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Lab4 setup
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P4 switch

Host 1 Host 2 Host 3

P4 program 
(defining table 

formats and actions)

P4Runtime

Controller

Packet header formats 
Parser (state machine) 
Ingress tables 
Egress tables 
Deparser

Table entries following the 
defined table format

Topology specified in JSON Mininet



Lab4 examples
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typedef bit<48> macAddr_t; 
header ethernet_t { 
    macAddr_t dstAddr; 
    macAddr_t srcAddr; 
    bit<16>   etherType; 
} 

struct headers { 
    ethernet_t    ethernet; 
} 

state parse_ethernet { 
    packet.extract(hdr.ethernet); 

transition select(hdr.ethernet.etherType) { 
     TYPE_ARP: parse_arp; 
     TYPE_IPV4: parse_ipv4; 
     default: accept; 

   } 
} 

Header Parser



Lab4 examples
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table ipv4_lpm { 
    key = { 
        hdr.network.ipv4.dstAddr: exact; 
    } 
    actions = { 
        ipv4_forward; 
        drop; 
        NoAction; 
    } 
    size = 1024; 
    default_action = drop(); 
}

Table definition

action ipv4_forward( 
macAddr_t dstAddr,  
egressSpec_t port) {...} 

if (hdr.network.ipv4.isValid()) { 
    ipv4_lpm.apply(); 
}

Table control flow



Lab4 examples
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"table_entries": [ 
{ 
  "table": "MyIngress.ipv4_lpm", 
  "match": { 
    "hdr.network.ipv4.dstAddr": "10.0.1.1" 
  }, 
  "action_name": "MyIngress.ipv4_forward", 
  "action_params": { 
    "dstAddr": "08:00:00:00:01:11", 
    "port": 1 
  } 
} 

]

Table rules in the 
format of JSON



Check P4 tutorials: https://
github.com/p4lang/tutorials 

https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials


Lab4: longest path routing
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Routing + ARP resolving



Lab4: video interception
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Questions?



In-network computing
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Servers

Programmable 
switches

Developer

Network program

C/Java/Scala/
Python program

Application 

In-network computing: performing application-specific computations “in the network” on 
the path between data sources and sinks, leveraging modern programmable switches



In-network computing paradigm
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Customized application-
layer packet header

Customize the match-action tables for 
application-specific computations



Learning objectives
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How to implement an in-network coordination service?

How to implement an in-network caching service?

How to use in-network computing for accelerating distributed machine learning?



How to implement an in-
network caching service?



Key-value storage

Store, retrieve, manage key-value objects 

- Critical building block for large-scale cloud services 

- Need to meet aggressive latency and throughput objectives efficiently 

Target workloads 

- Small objects 

- Read intensive 

- Highly skewed and dynamic key popularity

14



Challenge
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How to provide effective dynamic load balancing?

Highly skewed and rapidly 
changing workloads

Requirement: high 
throughput, low (tail) latency



Opportunity

Fast, small cache can ensure load balancing 

Cache  hottest items 

- E.g., 10,000 hot objects 

: number of servers 

- E.g., 100 backend servers with 100 billion items 

Requirement: cache throughput >= backend aggregate throughput  

- Cache not being the performance bottleneck of the system

O(N log N )

N

16
Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky. Small cache, big effect: provable load balancing for randomly 
partitioned cluster services. ACM SoCC, 2011.



How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer
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O(1) BQPS

?

in-memory

O(10) MQPS

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory

cache

cache



How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer
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cache

cache

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory

in-memory

O(10) MQPS

O(1) BQPS

Multiple cache servers: (1) high cost, (2) high 
overhead to ensure cache coherence



How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer
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in-memory

O(10) MQPS

in-network

Limited on-chip memory? 
But we only need to cache  small items!O(N log N )

O(1) BQPS

cache

cache

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory



Recall RMT

Programmable parser 

- Extracts packet header fields and converts packet data into metadata 

Programmable match-action pipeline 

- Operate on packet header vector and metadata, and update memory states
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Use RMT for key-value store

Programmable parser 

- Parse custom key-value fields in the 
packet header 

Programmable match-action pipeline 

- Read and update key-value data: 
read(key1), write (key6, value6) 

- Provide query statistics for cache 
updates

21

Registers
<key1, value1> 

<key2, value2>
<key3, value3> 

Cached entries will be updated based 
on query statistics (e.g., frequency).
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NetCache rack-scale architecture

Switch data plane (fast) 

- Key-value store to serve queries for cached keys 

- Query statistics to enable efficient cache 
updates 

Switch control plane (slow) 

- Cache updates: insert hot items into the cache 
and evict less popular items 

- Memory management: memory allocation for 
on-chip key-value store

22



Data plane query handling
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Directly reply from the cache

Reply from the server

Write to the server and invalidate the cache



In-Network Caching
Key-value caching in network ASIC at line rate?!
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How to identify application-
level packet fields?

How to store and serve 
variable-length data on 

switches?

How to efficiently keep the 
cache up-to-date?



NetCache packet format 

Application-layer protocol: compatible with existing L2-L4 layers 

Only the top-of-rack switch needs to parse NetCache fields

25

Only the top-of-rack switch needs to parse NetCache fields for NetCache traffic



In-Network Caching
Key-value caching in network ASIC at line rate?!
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How to identify application-
level packet fields?

How to store and serve 
variable-length data on 

switches?

How to efficiently keep the 
cache up-to-date?



Use register array
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Register index supplied 
by the table entry

Cache

Table entries

Use stateful memory to 
store key-value items

Exact match on 
the key for lookup



Challenges with variable length

No loop or string in P4 due to strict timing requirements 

Need to optimize hardware resources consumption 

- Number of entries in the match-action tables 

- Size of action data given by a table match  

- Size of intermediate metadata across tables (in case of using multiple tables)

28



Use one register array
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Match

Action

pkt.key == A

process_array([2,3,...])

Problem: not feasible due to limited number of lookups in one 
register array (read only one index allowed), high action data

Register array

Use action data to 
hold the indices



Use multiple register arrays (RAs)
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Match

Action

pkt.key == A

process_array([1,5,3])
Register array 1 Register array 2 Register array 3

[1,5,3] [5,3] [3]
Metadata

Problem: high action data and metadata

Indices to multiple RAs carried 
in the action data

Stage 1 Stage 2 Stage 3



Use multiple register arrays (RAs)
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Match

Action

pkt.key == A

process_array1(1)

Match

Action

pkt.key == A

process_array2(5)

Problem: too many match action table entries

Register array 1 Register array 2

Match

Action

pkt.key == A

process_array3(3)

Register array 3

Use multiple tables to provide indices for the RAs

Stage 1 Stage 2 Stage 3



NetCache: two-level lookup
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Small action data

Small match-action table 
size (only two entries 0/1)



Combine outputs from multiple arrays

33



Memory management
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Bins

Solve a bin-packing problem: use First-Fit heuristics



In-Network Caching
Key-value caching in network ASIC at line rate?!

35

How to identify application-
level packet fields?

How to store and serve 
variable-length data on 

switches?

How to efficiently keep the 
cache up-to-date?



Cache insertion and eviction
Goal: react quickly and effectively to workload changes with minimal updates

36

Challenge: cache the hottest  items with limited insertion rateO(N log N )



Query statistics

Cached key (small in size): per-key counter array 

Uncached key (large in size): 

- Count-min sketch (an approximate data structure): report new hot keys 

- Bloom filter: remove duplicated hot key reports

37



How to implement an in-
network coordination service?



Coordination service

39



Coordination service

40

Configuration 
management

Group 
membership

Distributed 
locking

Barrier

Strongly consistent, fault-tolerant key-value store

Server

Applications

Coordination 
service



Workflow of coordination service
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Request 

Reply 

Throughput: limited by 
the server NIC throughput

Latency: at least one RTT, 
typically a few RTTs



In-network coordination
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Request 

Reply 

Programmable network



In-network coordination
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Request 

Reply 

Client

Coordination switches running 
a consensus protocol

Throughout: switch throughput
Latency: sub-RTT



NetChain design goals
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High 
throughput

Low latency Consistency Fault tolerance

Already satisfied with the high-
performance switches

How to?



NetChain design goals
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High 
throughput

Low latency Consistency Fault tolerance

Already satisfied with the high-
performance switches

Vertical Paxos



NetChain division of labor
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Steady state protocol 
(primary-backup)

Reconfiguration protocol 
(fault-tolerance)

Vertical Paxos

Programmable 
network



Chain replication for the steady state protocol

Nodes are organized in a chain structure 

Handle operations:  

- Read from the tail 

- Write from head to tail 

Provide strong consistency and fault tolerance 

- Tolerate  failures with  nodes 

- Fault tolerance based on the reconfiguration protocol in Vertical Paxos

f f + 1

47



NetChain overview
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NetChain challenges
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How to store and 
serve key-value 

items?

How to route queries 
according to the 
chain structure?

How to handle out of 
order delivery in the 

network?

How to handle 
switch failures?

Data plane Control plane



NetChain switch design
Similar to NetCache, except the coordination components

50



NetChain packet format
Application-layer protocol: compatible with existing L2-L4 layers, invoked with a 
reserved UDP port

51

UDP is not reliable: upon packet loss, retry! Designing a reliable transport 
protocol for in-network computing is still an open challenge!

Source routing



In-network key-value storage

Key-value store in a single switch 

- Store and serve key-value items using register arrays 

Key-value store in the network 

- Data partitioning with consistent hashing and virtual nodes

52

Virtual nodes are mapped to physical nodes (switches) with load balance; keys assigned to 
a virtual node are replicated on  virtual nodes that do not share physical nodes.f + 1

Use a hash function to hash both the 
virtual nodes and the keys to a ring



NetChain routing - write requests
Segment routing according to the chain structure

53

Write from the head and update through the chain until the tail



NetChain routing - read requests
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Always read from the tail 

In case of S2 failure, 
S1 will be queried



NetChain out of order delivery
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W2 arrived before W1: out of order delivery on 
the network → inconsistent state



Serialization with sequence number!

NetChain out of order delivery

56

Obsolete updates (with lower 
sequence numbers) will be dropped



Handling switch failures
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Fast failover Failure recovery

• Failover to remaining  nodes 

• Tolerate  failures 
• Efficiency: only need to update 

neighbor switches of failed switch

f
f − 1

• Add another switch 
• Tolerate  failures again 
• Consistency: two-phase atomic switching 
• Minimize disruption: virtual groups

f + 1



Using in-network computing 
to accelerate distributed 

machine learning



Machine learning in data centers
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Modern DNNs consist of up to hundreds of layers Typically billions of parameters



Data-parallel distributed machine learning
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Data partitioned 
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

AllReduce (all-to-all communication)

Local gradient

Aggregated gradient

Aggregation (100s of MBs to GBs) has to be performed in every iteration → 
Network becomes the bottleneck in the training speed!

Worker



Two existing approaches
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Parameter server (PS) AllReduce (ring)

The network remains a performance bottleneck in scaling distributed machine learning.



Turn the network into an ML accelerator
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Send data in 
packets

Aggregation on the switch

Data partitioned 
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker



Challenges
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Data partitioned 
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker

100s of MBs

100s of KBs

Cannot send the data in full to 
the switch for aggregation



Streaming aggregation
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Data partitioned 
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker

3

3
No.1

No.1 No.1 No.1

No.2No.3

Aggregation slots

Data block 1 has finished aggregation 
and has been broadcast to the workers

Data block 2 has been aggregated 
and is about to leave the switch

Data block 3 is being streamed to the 
switch to take the idle aggregation slot



Questions to think about

How to craft packets to send to the switch for SwitchML? 

How much data to send in each packet? 

How to perform aggregation on the switch? 

- Respecting the Tofino switch register access restrictions 

How to ensure reliability? 

- Handling packet loss 

How to achieve maximum throughput?  

- What is the optimal streaming rate? How to calculate it?

65

Lab5: Switches Do Dream of Machine Learning! (+ bonus)



Summary
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Leverage switches for in-network computing: in-network caching, in-
network coordination, in-network AllReduce

Servers

Programmable 
switches



Reading material
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Our own work on in-network computing
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NetCL: A Unified Programming Framework for
In-Network Computing

Anonymous Author(s)

Abstract—The emergence of programmable data planes (PDPs)
has paved the way for in-network computing (INC), a paradigm
wherein networking devices actively participate in distributed
computations. However, PDPs are still a niche technology, mostly
available to network operators, and rely on packet-processing
DSLs like P4. This necessitates great networking expertise from
INC programmers to articulate computational tasks in network-
ing terms and reason about their code. To lift this barrier to
INC we propose a unified compute interface for the data plane.
We introduce C/C++ extensions that allow INC to be expressed
as kernel functions processing in-flight messages, and APIs for
establishing INC-aware communication. We develop a compiler
that translates kernels into P4, and thin runtimes that handle
the required network plumbing, shielding INC programmers
from low-level networking details. We evaluate our system using
common INC applications from the literature.

I. INTRODUCTION

The past decade has witnessed a surge of programmable
data plane (PDP) networking devices [31], [37], [53], [80].
PDP devices allow for custom packet processing beyond
traditional protocols, facilitating great networking innova-
tion [8], [15], [16], [49], [66], [73]. Leveraging their high
performance and convenient on-path placement, researchers
have investigated the offloading of computational tasks inside
the network during data movement—a new paradigm known
as in-network computing (INC) [40]. INC has been shown
to reduce communication and improve throughput, latency,
and energy efficiency, in applications like caching [39], [48],
coordination [22], [41], [46], [71], [81], query processing [75],
aggregation [24], [44], [65], [80], and ML inference [63], [78].
As devices become more capable this list is likely to grow.

Despite its successes, INC remains a niche enterprise so
far, only available to networking experts [9], largely due
to its challenging programmability. PDP devices employ
high-performance packet processing chipsets programmed in
domain-specific languages like P4 [11] and NPL [55]. These
languages are based on the match-action abstraction [52]
and expose low-level constructs tailored to network function
development. Imperative code is often not straightforwardly
expressible, adding a significant cognitive burden to “hack”
compute logic into low-level networking terms, resulting in
verbose and hard to reason about code. Moreover, PDP code
is often non-portable [69]. INC programmers not only need to
learn a second language to program the device, and ensure in-
teroperability with the host language but also do it in a target-
specific manner. Finally, due to the absence of data plane
virtualization mechanisms, INC programmers are required to
define the networking behavior of the device, which involves

forwarding decisions that depend on the physical network and
would normally be the operator’s responsibility.

Recent efforts on higher-level PDP abstractions [6], [27],
[33], [68] fall short for INC as they fundamentally focus
on packet processing and protocol handling. Studies specif-
ically addressing INC [79], [84] mostly follow a “bottom-
up" approach, building on primitives tailored towards existing
applications, and do not solve the two-language problem.
The situation resembles the pre-CUDA [57] era of GPGPU
programming with pixel shaders [42]. We believe that if PDP
devices are to serve as compute accelerators, they should
similarly have a compute API.

In the spirit of compute acceleration APIs like CUDA [57]
and OpenCL [70], we propose NetCL, a unified program-
ming framework for INC, based on extending C/C++. NetCL
features a compute-centric model wherein INC is expressed
as kernel functions processing in-flight messages on PDP
devices. NetCL intuitively couples in-network execution with
message passing and offers a declarative API for application-
specific forwarding. Low-level networking details facilitating
communication are handled by NetCL runtime mechanisms
allowing programmers to focus on application logic. In the rest
of the paper, we first present the background on PDP and INC
and motivate our idea (§II). Then, we present NetCL’s design
and workflow (§III), system model (§IV) and programming
model (§V). After that, we discuss the implementation of
NetCL’s compiler targeting Intel Tofino switches and runtime
(§VI), and evaluate our system on a set of representative INC
applications. We conclude with a discussion of limitations
(§VIII), related work (§IX), and final remarks (§X).

II. BACKGROUND AND MOTIVATION

P4 is the leading PDP language, enjoying multi-vendor
adoption [1], [3], [5], [7], [17], [37]. P4 PDPs are pipelines
of packet-processing blocks, as shown in Figure 1. Processing
starts with header parsing, followed by user-defined control
logic to forward a packet. Parsers are programmed as finite
state machines. Control blocks mix imperative code with
match-action tables (MATs). MATs execute code based on
matching conditions over headers and metadata. They com-
pactly express complex if-else chains and usually translate to
hardware-based lookup operations. MATs are runtime recon-
figurable only from the control plane [29].

Central to P4 is the concept of a P4 architecture [19]. This
is vendor-provided code defining each programmable block’s
interface. For instance, Intel’s Tofino Native Architecture
(TNA) [35] offers six programmable blocks. Lines 29-41 of



Next time: network monitoring

69

Monitor

How to achieve fast and accurate network monitoring with programmable data plane?


