Advanced Networked Systems SS24

Programmable Switch Architecture

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University

https://cs.uni-paderborn.de/cn

>
)

https://en.cs.uni-paderborn.de/cn

RMT and P4

RMT: reconfigurable match tables model (a RISC-
inspired pipelined architecture)

P4: a domain-specific language for programming
protocol-independent packet processors

Ingress (match-action pipeline)

P

RMT

Parser

https://p4.org

Switching fabric (e.g., crossbar)

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart', Dan Daly", Glen Gibb', Martin Izzard', Nick McKeown', Jennifer Rexford™,
Cole Schlesinger*, Dan Talayco', Amin Vahdat*, George Varghese®, David Walker**
'Barefoot Networks “Intel *Stanford University ““Princeton University YGoogle 'Microsoft Research

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller
fields shows no signs of

ABSTRACT
P4 is o high-level language for programming protocol-inde
pendent packet processors. Pd works (n conjunction with

SDN contrel protocols like OpenFlow. In its current form,

feration of new head)

The pr
stopping. x example, data-
creasingly want to apply new forms of packet en
tion (e.g., NVGRE, VXLAN, and STT), for which they re
sort to deplaying software switches that are easier to extend

network operators in-
pesula-

ifies protocol headers
own from 12 to 4] fle

plexity of the specif

, increasing th ‘ ;
with new functionality. Rather than repeatedly extending

still not providing the flexibility to add new headers. In this
papér we proposs P4 as 8 strewmen proposal for how Open- the OpenFlow specification, we argue that future switches
Flow should evolve in the future, We have three goals: (1) should support flexible mechanisms for parsing packets and
Reo bili matching header fields, allowing controller applications to

leverage these capabilities through s common, open inter-

Egress (match-action pipeline)

P

RMT

Deparser

https://p4.org

Learning objectives

How to implement programmable data planes in hardware?

How to improve resource efficiency of programmable data planes?

Implementing programmable
data planes in hardware

Fixed function switch architecture

L2: 128k x 48b L3: 16k x 32b ACL: 4k x 128b
Exact match Longest prefix match Ternary match

@©
)
z I I N I
|_
>
r S
— o S — —
() ©
—_ YN — - B N — Queues
— + all — e s
— N — v — B N,
.. — = P
- S s il o | c e
— Ol _— 50
IN © .S 7 = = %
Y g SN — c I el — © ouT
o — < - el — o —— O
o i) (<))
O < o)
<
Stage 1 Stage 2 Stage 3
>

Data

Limited flexibility

L2: 128k x 48b L3: 16k x 32b ACL: 4k
Hard to Exact match Longest prefix match Ternary match
- Trade one memory size for another =
- 2
- Add a new table — a) o Ly —
— 8 o o I S I
- Add a new header field _ @ a o} ¢ g
— (-
- : - 5 . s | © il
- Add a different action e — 2 8 = . — 5
0w — O 00 ol —>
o C — ©
g~ = £ ol — S
SDN pushes for flexibility ° < 0
- Programmatic control to control plane Stage 1 Stage 2 Stage 3

- Data plane flexibility demanded

v

Data

SDN flexibility demands

Multiple stages of match-action

- Flexible allocation of memory to different
functionalities

Flexible actions

- User-defined actions instead of hard-baked ones

Flexible header fields

- Allowing the customizable header fields instead of
being bounded by the known protocols

User-defined actions

|

NF2

NF1

NF2

|

Match on customized
header fields

Different ways to achieve flexibility

Software: 100x too NPUs: 10x too slow,
slow, expensive expensive

FPGAs: 10x too slow,
expensive

How do we design a flexible switch chip? What does the flexibility cost?

Designing a flexible switch chip is hard

Bad news

- Wiring intensive (match-action logic)

- Many crossbars (header selectors)

- Lots of TCAM (fast matching)

- Interaction between physical design and architecture

Good news

- No need to read 9k+ IETF RFCs

https://www.rfc-editor.org/rfc-index-100d.html

Big chip (memory, compute, 1/0)

High frequency (line rate of 100 Gbps)

RFC Index

Num Information

9327 Control Messages Protocol for Use with Network Time Protocal Version 4 B. Haberman [November 2022 | (HTML, TEXT, PDF, XML) (Status:
HISTORIC) (Stream: ll‘_n- '\xu’l int, WG: ntp) (DOL: 10.17487/RFC9327)

9326 In Situ O) ions, A and Mai (10AM) Direct Exporting H. Song, B. Gafni, F. Brockners, S. Bhandari, T. Mizrahi [November
2022 | (HTML, TEXT, PDF, XML) (Status: PROPOSED STANDARD) (Stream: [ETF, Area: tsv, WG: ippm) (DOI: 10.17487/RFC9326)

9323 A Profile for RPKI Signed Checklists (RSCs) J. Smijders, T, Harrison, B, Maddison [November 2022 | (HTML, TEXT, PDF, XML) (Status: PROPOSED
STANDARD) (Stream: IEI’F An:a ops. WG: sidrops) (DOI: 10.174R7/RFC9323)

9322 In Situ Operations, A and Mail (I0AM) Loopback and Active Flags T. Mizrahi, F. Brockners, S. Bhandari, B. Gafni, M. Spiegel [

huw‘mb:r 2022](1“\11. TEXT, PDF, XML) (Status: PROPOSED STANDARD) (Stream: IETF, Area: tsv, WG: 1ippm) (DOL: 10.17487/RFCY322)

] R. Housley [October 2022 | (HTML, TEXT, PDF, XML) (Status: INFORMATIONAL) (Stream: INDEPENDENT)

932

g Token
(DOI: 10.17487/RFC9321)
9319 The Use of maxLength in the Public Key (RPKI) Y. Gilad, S. Goldberg, K. Sriram, J. Snijders, B. Maddison [October 2022 |
(HTML, TEXT, PDF, XML) (Also BCPO185) (Status: BEST CURRENT PRACTICE) (Stream: IETF, Arca: ops, WG: sidrops) (DOI: 10.17487/RFC9319)

9218 TAB Workshop Report: Measuring Network Quality for End-Users W. Hardaker, O. Shapira [October 2022 | (HTML, TEXT, PDF, XML) (Status:
INFORMATIONAL) (Stream: IAB) (DOIL: 10.17487/RFC9318)

9217 Operational Considerations for Streaming Media J. Holland, A. Begen, S. Dawkins [October 2022 | (HTML, TEXT, PDF, XML) (Status:
INFORMATIONAL) (Stream: IETF, Area: ops, WG: mops) (DOI: 10.17487/RFC9317)

9316 Intent Classification C. Li, O. Havel, A, Olariu_P.Martinez-Julia_J. Nobre, D_Lopez [October 2022 | (HTML_TEXT, PDF, XML) (Status:
INFORMATIONAL) (Stream:

15 Intent-Based Networking - Ct

(Status: INFORMATIONAL) (§

9114 YANG Data Model for Bidi
(HTML, TEXT, PDF, XML) (

9313 Pros and Cons of IPv6 Transil
2022] (HTML, TEXT, PDF, X:

9212 Manageability of the QUIC
(Stream: IETF, Area: tsv, WG: qURCTTDOT TO T 7SS TTRTCYSTZT

9311 Running an IETF Hackathon C. Eckel [September 2022 | (HTML, TEXT, PDF, XML) (Status: INFORMATIONAL) (Stream: 1ETF, Area: gen, WG: shmoo)
(DOL: 10.17487/RFC9311)

9209 Robots Exclusion Protocol M, Koster, G lllyes, H. Zeller, L. Sassman [September 2022 | (HTML, TEXT, PDF, XML) (Status: PROPOSED STANDARD)
(Stream: IETF, WG: NON WORKING GROUP) (DOIL: 10.17487/RFC9309)

9308 Applicability of the QUIC Transport Protocol M. Kilhlewind, B. Trammell [September 2022 | (HTML, TEXT, PDF, XML) (Status: INFORMATIONAL)
(Stream: IETF, Area: tsv, WG: quic) (DOI: 10.17487/RFC9308)

9307 Report from the IAB Workshop on Analyzing IETF Data (AID) 2021 N. ten Oever, C. Cath, M. Kithlewind, C. §. Perkins [September 2022 | (HTML,
TEXT, PDF, XML) (Staws: INFORMATIONAL) (Stream: [AB) (DOI: 10.17487/RFC9307)

9206 Vendor-Specific LISP Canonical Address Format (LCAF) A. Rodrigucz-Natal, V. Ermagan, A. Smimov, V. Ashtaputre, D. Farinacci [October 2022 |
(HTML, TEXT, PDF, XML) (Updates RECS060) (Status: EXPERIMENTALY) (Stream: IETF, Area: rtg, WG: lisp) (DOI: 10.17487/RFC9306)

9305 Lacator/ID Separation Protocol (LISP) Generic Protocol Extension F. Maino, J. Lemon, P. Agarwal, D. Lewis, M. Smith [October 2022 | (HTML, TEXT,
PDF, XML) (Status: PROPOSED STANDARD) (Stream: IETF, Arca: rtg, WG: lisp) (DOL: 10.17487/RFC9305)

9304 Locator/ID Separation Protocol (LISP): Shared Extension Message and IANA Registry for Packet Type Allocations M. B lair, C. J.
October 2022 | (HTML, TEXT, PDF, XML) (Obsoletes REC8113) (Status: PROPOSED STANDARD) (Stream: 1ETF, Area: rig, WG: lisp) (DO]
10.17487/RFC9304)

9303 Locator/TD Separation Protocol Security (LISP-SEC) F Maino, V. Ermagan, A, Cabellos, D. Saucez [October 2022 | (HTML, TEXT, PDF, XML) (Status.
PROPOSED STANDARD) (Stream: 1 Arca: rig, WG: lisp) (DOI: 10.17487/RFC9303)

9302 Locator/ID Separation Protocol (LISP) Map-Versioning L. lannone, D. Saucez, O. Bonaventure | October 2022 | (HTML, TEXT, PDF, XML) (Obsoletes

RECAR3L) (Status: PROPOSED STANDARD) (Stream: IETF, Area: rtg, WG: lisp) (DOI- 10.17487/RFC9302)

Only 9327 of them as of [/v e

(DOI: 10.17487/RFC9314)

November 27, 20221 ["""

KML) (Status: INFORMATIONAL)

https://www.rfc-editor.org/rfc-index-100d.html

Reconfigurable match table (RMT) abstract model

aulqwooay

Configurable
Output
Queues
4U‘| Packets
[_L>
- : Output
k Channels

Logical Stage 1 Logical Stage N
S(m:;; dSattee\lt)e [Statistics ‘ State |
i
z ;
@
2
T
@
Packets §
(B L
Input = T 2
Channels <3 >
> Q
Table graph

10

Parse graph: arbitrary fields

Packet:

Ethernet

[Pv4

TCP

Ethernet

Ethernet

IPv4

Ethernet

\ 4

IPv4

TCP UDP

TCP

n

Table graph: reconfigurable match tables

VLAN VLAN
ETH- ETH-
TYPE TYPE
IPv4 |Pv4-

MAC MAC
DA DA

Ethernet

AN

TCP UDP

Nt/

Done

Parse graph

Changes to parse graph and table graph

ETH-
TYPE

-

L2S
IPv4-

l DA

L2D

ACL

l

Table graph

13

Changes to parse graph and table graph

Ethernet

/

Ve
IPv4
\\<:£;
v A/

TCP UDP
\«/

Done l

Parse graph Table graph

Changes to parse graph and table graph

Ethernet

TCP UDP ~a

N4/

Done *

Parse graph Table graph TAB
15

How to turn the parse graph
and table graph into a switch?

Programmable parser model

Header data Payload n

|

Header
identification

State
(parse_eth) and

Next state
(parse—_ip)

|

Field Extraction

y

header data

A

Field locations
(first 14 bytes)

|

TCAM

Given input content,
return addresses
with contents
matching the input

256 x 40b

Match index

v

Action RAM

TCAM entries are generated based on
the parse graph during compilation

n
»

Packet Header
Vector (PHV)

4 Kbit

To match
engine

Result

17

[
»

Match-action forwarding model

Programmable parser

Packet header

Match-
action
stage

Packet header

Stage 1

Match-
action
stage

Packet header

Match-
action
stage

Stage 2

Packet header

VVVYVYVVVYY

Stage N

Data

Deparser

Queues

ouT

18

ouT

Queues

Josiedaq

£ 244444
lopeay 1930ed

=

()

0

8

wn

V|

()

0

8

n
HEERERER

uo1oy =

_ ; oD

@©

a|qel yolenw &
lapeay 19X0ed

1osied ajgewwesgoid

IN

Match-action forwarding model

Data

19

Match-action table performance vs. flexibility

Memory — eV

Multiprocessor:
memory bottleneck

Pipeline: similar to fixed-function switches, but

with general-purpose CPUs for customizability

20

VLIW stages

VLIW: very large instruction words

Memory eV Memory eVl Memory MOVl Memory eV
PHV IZ{> CPU IZ{> CPU IZ{> CPU IZ{> CPU PHV
CPU CPU CPU CPU

Replicate CPUs and add more stages for finer granularity

21

VLIW processors

A fixed number of operations are formatted as one big instruction (called a bundle)

- Usually LIW (3 operations)

- Change in the instruction set architecture (ISA), i.e,, one program counter points to one bundle (not

one operation)

SDRAM

Register File (128 x 32 bit register)
Operations organized in bundles to issue in parallel sreatpors | e
A Bus
"Datanighway"
. . . ¥ Crossbar ~
- Fixed format so could decode operations in parallel *gf* : auasldual
A m m n w)i
) L L L - > Data
- Enough FUs for types of operations that can issue in parallel rur | |[rua | Ueu | U ru | U ru e oSt
A
\ ‘ | ‘ Y ' i | Y | X
. . Issue siot | issue siot | Issue siot | Issue siot | Issue siot | ¢ neucton
Instructions are scheduled by the compiler —_— (02 K8ye

gd: guard register dest: destination register
rsrcl/2: source register 1/2 FU: Functional Unit

22

RMT memory layout

_ ., TCAM

— i) L L

= % s rs — (640Db)

m - : 5| 5 [

mf : g 2|~ |meL

| > HASH
(640b)

Stage 1 Stage2 .. StageN Stage 1 Stage2 .. StageN

RMT logical to physical table mapping
}

TCAM
(640Db)

HASH
(640b) ETH-
L2D
TYPE

Stage 1 Stage2 .. StageN

Table graph

Action processing model

L)
c 90
-_ L
—
(b}
©
> (¢0)
[} o
- S
L
| A
Data :
Match results
--------------------------------- > Instruction

Header Out

25

Multiple VLIW processors per stage

Match key generation
(crossbar) Action input
selector (crossbar)

Action output
selector (crossbar)

—
_I\I\l.
< < —__ITI\\——’> g
E 8 = J? 2
© © _I _>: @
(o} CD __Il 8
T T _l L
* A
E Key Opcode
v Data
Memory (SRAM Match table - > VLIW instructions
or TCAM) Match
results

26

Cross stage parallelism via dependency analysis

Stage 1:
Match dependency
Stage 2:
) Stage 1:
Action dependency
Stage 2:
Stage 1:
No/successor dependency
Stage 2:

T

Speculative execution and predication resolved
before side effects are committed

Match

Match

Match

Match

Action

vater

Action

vatet

Action

Action

27

Switch design and flexibility cost

64 x 10 Gbps ports
- 960M packets/second

- 1GHz pipeline
Programmable parser
32 match-action stages

Huge TCAM: 10x current chips

- 64K TCAM words x 640b

SRAM has tables for exact matches

- 128K words x 640b
224 action processors per stage

All OpenFlow statistics counters

Total extra area cost: 14.2%, total extra
power cost: 12.4%

BAREFCO:T

NETWORKS | an Intel company

28

Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN

Pat Bosshart', Glen Gibb*, Hun-Seok Kim', George Varghese®, Nick McKeown?,
Martin Izzard’, Fernando Mujica’, Mark Horowitz?
"Texas Instruments *Stanford University $Microsoft Research
pat.bosshart@gmail.com {grg, nickm, horowitz}@stanford.edu
varghese@microsoft.com {hkim, izzard, fmujica}@ti.com

ABSTRACT

In Software Defined Networking (SDN) the control plane
is physically separate from the forwarding plane. Control
software programs the forwarding plane (e.g., switches and
routers) using an open interface, such as OpenFlow. This
paper aims to overcomes two limitations in current switch-
ing chips and the OpenFlow protocol: i) current hardware
switches are quite rigid, allowing “Match-Action” processing
on only a fixed set of fields, and ii) the OpenFlow specifi-
cation only defines a limited repertoire of packet processing
actions. We propose the RMT (reconfigurable match ta-
bles) model, a new RISC-inspired pipelined architecture for
switching chips, and we identify the essential minimal set
of action primitives to specify how headers are processed in
hardware. RMT allows the forwarding plane to be changed
in the field without modifying hardware. As in OpenFlow,
the programmer can specify multiple match tables of arbi-
trary width and depth, subject only to an overall resource
limit, with each table configurable for matching on arbitrary
fields. However, RMT allows the programmer to modify all
header fields much more comprehensively than in OpenFlow.
Our paper describes the design of a 64 port by 10 Gb/s
switch chip implementing the RMT model. Our concrete
design demonstrates, contrary to concerns within the com-
munity, that flexible OpenFlow hardware switch implemen-
tations are fecasible at almost no additional cost or power.

1. INTRODUCTION

To improve is to change; to be perfect is to change
often. Churchill

Good abstractions—such as virtual memory and time-
sharing—are paramount in computer systems because they
allow systems to deal with change and allow simplicity of
programming at the next higher layer. Networking has pro-
gressed because of key abstractions: TCP provides the ab-
straction of connected queues between endpoints, and IP
provides a simple datagram abstraction from an endpoint to
the network edge. However, routing and forwarding within
the network remain a confusing conglomerate of routing pro-
tocols (e.g., BGP, ICMP, MPLS) and forwarding behaviors
(e.g., routers, bridges, firewalls), and the control and for-
warding planes remain intertwined inside closed, vertically
integrated boxes.

Software-defined networking (SDN) took a key step in ab-
stracting network functions by separating the roles of the
control and forwarding planes via an open interface between
them (e.g., OpenFlow [27]). The control plane is lifted up
and out of the switch, placing it in external software. This
programmatic control of the forwarding plane allows net-
work owners to add new functionality to their network, while
replicating the behavior of existing protocols. OpenFlow has
become quite well-known as an interface between the con-
trol plane and the forwarding plane based on the approach

How to support isolation?

Isolation requirements

- Behavior isolation: one program cannot impact another’s
behavior or performance

- Resource isolation: resources should be allocated independently

- Performance isolation: one module’s behavior should not affect
the throughput and latency of another module

- Lightweight: low overhead to the high performance network device
- Rapid reconfiguration: quick update of the module program

- No disruption: during reconfiguration, must not disrupt the
behavior of other unchanged modules

Menshen: an RMT extension for enforcing isolation

Isolation Mechanisms for High-Speed Packet-Processing Pipelines

Tao Wang’ Xiangrui Yang®* Gianni Antichi** Anirudh Sivaraman Aurojit Panda’
"New York University *National University of Defense Technology
**Queen Mary University of London
Abstract pa:kets Match-action Ppaing
mgm PO snge N LT LI —>
Data-plane progr bility is now mai As we find g e -
- 3

maore use cases, deployments need to be able to run multiple _’ ‘ ! % = i _’
packet-processing modules in a single device. These are D = FIHE
likely to be developed by independent teams, cither within the ‘ Mogule == .“3 -
$mo Grganization of from multiplc organizations, Theeofors, g 4, The RMT architecture [36] n;mulh consists of a
we need isolation mechanisms to ensure that modules on the " pipeline and traffic
same device do not interfere with cach other.) manager: Menshen provides isolation between RMT modules. In the

This paper presents N an of the R g figure we show resowrces aliocated to and by
urable Match Tables (RMT) p)pclmc that enforces isolation shading them in the appropriate color.
between different pack madules. Menshen is

comprised of a set of hghmenghl hardware primitives and
an extension to the open source P4-16 reference compiler
that act in conjunction to meet this goal. We have prototyped

Menshen on two FPGA platforms (NetFPGA and Corundum).

We show that our design provides isolation, and allows new

modules to be loaded without impacting the ones already run-

ning. Finally, we demonstrate the feasibility of impl

modules that are installed and run on the cloud provider's
devices. Another example is when different teams in an
organization write different modules, e.g., an in-networking
caching module and a telemetry module.

Isolarion is required to safely run multiple modules on a
single deuce Several prior pmJecIs have observed this need

Menshen on ASICs by using the FreePDK45nm technology
library and the Synopsys DC synthes . showing
that our design I'I'h,\ ts timing at a I GHz clock frequency and
needs approximately 6% additional chip area. We have open
sourced the code for Menshen's hardware and software at
htips://isolation.quest/,

and p 1ti network proces-
sOrs [ﬁ() f)k] FPGA-based packet processors [63, L 82],
and software switches [53,81]. However, thus far, b speed

pipelines such as RMT that are used in switch and NIC ASICs
provide only limited support for isolation. For instance, the
Tofino programmable switch ASIC [26] provides mechanisms
to share stateful memory across modules but cannot share

30

How to improve the resource efficiency
of programmable data planes?

RMT recap

Programmable parser
|
Packet header

Per-stage memory
clusters (TCAM, SRAM) Results

Resources are aggregated into stages that provide a fixed ratio of

Packet header

Results

Packet header

Results

memory:match:action resources.

Packet header
I EER!

Deparser

Queues

ouT

32

RMT limitations: misaligned hardware utilization

Queues

Deparser

Packet header
Packet header
!

ouT

Programmable parser
|
Packet header

Key extraction capability is
sufficient for extracting the keys
for all three tables at the same
time, but the tables do not fit in
the one-stage memory.

— Wasted match units

33

RMT limitations: misaligned hardware utilization

Queues

Deparser

Packet header
Packet header
!

ouT

Programmable parser
|
Packet header

Tables fit in the first-stage
memory, but the key
extraction is not capable of

extracting all keys in one go.
— Wasted memory

34

More RMT limitations

Programmable parser
|
Packet header

9
o]
@©
+—
e
(®)
)
@©
>

I
(7))
\

Must extract keys multiple
times for every packet

IPv4

Partial match result
— Action units wasted

IPv4

Packet header

Action taken only
in this stage

Packet header

R EERRE

Deparser

Queues

ouT

35

More RMT limitations

Stage 1 Stage 2 .. StageN

Queues

Deparser

<@ Q@
O o)
(q0] @
+— +
i c
(&) (&)
+— +—
@© @©
= =

Match table
Packet header
Vivv el

ouT

Programmable parser
|
—— Packet header
—— Packet header
— Packet header

Recirculate to ingress

If the program does not fit, we need to recirculate packets to “extend”
the pipeline = Throughput cut in half

36

Improve resource efficiency
via resource disaggregation

dRMT memory disaggregation

Stage 1 Stage 2 .. StageN

Queues

Deparser

Match table

Q@ Q@
O O
@© @©
+— +—
c c
(] (&)
+— +—
@© @©
> >

ouT

Packet header
RN

Programmable parser
|
—— Packet header
—— Packet header
——— Packet header

Crossbar

><

All stages can access all the
Memory clusters memory space via the crossbar.

(TCAM, SRAM)

38

dRMT compute disaggregation

= Distributor assigns packets to the Queues
o 5 processors for packet processing s
(%) O
'N < = 2 ouT
o + » @©
2 =
a Proc. 1 Proc. 2 ‘ Proc. 3 ‘ S
v v
= C
= o
-+ '4:
(@)
= <
Crossbar
Memory clusters

each packet, possibly in
(TCAM, SRAM)

% x Multiple memory accesses for

different memory clusters

39

dRMT compute disaggregation

Distributor assigns packets to the Queues

processors for packet processing

ouT

=
Parser

(.
(@]
)
>
o)
-
)
2
()]

v
Deparser

Proc. 2 ‘ Proc. 3 ‘

<
<«

Inter-packet concurrency: Each packet will be

match/action operations processed to completion

can be performed on by the assigned processor

multiple packets at a time (with the match/action

operations arbitraril
Crossbar P y

interleaved), unlike the

Memory clusters pipelined approach in RMT

(TCAM, SRAM)

40

Crossbar design

Processor “ “ " ﬂ " “

Memory M1 M2 M1 M2 M1 M2
Unit crossbar Full crossbar Segment crossbar
(contention) (complexity) (sweet-spot)

Wiring complexity similar to the unit crossbar and is equivalent to the full
crossbar if tables are not split across memory clusters

41

dRMT complexity

| -
(@)
[-+
2 P
[%)]
IN = =
)
o w
a)
Crossbar

Memory clusters
(TCAM, SRAM)

Processor contention

|

Proc.]l ‘ Proc. 21 ‘ Proc.3l ‘

. %l\\

At Al

<
=

r

Memory contention

v U N

Deparser

dRMT complexity

. B)
(¢D] >
(a 1) =
a8 Proc. 1\ Proc. 2 Proc. 3 &
IIEllEE ﬂElEEE ﬂElHHE
Processor 4 1
scheduling 2 M AL 2 M A. Z 2 M A.
3 M .. 3 M . 3 M ..
T

Table placement

43

Processor scheduling example

Proc. 1 Proc. 2

3 1 3
MO —* M1 —*

3 cycles to complete a match

1 cycle to complete an action

) Program Resource
Two factors to consider: , ,
dependencies constraints

44

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles

2 3 45 6 7 8 0 0 N 1203 105 6 7 s o

Packets

Schedule per processor

45

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles

2 3 45 6 7 8 0 0 N 1203 105 6 7 s o
1 MO

A0 M1 Al

Packets

Schedule per processor

46

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles
12 3 4.5 6 7 8 9 0 2 13 145 06 7 13 o
1 MO A0 M1 Al
2 MO A0 M1 Al

Packets

Schedule per processor

47

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles
12 3 4.5 6 7 8 9 0 2 13 145 06 7 13 o
1 MO A0 M1 Al
2 MO A0 M1 Al
Packets 3 MO A0 M1 Al

Is this schedule feasible?

Schedule per processor

48

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles
12 3 45 6 7 8 9 0 N2 13 1405 06 7 13 o
1 MO AO | M1 Al
2 MO A0 M1 Al
Packets 3 MO A0 M1 Al
 —

Every processor can only do
1 match per cycle

Schedule per processor

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles

2 3 45 6 7 8 9 0 1203 105 6 7 is o
1 MO AO M1 Al

Packets

Delay M1 by
inserting a no-op

Schedule per processor

50

Processor scheduling example

3 1 3 2 processors handle 1 packet per cycle
MO —* M1 > :
Packet arrives every 2 cycles per processor

Cycles
12 3 4.5 6 7 8 9 0 2 13 145 06 7 13 o
1 MO AO M1 Al
2 MO AO M1 Al
Packets 3 MO AO M1 Al
4 MO AO M1 Al
S MO AO M1 Al
6 MO AO M1 Al

Schedule per processor

51

Minimizing delays

Clock cycles

v

Ly 51 Iy

< »
< >

t, -ty =2 Latency, ,

ILP formulation

Objective: Minimize max

1. Writet; =2Xgq,+r;

2. Group all t with same r

3. Enforce constraints for each group

lo h)
f t £
o 5 1
One packet every
Group-0 ty [Iy
two cycles L
o 4 5
fo f)
52

dRMT summary

Can dRMT provide deterministic performance guarantees?

- Yes,compiler schedules programs using an Integer Linear Program (ILP) to eliminate memory and
processor contention

How does dRMT compare with RMT on real programs

- Needs (4.5% - 50%) fewer processors on real and synthetic P4 programs for achieving line rate

Is dRMT feasible in hardware?

- Yes, dRMT takes up some more chip area than RMT, but the additional area is modest relative to a
switching chip

53

dRMT: Disaggregated Programmable Switching

Sharad Chole!, Andy Fingerhut!, Sha Ma!, Anirudh Sivaraman?, Shay Vargaftik®, Alon Berger®,
Gal Mendelson?, Mohammad Alizadeh?, Shang-Tse Chuang!, Isaac Keslassy**, Ariel Orda®, Tom Edsall’

4 VMware, Inc.

! Cisco Systems, Inc. * MIT

ABSTRACT

We present dRMT (disaggregated Reconfigurable Match-Action
Table), a new architecture for programmable switches. dRMT over-
comes two important restrictions of RMT, the predominant pipeline-
based architecture for programmable switches: (1) table memory
is local to an RMT pipeline stage, implying that memory not used
by one stage cannot be reclaimed by another, and (2) RMT is hard-
wired to always sequentially execute matches followed by actions
as packets traverse pipeline stages. We show that these restrictions
make it difficult to execute programs efficiently on RMT.

dRMT resolves both issues by disaggregating the memory and
compute resources of a programmable switch. Specifically, dRMT
moves table memories out of pipeline stages and into a centralized
pool that is accessible through a crossbar. In addition, dARMT replaces
RMT’s pipeline stages with a cluster of processors that can execute
match and action operations in any order.

We show how to schedule a P4 program on dRMT at compile
time to guarantee deterministic throughput and latency. We also
present a hardware design for dRMT and analyze its feasibility and
chip area. Our results show that dRMT can run programs at line rate
with fewer processors compared to RMT, and avoids performance
cliffs when there are not enough processors to run a program at line
rate. dRMT’s hardware design incurs a modest increase in chip area
relative to RMT, mainly due to the crossbar.

CCS CONCEPTS

* Networks — Programmable networks; Routers;

3 Technion

Out

s

(a) RMT Architecture

Cluster 1

B o
af '%j]’ =
==

iProF.IN _Ié

";

Crossbar for
search keys
& results

(b) Disaggregated RMT (dRMT) Architecture

Figure 1: Comparison of the RMT [16] and dRMT archi-
tectures. dRMT replaces RMT’s pipeline stages with run-to-
completion match-action processors, and separates the memory
clusters from the processors via a crossbar. The dashed arrows
show the flow of a packet through each architecture.

Lab5 requires you to
respect these

>
=
—_
_|
2
>
o’

rchitecture

<

Open Tofino Native

constraints

> > > > > >

> > > > > >

> > . > > > >

a4l | —ldlll 4Bl

> > > > > >

> > > > > >

| . | .

N . | e . | 1

. > > > > > >

4 Pipes > N> > > (>
> . . 1IN TN

> > > > > >

I I I I I I

> > > > > >

> > > > > >

> > . > ld 14—l

> > > > > >

I > =P I > > > >

I > > > > > >

l control example<M>(M meta) {
Register<bit<32>, _>(4096) counters;
. . RegisterAction< , , void> increment counter = {
Registers as externs for persistent memory * vold apply (Tnout bit<3z> value) 1
value = value + meta.increment_amount;
(local to a stage and only read-modify-write o
action trigger_counter() {
once a | I Owed) increment_counter.execute (meta.index);

}
}

https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf 55

https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf

Summary

RMT for implementing programmable data planes
dRMT for improving resource efficiency of programmable data planes via resource disaggregation

56

Next time: in-network computing applications

Programmable Application

switches

____---""----"'::'-.‘:t

ﬁ) Network program

C/Java/Scala/
Python program Developer

o6 |6

O XN
Servers

What innovative ways of using programmable data planes do we have?

57

