switches

only support limited match/action

set (Ethernet, IP, TCP, MPLS) due to
ASIC limitations.

TUNNEL_ID,
THDR,

Action

MENTER

Switch architecture

A switch can only match on a
supported packet header field
and take corresponding actions

UWX\\W OSPF | & etc.

Switch OS

Driver

Packet processing pipeline

Switch architecture

VLAN OSPF etc.
What if we want to add a new

protocol/feature to the switch? Switch OS

Driver

s

Packet processing pipeline

Switch architecture

The switch ASIC has to be
modified in order to support
such a new protocol/feature.

v\ OSPF etc.

Switch OS

Driver

Packet processing pipeline

10

Development cycle @

Software
S8 o D

Network Weeks

Feature
team

Network —— > :
equipment

vendor (Cisco) wre

Years ASIC team

owner (ISP) ¥—m

Years

It takes years for the new ASIC to be developed, fully tested, and finally deployed!! When
the upgrade is available:

- Iteither no longer solves your problem

- You need a fork-lift upgrade at huge expenses What is the root cause of all this?

n

The “bottom-up” mentality

A —

“This is how |

process packet...”

N Switch OS

Driver] The network systems are built following the
bottom-up approach: all network features are
centered around the capabilities of the ASIC.

-
.

How to improve this?

Fixed function switch

12

The “top-down” approach

Make the ASIC programmable, and let your
features to tell the ASIC what to support!

table int_table {
is { action exp tq _la y (sw_id) {
add_header(int_header);

ip.protocol;
} o modify field(int_header.kind, TCP_OPTION_INT):

actions (modify field(int_header.len, TCP_OPTION INT LEN);
~ - - e
export_queue latency; modify field(int_header.sw_id, sw_id);
} - - modify field(int_header.g_latency,
} intrinsic _metadata,deq timedelta):
add_to_field(tcp.dataOffset, 2);

add_to_field(ipvd.totallen, 8);
subtract from_ field(ingress_metadata.tcplenath,
12);

“This is precisely how you must
process packets..”

How to support programmability?

Switch OS

Customizable
switching ASIC

13

How to enable data plane
programmability?

Domain-specific processors

Signal Machine

Computers Graphics .) Networking
processing learning

4 N N N\ N

Java CUDA Matlab TensorFlow
\ J \ J \ J \ J »
~ N N N A

Compiler Compiler Compiler Compiler

\- J J J J

Coren > /

CPU GPU DSP TPU

Domain-specific processors

Computers

Java

Compiler

Y)

AN

Corem > / /

CPU

Graphics

OpenCL

Y)

Compiler

AN

GPU

Signal

processing

Matlab

Y

Compiler

AN

Machine
learning

-

TensorFlow

\
>

\§

Compiler

AN

Networking

~
Language

N
4
Compiler

TPU

N

-

Switching ASIC

16

Domain-specific processors

Signal Machine

Computers Graphics .) Networking
processing learning
e N) 4 N A
Java OpenCL Matlab TensorFlow
\ J \ J \ J \ / »
e N A 4 N A
Compiler Compiler Compiler Compiler Compiler
\ P J P Y - P J P J
\ 4

Corem > / /

CPU GPU DSP TPU

RMT and P4

RMT: reconfigurable match tables model (a RISC-
inspired pipelined architecture)

P4: a domain-specific language for programming
protocol-independent packet processors

Ingress (match-action pipeline)

P

RMT

Parser

https://p4.org

Switching fabric (e.g., crossbar)

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart', Dan Daly", Glen Gibb', Martin Izzard', Nick McKeown', Jennifer Rexford™,
Cole Schlesinger*, Dan Talayco', Amin Vahdat*, George Varghese®, David Walker**
'Barefoot Networks “Intel *Stanford University ““Princeton University YGoogle 'Microsoft Research

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller
fields shows no signs of

ABSTRACT
P4 is o high-level language for programming protocol-inde
pendent packet processors. Pd works (n conjunction with

SDN contrel protocols like OpenFlow. In its current form,

feration of new head)

The pr
stopping. x example, data-
creasingly want to apply new forms of packet en
tion (e.g., NVGRE, VXLAN, and STT), for which they re
sort to deplaying software switches that are easier to extend

network operators in-
pesula-

ifies protocol headers
own from 12 to 4] fle

plexity of the specif

, increasing th ‘ ;
with new functionality. Rather than repeatedly extending

still not providing the flexibility to add new headers. In this
papér we proposs P4 as 8 strewmen proposal for how Open- the OpenFlow specification, we argue that future switches
Flow should evolve in the future, We have three goals: (1) should support flexible mechanisms for parsing packets and
Reo bili matching header fields, allowing controller applications to

leverage these capabilities through s common, open inter-

Egress (match-action pipeline)

P

RMT

Deparser

18

https://p4.org

P4 development

P414 v1.0.1
Initial vi0.2 P46 specification (draft)
nitial paper
Pap v1.0.3 December
v1.0.4
| | | | |
| | | | |
2014 2015 2016 2017 2018

P44 specification
September

P4 specification

19

P4, introduces the concept of architecture

P4 architecture P4 target
Specifies the P4 programmable A model of a specific
components of a target and data hardware
plane interfaces between them implementation

20

P4 language evolvement

P4_16 language

l Stable, rarely updated
core.p4 library J

P4_14 *
language

arch_lib.p4 Architecture-specific,

can be changed by target
manufactures

arch.p4

21

Programming a P4 target

...

P4 program — Compiler — Control plane

Architecture model

Data plane

Target-specific binary

. User supplied
Vendor supplied

22

Architecture model

Interface User: -:etﬁn ed |nterface
of P4 block #1 metadata of P4 block #2

. «—Tntrinsic metadata™=="! Y L/\ i

L

Bz

/ P4 block #1

Metadata

P4 block #2 i

———————————

Target runtime/hardware

A contract between the P4 program and the target

23

Architecture model

A contract between the P4 program and the target

User-defined
metadata

P4 block #1 P4 block #2

Intrinsic metadata

Switch architecture example

Ingres
packet

Egress
packet

packet

IH OH
Parser IPipe Deparser |-
|
L
IH OH
Parser EPipe Deparser

:} packet

Switch architecture

parser Parser<IH>(packet_in b, out IH parsedHeaders);
// ingress match-action pipeline
control IPipe<T, IH, OH>(in IH inputHeaders,
in InControl inCtrl,
out OH outputHeaders,
out T toEgress,
out OutControl outCtrl);
// egress match-action pipeline
control EPipe<T, IH, OH>(in IH inputHeaders,
in InControl inCtrl,
in T fromIngress,
out OH outputHeaders,
out OutControl outCtrl);

control Deparser<OH>(in OH outputHeaders, packet_out b);
package Ingress<T, IH, OH>(Parser<IH> p,
IPipe<_, IH, OH> map,
Deparser<OH> d);
package Egress<T, IH, OH>(Parser<IH> p, Port
EPipe<_, IH, OH> map,
Deparser<OH> d);
package Switch<T>(// Top-level switch contains two packages
// type types Ingress.IH and Egress.IH may be different
Ingress<T, _, _> ingress,
Egress<T > egress

-

)E

Switch architecture description

25

A simple P44 switch architecture: vimodel

Roughly equivalent to Protocol-Independent Switch Architecture (PISA)

| P
A
N R Queues
p > S and/or ™
U ; Buffers
T R | Ingress Match+Action Egress Match+Action
Packet Modifications + Packet Modifications
Egress Selection

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf

vimodel architecture

Defines the metadata it supports, including both intrinsic and user-defined ones

struct standard_metadata_t {
bit<9> ingress_port;
bit<9> egress_spec;
bit<9> egress_port;
bit<32> clone_spec;
bit<32> instance_type;
bit<1> drop;
bit<16> recirculate_port;
bit<32> packet_length;
bit<32> enq_timestamp;
bit<19> enq_qdepth;
bit<32> deq_timedelta;
bit<19> deq_qdepth;
€Irror parser_error;

https://github.com/p4lang/p4c/blob/main/p4include/vimodel.p4

bit<48>
bit<48>
bit<32>
bit<16>
bit<32>
bit<16>

ingress_global_timestamp;
egress_global_timestamp;
1f _field_list;

mcast_grp;

resubmit_flag;
egress_rid;

bit<1> checksum_error;

bit<32>

recirculate_flag;

Standard intrinsic metadata

27

https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

Architecture-specific constructs

Each architecture defines a list of “externs”

- Blackbox functions whose interfaces are known .
extern register<T> {

register(bit<32> size);
. .. void read(out T result, in bit<32> index);
Most targets contain specialized components, ol Trfee(Gn BRI fndes, fm T wedma):
}
extern void random<T>(out T result, in T lo, in T hi);
extern void hash<0, T, D, M>(out 0 result,
in HashAlgorithm algo, in T base, in D data, in M max);
On the other ha nd, P416 aims to be ta rget- extern void update_checksum<T, 0>(in bool condition,
in T data, inout O checksum, HashAlgorithm algo);

which cannot be expressed in P4

independent

- P44, has almost 1/3 of the constructs target- vimodel architecture-specific externs
dependent: not portable to different targets

https://github.com/p4lang/p4c/blob/main/p4include/vimodel.p4 28

https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

P4 language basics

P4 language overview

#include <core.p4> . . control MyDeparser(...) {...} Assemble

#include <vimodel.p4> Libraries modified packet
ViSwitch(

const bit<16> TYPE_IPV4 = 0x800; MyParser (),

typedef bit<32> ip4Addr_t; Decl ti MyVerifyChecksum() ,

header ipv4_t {...} eclarations MyIngress(), .

struct headers {...} MyEgress (), ‘WW\GIH()”

MyComputeChecksum(),

parser MyParser(...) { MyDeparser ()
state start {...}) main;
state parse_ethernet {...}
state parse_ipv4 {...

Packet header

()

parser

control MyIngress(...) {
action ipv4_forward(...) {...}
table ipv4_lpm {...}
apply {
if (...) {...} modify packets
}

Control flow to

30

P4 language basics: data types

P4_16 is a statically-typed language with base types and operators to derive composed ones

bool
bit<W>
int<w>
varbit<w>
match_kind
error

void

x float
x string

Boolean value

Bit-string of width W

Signed integer of width W

Bit-string of dynamic length <=W
Describes ways to match table keys

Used to signal errors

No values, used in few restricted circumstances
Not supported

Not supported

31

P4 language basics: composed data types

Header Header stack Header union
header Ethernet_h { header Mpls_h { header_union Ip_h {
bit<48> dstAddr; bit<20> label; IPv4_h v4,
bit<48> srcAddr; bit<3> tc; IPv6_h v6;
bit<16> etherType; bit bos; }
} bit<8> ttl;
+

Mpls_h[10] mpls;

Either IPv4 or IPvG

Array of up to 10 MPLS headers ,
header is present

A successful extract () sets to true the validity bit of the extracted header hdr.ipv4.isValid()

Parsing a packet using extract () fills in the fields of the header from a network packet

32

P4 language basics: composed data types

Struct: unordered collection Tuple: ordered collection of
of named members unnamed members
struct standard_metadata_t { tuple<bit<32>, bool> x;
bit<9> ingress_port; x = {10, false}

bit<9> egress_spec;
bit<9> egress_port;

+
Other data types:

- enum: enum Priority {High, Low}
- Type specification: typedef bit<48> macAddr_t;

- extern, parser, control, package..

https://p4.org/p4-spec/docs/P4-16-vi.2.1.html

33

https://p4.org/p4-spec/docs/P4-16-v1.2.1.html

P4 language basics: operations

P4 operations are similar to C operations and vary depending on the types (unsigned/
signed integers,...)

Arithmetic operations: +, -, *

Logical operations:
- Bitwise complement, and, or, xor: 7, &, |, ~

- Shifts: >>, <<

Non-standard operations: [m:1] bit slicing, ++ bit concatenation

No division and modulo: can be approximated

https://p4.org/p4-spec/docs/P4-16-vi.2.1.html

34

https://p4.org/p4-spec/docs/P4-16-v1.2.1.html

P4 language basics: variables and constants

Constants, variable declarations and instantiations are almost the same as in C too

Variable

Constant

bit<8> x = 123;
typedef bit<8> MyType;

MyType x;
x = 123;

const bit<8> x = 123;

typedef bit<8> MyType;
const MyType x = 123;

Important

Variables cannot be used to maintain
state across different network packets.

Instead, we can only use two stateful

constructs, i.e., tables and extern
objects, to maintain state.

35

P4 language basics: statements

P4 statements are pretty classical too

- Some restrictions may apply depending on the statement location

return

exit

Conditions

Switch

Terminates the execution of the
action of control containing it

Terminates the execution of all the
blocks currently executing

if (x==123) {..} else {.} Not in parser

switch (t.apply().action_run) {
actionl: {..}
action2: {..} Only in control blocks

} No fall-through if a block statement is present

36

P4 processing overview

Deparser

I
o
i)
C
o
O

i

AAAAAA

/\

AAAAAA

{3

AAAAAA

S

37

P4 parser

The parser uses a state machine to map packets into headers and metadata

Packet Parser Headers and metadata

a:b:c:d — 1:2:3:4

meta {ingress_port: 2, ...}

o
Y

1.2.34 = 56.7.8 * — * ethernet {srcAddr: a:b:c:d, ...}
</

1234 — 56789

ipv4 {srcAddr:1.2.3.4, ..}

tcp {srcPort: 1234, ...}

Payload Packet header vector (PHV)

38

P4 parser: example

start

|

parse_ethernet

'

parse_ipv4

VRN

parse_tcp

\

accept

Footnote / references

parse_udp

reject

parser MyParser(..) {
state start {
transition parse_ethernet;
}
state parse_ethernet {
packet.extract (hdr.ethernet) ;
transition select(hdr.ethernet.etherType) {
0x800: parse_ipv4;
default: accept;

}

state parse_ipv4 {

packet .extract (hdr.ipv4)

transition select(hdr.ipv4.protocol) {
6: parse_tcp;
17: parse_udp;
default: accept;

} Transition between states

state parse_tcp {
packet.extract (hdr.tcp);
transition accept;

}

state parse_udp {
packet.extract (hdr.udp) ;
transition accept;

39

P4 parser: variable-width header extraction

header IPv4_no_options_h {

bit<32> srcAddr;

bit<32> dstAddr: Fixed-width fields

header IPv4_options_h {
varbit<32> options; Variable-width fields

parser MyParser(..) {
state parse_ipv4 {
packet.extract (hdr.ipv4) ;
transition select(hdr.ipv4.ihl) {
5: dispatch_on_protocol;
default: parse_ipvé4_options;

} ihl determines the length of options field

state parse_ipv4_options {
packet.extract (hdr.ipv4options, (hdr.ipv4.ihl - 5) << 2);
transition dispatch_on_protocol;

40

P4 parser: more advanced concepts

Parsing a header stack requires the parser to loop
- The only “loops” that are possible in P4 (done implicitly through state transitions)

- Example in source routing: popping up all the headers to determine the next hop

Other concepts in P4 parser:
- Verify: error handling in the parser
- Lookahead: access bits that are not parsed yet

- Sub-parsers: like subroutines

Why should we be cautious about loops?

https://p4.org/p4-spec/docs/P4-16-vi.2.1.html

41

https://p4.org/p4-spec/docs/P4-16-v1.2.1.html

P4 processing overview

o
()
wn
ey
@©
o
)
(@]

Parser

i

AAAAAA

A

AAAAAA

7\

ar
AAAAAA

L1

42

P4 control

Tables

Actions

Control flow

Match a key and return an action

Similar to functions in C

Similar to C but without loops

43

P4 control: tables

Control Plane

H

Key

Headers
& Meta

Match
Key

Default

1D

Action
Data

-+

Headers and
Metadata

Hit

v

DI Action
Code

i

Data

44

P4 control: tables

Table name

table ipv4_lpm { Longest prefix match

hdr.ipv4.dstAddr: lpm;
hdr.ipvé4.version: exact;

+ Possible actions
actions = { &”’,/’,”,”,’

ipv4_forward;

drop;))
} P Max. # of entries in table

-

size = 1024;
default_action = drop();

} \

Default action

45

P4 control: match kinds

exact

core.p4 ternary
lpm

vimodel.p4 range

Other architectures

Exact comparison: 0x01020304
Compare with mask: 0x01020304 & OxOFOFOFOF

Longest prefix match

Check if in range: 0x01020304 - 0x010203FF

46

P4 control: table entries

Table entries are added through the control plane

- Recall the SDN control plane for flow rule installation

Control Plane

table_add ipv4_l1pm ipv4_forward 1.2.3.0/24 => 01:01:01:01:01:01 1
table_add ipv4_1pm ipv4_forward 5.6.7.0/24 => 02:02:02:02:02:02 2

1.2.3.0/24
5.6.7.0/24

47

P4 control: actions

Actions are
- Blocks of statements that possibly modify the packets

- Usually take directional parameters indicating how the corresponding value is treated within the
block

action reflect_packet(inout bit<48> src,
inout bit<48> dst,
in bit<9> inPort;

out bit<9> outPort:) { in: read only inside the action
bit<48> tmp = src; out: uninitiated, write inside the action
src = dst; inout: combination of in and out

dst = tmp;
outPort = inPort;}

reflect_packet (hdr.ethernet.srcAddr, hdr.ethernet.dstAddr,

standard_metadata.ingress_port, standard_metadata.egress_spec); 48

P4 control: actions

reflect_packet

inout bit<48> src

A\ 4

inout bit<48> dst

\ 4

v

in bit<9> inPort u

action set_egress_port(bit<9> port) {
standard_metadata.egress_spec = port;

}

Action parameters resulting from a table
lookup do not take a direction

\ 4

action

\ 4

out bit<9> outPort

data plane control plane

in/inout/ou
parameters

directionless
parameters

action codeﬂ

action
data

49

P4 control: control flow

Apply a table
ipv4_lpm.apply()

Check if there was a hit
if (ipv4_lpm.apply().hit) {.}
else {..}

Check which action was executed

switch (ipv4_lpm.apply().action_run) {
ipv4_forward: {..}

+

vimodel.p4

extern void verify_checksum<T,

in bool condition,
in T data,

inout 0 checksum,
HashAlgorithm algo);

extern void update_checksum<T,
in bool condition,
in T data,
inout 0 checksum,
HashAlgorithm algo);

0>(

0>(

50

P4 control: re-computing checksum

control MyComputeChecksum {

apply {

update_checksum(
hdr.ipv4.isValid(),

{ hdr.
hdr.
hdr.
hdr.

hdr

hdr

ipv4.
ipv4.
ipv4.
ipv4.
.ipv4.
hdr.
hdr.
hdr.

ipv4.
ipv4.
ipv4.
.ipvé
hdr.
hdr.

ipv4.
ipv4.

version,

ihl,

diffserv,

totallen,

identification,

flags, Fields list
fragOffset,

ttl,

.protocol,

srcAddr,
dstAddr },

hdr.ipv4.hdrChecksum,
HashAlgorithm.csuml6); Checksum algorithm

Pre-condition

Checksum field

51

P4 control: more advanced concepts

Cloning packets Create a clone of a packet

i Use dedicated Ethernet port, or target-
Sending packets to control plane

specific mechanisms

Recirculating Send packet through pipeline multiple times

Be cautious about recirculating!

52

Annotations

Additional information given to the compiler or the control plane

table t {
actions = {
a, // can appear anywhere
@tableonly b, // can only appear in the table
@defaultonly c, // can only appear in the default action
}

control c(...)() {

@name("t1") table t { ... } Use table name t1 for the
, apply { ... }
c() c_inst; control plane API
|
extern Register { ... }

control Ingress() {
Register() r;
table flowlet { /x read state of r in an action *x/ }
table new_flowlet { /* write state of r in an action %/ }
apply {
@atomic {
flowlet.apply();
if (ingress_metadata.flow_ipg > FLOWLET_INACTIVE_TIMEOUT)
new_flowlet.apply();
j333

Atomic operations on registers

53

P4 processing overview

I
o
i)
C
o
O

Parser

i

AAAAAA

/\

AAAAAA

/\

ar
AAAAAA

S0

54

P4 deparser

Packet headers

ethernet {srcAddr: a:b:c:d, ...}

ipv4 {srcAddr:1.2.3.4, ..}

tcp {srcPort: 1234, ...}

control MyDeparser {
apply {
packet.emit (hdr.ethernet) ;
packet.emit (hdr.ipv4);
packet.emit (hdr.tcp);
+

Deparser

Packet

a:b:c:d — 1:2:3:4
1.2.3.4 — 5.6.7.8

1234 — 56789

Payload

55

P4 workflow

...

P4 program Compiler —’ Control plane

Architecture model

Data plane

Target-specific binary

. User supplied
Vendor supplied

Application: congestion control

¢,

adjusting flow
rates per ACK
Sender

Use INT to obtain precise network link
status information and adjust sending
rate based on such information

HPCC: High Precision Congestion Control

Yuliang Li*?, Rui Miao*, Hongqiang Harry Liu*, Yan Zhuang®*, Fei Feng*, Lingbo Tang*, Zheng Cao*, Ming Zhang®*,
Frank Kelly’, Mohammad Alizadeh*, Minlan Yu®
Alibaba Group*, Harvard University”, University of Cambridge®, Massachusetts Institute of Technology*

ABSTRACT

Congestion control (CC) is the key to achieving ultra-low latency,
high bandwidth and network stability in high-speed networks. From
years of experience operating large-scale and high-speed RDMA
networks, we find the existing high-speed CC schemes have inher-
ent limitations for reaching these goals. In this paper, we present
HPCC (High Precision Congestion Control), a new high-speed CC
mechanism which achieves the three goals simultaneously. HPCC
leverages in-network telemetry (INT) to obtain precise link load
information and controls traffic precisely. By addressing challenges
such as delayed INT information during congestion and overreac-
tion to INT information, HPCC can quickly converge to utilize free
bandwidth while avoiding congestion, and can maintain near-zero
in-network queues for ultra-low latency. HPCC is also fair and
easy to deploy in hardware. We impl, t HPCC with dity

Think about the difference to ECN

demand on high-speed networks. The first trend is new data cen-
ter architectures like r disaggr and heterog 1

computing. In resource disaggregation, CPUs need high-speed net-
working with remote resources like GPU, memory and disk. Accord-
ing to a recent study [17], resource disaggregation requires 3-5ys
network latency and 40-100Gbps network bandwidth to maintain
good application-level performance. In heterogeneous computing
environments, different computing chips, e.g. CPU, FPGA, and GPU,
also need high-speed interconnections, and the lower the latency,
the better. The second trend is new applications like storage on
high /O speed media, e.g. NVMe (non-volatile memory express)
and large-scale machine learning training on high computation
speed devices, e.g. GPU and ASIC. These applications periodically
transfer large volume data, and their performance bottleneck is
usually in the network since their storage and computation speeds

PR N

57

Other PDP applications

In-band Network Telemetry (INT)

June 2016

Changhoon Kim, Parag Bhide, Ed Doe: Barefoot Networks
Hugh Holbrook: Arista

Anoop Ghanwani: Dell

Dan Daly: Inte!

Mukesh Hira, Bruce Davie: VMware

Scaling Distributed Machine Learning with In-Network Aggregation

Introduction
Terms

What To Monitor
Switch-level Information
Ingress Information
Egress Information
Buffer Information
Processing INT Headers
INT Header Types
Handling INT Packets

Network monitoring

Amedeo Sapio® Marco Canini® Chen-Yu Ho Jacob Nelson
KAUST KAUST KAUST Microsoft
Panos Kalnis Changhoon Kim Arvind Krishnamurthy
KAUST Barefoot Networks University of Washington
Masoud Moshref Dan R. K. Ports Peter Richtirik
Barefoot Networks Microsoft KAUST
Abstract primitive can ML work-

Training machine kearning models in paralle] is an increas-
ingly i workload. We 1 istril d parallel

loads, and can be implementad using programmable switch
hardware [5, 10]. Aggregation reduces the amount of data

training by designing a communication primitive that uses a
programmable switch dataplane to execute a key step of the
training process. Our approach, SwitchML, reduces the vol-
ume of exchanged data by aggregating the model updates
from multiple workers in the network. We co-design the
switch processing with the end-host protocols and ML frame-
works to provide an efficient solution that speeds up training
by upto 5.5 for a number of real-world benchmark models.

1 Introduction

‘Today’s machine learning (ML) solutions’ remarkzble success
derives from the ability to build increasinelv sophisticated

d during synch phases, which increases
throughput, diminishes latency, and speeds up training time.
Building an in-network aggregation primitive using pro-
grammable switches presents many challenges. First, the per-
packet processing capabilities are limited, and so is on-chip
memory. We must limit our resource usage so that the switch
can perform its primary function of conveying packets. Sec-
ond, the computing units inside a programmable switch oper-
ate on integer values, whereas ML frameworks and models
operate on floating-point values. Finally, the in-network ag-
gregation primitive is an all-to-all primitive, unlike traditional
unicast or multicast communication patterns. As a result, in-
network ion requires for i
workers and detecting and recovering from packet loss.

In-network computing

Try out P4

P4 hands-on

- Use Mininet to set up the network environment

- Use software switches bmv2: https://github.com/p4lang/behavioral-model

- See P4 tutorials: https://github.com/p4lang/tutorials

Working with P4 in Mininet on BMV2

P4.org has developed an open source software switch called BMV2 (behavioral model version 2) designed to be a target for
P4 programs. That is, P4 programs can be compiled onto it to configure how it processes packets. Every P4 target supports
one or more P4 target architectures. The target architecture supported by BMV2 that we will be using for these introductory
exercises is called the V1Model. A diagram of the V1Model is shown below:

Parser Checksum Verification / Checksum Update / Deparser
Ingress Match-Action Egress Ma‘tch-Action
A A \ r v
=
Traffic 10
Manager 1
—In

https://build-a-router-instructors.github.io/deliverables/p4-mininet/

59

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/tutorials
https://build-a-router-instructors.github.io/deliverables/p4-mininet/

Summary

E\p ‘ B Data plane programmability needed by the
v S : demand of more flexible network configurations

, RMT abstracts the data plane architecture and P4
=5 p "‘ =5 enables data plane programmability

60

Next time: programmable switch architecture

s 1 N - i B 2t | 't [P s » T o > I} ;
¢ R R e St S P e B e T e B e T e B e B M e e x

How does a programmable switch work from the inside out?

61

