Advanced Networked Systems SS24
In-Network Computing

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University

https://cs.uni-paderborn.de/cn

>
)

https://en.cs.uni-paderborn.de/cn

Lab4 setup

Controller

P4ARuntime

%

Host 1

Host 2

JSON

JSON

<_l_

Host 3

Topology specified in JSON

Table entries following the
defined table format

P4 program
(defining table
formats and actions)

Packet header formats
Parser (state machine)
Ingress tables

Egress tables
Deparser

Lab4 examples

Header Parser
typedef bit<48> macAddr_t; state parse_ethernet {
header ethernet_t { packet.extract (hdr.ethernet) ;
macAddr_t dstAddr; transition select(hdr.ethernet.etherType) {
macAddr_t srcAddr; TYPE_ARP: parse_arp;
bit<16> etherType; TYPE_IPV4: parse_ipv4;
} default: accept;
+
struct headers { +
ethernet_t ethernet;
+

Lab4 examples

Table definition Table control flow

table ipv4_lpm {
key = {

hdr .network.ipv4.dstAddr: exact; : .
v TPV * action ipvé4_forward(

macAddr_t dstAddr,
egressSpec_t port) {...}

}

actions = {
ipv4_forward;

drop;
rop . if (hdr.network.ipv4.isValid()) A{
NoAction; .

, ipv4_lpm.apply () ;

size = 1024; ’

default_action = drop();

Lab4 examples

Table rules in the
format of JSON

"table_entries": [

{

}

"table": "MyIngress.ipv4_lpm",
"match": {
"hdr .network.ipv4.dstAddr": "10.0.1.1"
s
"action_name": "MyIngress.ipv4_forward",
"action_params": {
"dstAddr": "08:00:00:00:01:11",
"port": 1
+

Check P4 tutorials: https://
github.com/p4lang/tutorials

https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials

Lab4: longest path routing

10.0.3.3
08:00:00:00:03:33

10.0.3.30
08:00:00:00:03:00

10.0.1.1
08:00:00:00:01:11

10.0.2.2
08:00:00:00:02:22

10.0.1.10 10.0.2.20
08:00:00:00:01:00 08:00:00:00:02:00

Routing + ARP resolving

Lab4: video interception

Routing + ARP resolving + traffic replication + small fixes

Questions?

In-network computing

Programmable \%g¥)< Application
switches T
Network program
C/Java/Scala/
o \EEEEL Python program Developer

O (e &

O XN
Servers

In-network computing: performing application-specific computations “in the network” on
the path between data sources and sinks, leveraging modern programmable switches

10

In-network computing paradigm

Customize the match-action tables for
application-specific computations

Customized application- /

layer packet header ‘ ‘ ‘

ETH | IP | UDP & _ = N 3 [%IM i _5: Queues
8 — ¢ — 8! : H Ep
e — C — C e - { C b
o | B — B g 1 8P s
QL _| x | x X | o XL 90

IN ® —| 3 — © o H S & ouT

e o | a o | al, &
£ 8
@©
S
)
& Stage 1 Stage 2 .. StageN

Data

n

Learning objectives

How to implement an in-network caching service?

How to implement an in-network coordination service?

How to use in-network computing for accelerating distributed machine learning?

12

How to implement an in-
network caching service?

Key-value storage

Store, retrieve, manage key-value objects
- Critical building block for large-scale cloud services

- Need to meet aggressive latency and throughput objectives efficiently

GalfRecose M e

Target workloads
- Small objects
- Read intensive

- Highly skewed and dynamic key popularity

14

Challenge

Highly skewed and rapidly Requirement: high
changing workloads throughput, low (tail) latency

Load =

Bl = H =
Server = @@ﬁﬁ """ S@S@

How to provide effective dynamic load balancing?

15

Opportunity

Fast, small cache can ensure load balancing I
Cache O(N log N) hottest items -
- E.g. 10,000 hot objects l
[s s s S s Y s Y s |

N: number of servers

- E.g.,100 backend servers with 100 billion items

Requirement: cache throughput >= backend aggregate throughput

- Cache not being the performance bottleneck of the system

Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky. Small cache, big effect: provable load balancing for randomly

partitioned cluster services. ACM SoCC, 2011.

16

How to build the cache?

Cache needs to provide the aggregate throughput of the storage layer

" flash/disk

each: O(100) KQPS
total: O(10) MQPS

,'in-memory

each: 0(10) MQPS
total: O(1) BQPS

cache

cache

,’ in-memory

0(10) MQPS

?

0(1) BQPS

17

How to build the cache?

Cache needs to provide the aggregate throughput of the storage layer

" flash/disk

each: O(100) KQPS
total: O(10) MQPS

,'in-memory

each: 0(10) MQPS
total: O(1) BQPS

cache

cache

,’ in-memory

0(10) MQPS

o7 27 27 %

0(1) BQPS

Multiple cache servers: (1) high cost, (2) high
overhead to ensure cache coherence

How to build the cache?

Cache needs to provide the aggregate throughput of the storage layer

" flash/disk

each: O(100) KQPS
total: O(10) MQPS

,'in-memory

each: 0(10) MQPS
total: O(1) BQPS

cache

cache

, in-memory

0(10) MQPS

&= |n-network

0(1) BQPS

Limited on-chip memory?
But we only need to cache O(N log N) small items!

19

Recall RMT

Programmable parser

- Extracts packet header fields and converts packet data into metadata

Programmable match-action pipeline

- Operate on packet header vector and metadata, and update memory states

Queues

ouT

Match table
Match table

VYVVYVYVYYVY
Deparser

Packet header
Match table
Packet header

Programmable parser
|
Packet header

Stage 1 Stage 2 .. StageN

Use RMT for key-value store

Programmable parser

- Parse custom key-value fields in the
packet header

9
O
©
+—
e
(®)
+—
@©
>

Match table

ETH| IP | UDP

Packet header

Packet header

INNRRNRN
Deparser

Programmable parser
|
Packet header

Programmable match-action pipeline

- Read and update key-value data: H H
read(keyl), write (key6, valueo)

i <keyl, valuel> <key3, value3>
Registers

- Provide query statistics for cache <key2, value2>

updates
Cached entries will be updated based

on query statistics (e.g., frequency).

21

NetCache rack-scale architecture

Switch data plane (fast)

Clients]
- Key-value store to serve queries for cached keys
- Query statistics to enable efficient cache Controller Key-Value Storage Rack
updates '

L2/L3 Key-Value Query
Routing Cache Statistics

Switch control plane (slow) ToR Switch Data plane

- Cache updates: insert hot items into the cache
and evict less popular items o0o i

- Memory management: memory allocation for High-performance Storage Servers

on-chip key-value store

Data plane query handling

Directly reply from the cache

Read Query
(cache hit) D

Server

Read Query
(cache miss)

Write Query

4
Client Server

In-Network Caching

Key-value caching in network ASIC at line rate?!

How to store and serve
variable-length data on

How to identify application-

level packet fields? ,
switches?

How to efficiently keep the
cache up-to-date?

24

NetCache packet format

Application-layer protocol: compatible with existing L2-L4 layers

Only the top-of-rack switch needs to parse NetCache fields

Existing Protocols NetCache Protocol
A A

OP SEQ KEY VALUE
\ — : reserved read, write,
L2/L3 Routing port # delete, etc.

Only the top-of-rack switch needs to parse NetCache fields for NetCache traffic

25

In-Network Caching

Key-value caching in network ASIC at line rate?!

. . L How to store and serve
How to identify application-

level packet fields?

variable-length data on

switches?

How to efficiently keep the
cache up-to-date?

26

Use register array

Exact match on Register index supplied
the key for lookup by the table entry
Match pkt.key == pkt.key ==
Table entries ,
Action process_array(0) process_array(l)
pkt.value: | A B
0O 1 2 3
action process array (idx): Al|B
if pkt. e d: .
=P °F rea Register Array
pkt.value -=-— array[idx]
elif pkt.op == cache update: Cache
array[idx] -<— pkt.value Use stateful memory to

store key-value items

27

Challenges with variable length

No loop or string in P4 due to strict timing requirements

Need to optimize hardware resources consumption
- Number of entries in the match-action tables
- Size of action data given by a table match

- Size of intermediate metadata across tables (in case of using multiple tables)

pkt.key == B

process_array(1)

pkt.value: | A B

>
(e~

Use one register array

pktkey == Use action data to

hold the indices

IYedlelsM process_array([2,3...])

Register array

Problem: not feasible due to limited number of lookups in one
register array (read only one index allowed), high action data

29

Use multiple register arrays (RAs)

Indices to multiple RAs carried
in the action data

A

Stage 1 Stage 2 Stage 3

Match pkt.key == A

Register array 1 Register array 2 Register array 3

process_array([1,5,3])

Action

[1,5,3] [5,3] [3]

v
v
v

Metadata

Problem: high action data and metadata

30

Use multiple register arrays (RAs)

Use multiple tables to provide indices for the RAs

Match pktkey == A Match pktkey == A Match pktkey == A

process_arrayl(1) IXeateal Process_array2(5) INalslal Process_array3(3)

Register array 1 Register array 2 Register array 3

Stage 1 Stage 2 Stage 3

Problem: too many match action table entries

NetCache: two-level lookup

Lookup Table

Value Table 0

Value Table 1

Value Table 2

Match

Action

pkt.value: |AQ|Al|A2

Match

Action

Match

Action

Match

Action

Small action data

index=10

bitmap[0] ==
process_array_0 (index)

bitmap[1] ==

process_array_1 (index)

bitmap|[2] ==
process_arrgy_2 (index)

v

Small match-action table
size (only two entries 0/1)

pkt.key == A Bitmap indicates arrays that store the key’s value
bitmap = 111 /*| Index indicates slots in the arrays to get the value

Minimal hardware resource overhead

Register Array 0

Register Array 1

Register Array 2

32

Combine outputs from multiple arrays

YOS okikey == A | pkt.key== pktkey==C |pktkey==
Action bitmap = 111 bitmap = 110 bitmap = 010 bitmap = 101

Lookup Table index = 0 index =1 index = 2 index = 2
pkt.value: |A0Q|Al|A2 B0 |B1 C0 D0|D1
Match bitmap[0] == O 1 2 3

Value Table 0 JNCito Bl process_array_0 (index) — |AQ|B0[DO0 Register Array 0

Value Table 1 [RASAUNN ©tmap(l] == |
Action process_array_1 (index) — |Al[B1|C0 Register Array 1

Value Table 2 [DAGSEEN bitmap|2] ==
Action process_array_2 (index) —

€
S

Register Array 2

Memory management

0O |1 [2]3

A0 ((BO | DO Register Array 0

Al |Bl1]| CO| Register Array 1

A2 D1 Register Array 2
Bins

Solve a bin-packing problem: use First-Fit heuristics

34

In-Network Caching

Key-value caching in network ASIC at line rate?!

How to store and serve

How to identify application- .
variable-length data on

level packet fields? ,
switches?

How to efficiently keep the

cache up-to-date?

35

Cache insertion and eviction

Goal: react quickly and effectively to workload changes with minimal updates

/] 0 Data plane reports hot keys
, " [Cache Management < >i

) e Control plane compares loads of
i new hot and sampled cached keys

(4 (2,
Control plane fetches values for
| o] | B e

keys to be inserted to the cache

|
Key-Value Query
(Crere S i @ Control plane inserts and evicts keys

\o -~/

Tor Switch Storage Servers

Challenge: cache the hottest O(N log N) items with limited insertion rate

Query statistics

Cached key (small in size): per-key counter array

Uncached key (large in size):

- Count-min sketch (an approximate data structure): report new hot keys

- Bloom filter: remove duplicated hot key reports

freport

(W LT [

not cached . [T T T hot>I T -

pltkey [| |
Lookup Count-Min sketch Bloom filter

cached IMTTTITIIII M IIIIIL]

Per-key counters for each cached item

37

How to implement an in-
network coordination service?

Coordination service

>
©
°
=
8
=
-
w
B
ke
A
Q:
=
Q
AVAVA
AVAVAVA

Coordir?ation GO gle
Service Chubby

v

Apache
Zookeeper

MESOS

VAVAVAY
VAVAY

metcd

39

Coordination service

M M APACHE g 4"’
Applications S QI'K %kqfka g%gs MESOS
Configuration Group Distributed :
)) Barrier
management membership locking

Coordination

service Strongly consistent, fault-tolerant key-value store

Server

40

Workflow of coordination service

Request
-
. W mummnmnans = Wsummmmame =
Reply
Throughput: limited by Latency: at least one RTT,

the server NIC throughput typically a few RTTs

41

In-network coordination

Request Programmable network

Reply

Example [NetBricks, OSDI’16] Barefoot Tofino
Packets per second 30 million A few billion
Bandwidth 10-100 Gbps 6.5 Thps
Processing delay 10-100 us <1us

42

In-network coordination

Client

Request

Reply

Coordination switches running
a consensus protocol

Throughout: switch throughput
Latency: sub-RTT

43

NetChain design goals

High

Low latency
throughput

Already satisfied with the high-
performance switches

Consistency Fault tolerance

How to?

44

NetChain design goals

High

Low latency
throughput

Already satisfied with the high-
performance switches

Consistency Fault tolerance

Vertical Paxos

45

NetChain division of labor

Vertical Paxos

Programmable
network

Steady state protocol
(primary-backup)

Storage Nodes

Optimize for high-performance to
handle read & write requests
Provide strong consistency

L 4

Network Data Plane

Handle packets at line rate

Reconfiguration protocol
(fault-tolerance)

Auxiliary Master

* Handle less frequent reconfiguration
» Provide fault tolerance

¢

Network Control Plane

* Handle network reconfiguration

46

Chain replication for the steady state protocol

Nodes are organized in a chain structure

Handle operations:

Write Read Read/Write
Request Request Reply
- Read from the tail \ : 7
- Write from head to tail
Head Replica Tail

Provide strong consistency and fault tolerance
- Tolerate ffailures with f + 1 nodes

- Fault tolerance based on the reconfiguration protocol in Vertical Paxos

47

NetChain overview

Handle read & write requests
at line rate

NetChain

Handle reconfigurations
(e.g., switch failures)

Network
Controller

48

NetChain challenges

Control plane

Data plane
How to store and How to route queries
serve key-value according to the
items? chain structure?

How to handle out of
order delivery in the
network?

How to handle

switch failures?

49

NetChain switch design

Similar to NetCache, except the coordination components

Control plane (CPU)

Data plane (ASIC)

‘r\
-
-

(& A
Network NetChain 1
X Management Switch Agent |
i { Run-time API }
Network Key-Value
Functions Store
)\‘~

Match + Action

W

=
— 1N

C L
N

\

Y

NetChain

Controller

HHEH

ALY

Programmable Parser

Programmable Match-Action Pipeline

50

NetChain packet format

Application-layer protocol: compatible with existing L2-L4 layers, invoked with a
reserved UDP port

Existing Protocols NetChain Protocol
A A
4 Y \
UDP! SC ISy [S; .../ OP [SEQN KEY VALUE
N J N J
Y . .Y .
L2/L3 routing NetChain routing | read, write, CWerted by head switch]

reserved port #

Source routing

UDP is not reliable: upon packet loss, retry! Designing a reliable transport

protocol for in-network computing is still an open challenge!

51

In-network key-value storage

Match-Action Table Register Array (RA)
- - : Match _____________lActon 0
Key-value store in a single switch Key =X o P
_ , _ Key = Y Read/Write RA[5] g
- Store and serve key-value items using register arrays Key =2 Read/Write RARZ] .
Default Drop() S
Key-value store in the network
- Data partitioning with consistent hashing and virtual nodes
O NodoDo O
. oNod A 3 ’onod A
Use a hash function to hash both the) d)
virtual nodes and the keys to a ring 4 A
o o
roee \/ O Node B nee \—/ O Node B
O O

Virtual nodes are mapped to physical nodes (switches) with load balance; keys assigned to
a virtual node are replicated on f + 1 virtual nodes that do not share physical nodes.

52

NetChain routing - write requests

Segment routing according to the chain structure

Write Request Client Write Reply
dstIP SC s |s dstIP SC
=S, | =2 2] | =Hy | = |=0]

O O

Head Replica Tail
dstIP SC S dstlP SC
=S1 -+ o ... =Sz SRR

Write from the head and update through the chain until the tail

NetChain routing - read requests

In case of S2 failure,

S1will be queried
Client

Read Reply
Read Request dstIP SC s |s
astP| Tsclg [Mo =27)"
— 82 — 2 1 0
Head Replica Tail

Always read from the tail

NetChain out of order delivery

Concurrent Writes Head Replica Tall
W,: foo=B 9
W,: foo=C

foo=A foo=A foo=A
foo=B
foo=C foo=C
foo=B
time foo=B
v foo=C

W2 arrived before W1: out of order delivery on
the network = inconsistent state

NetChain out of order delivery

Serialization with sequence number!

Concurrent Writes Head Replica Tall

Wi: foo=B
Wz: foo=C

time

foo=A,seq=0 foo=A,seq=0 foo=A,seq=0
foo=B,seq=1

foo=C,seq=2 foo=C,seq=2

|

Obsolete updates (with lower

foo=C,seq=2

sequence numbers) will be dropped

56

Handling switch failures

Fast failover

. Failover to remaining f nodes

. Tolerate f— 1 failures

- Efficiency: only need to update
neighbor switches of failed switch

Failure recovery

Add another switch

Tolerate f + 1 failures again

Consistency: two-phase atomic switching
Minimize disruption: virtual groups

57

Using in-network computing
to accelerate distributed
machine learning

1980S-ERA NEURAL NETWORK

Hidden
layer

Input .

I \ Output

aye layer

N7 L7

%O o
S

7=
>4
T
N>

-

=

Links carry signals
from one node
to another, boosting
or damping them
according te each
link's ‘weight'.

Modern DNNs consist of up to hundreds of layers

DEEP LEARNING NEURAL NETWORK

Multiple hidden layers
process hierarchical features

Identify
combinations

light/dark or features
pixel value \ Identify Identify Identify
edges combinations features
=~ of edges

S HEF "HS mES HEER
SIE FEQ NSF BEdH

Parameters (B)

Machine learning in data centers

200

-
o
o

-
[=]
o

o
(=]

BERT RoBERTa GPT-2 T5 Turing NLG

Model

Typically billions of parameters

GPT-3

59

Data-parallel distributed machine learning

Data partitioned

aCross processors

Worker

QReduce (all-to-all communicatiD

Aggregated gradient R BIN [BL HEEE] EEEE]

Aggregation (100s of MBs to GBs) has to be performed in every iteration =
Network becomes the bottleneck in the training speed!

60

Two existing approaches

NAZZ2% | | |24 N 27 (NA2%2% | | [/Z2%4% NP Z27%%

Worker 1 updates Worker 2 updates e Worker N updates Worker 1 updates Worker 2 Updates e Worker N uPdateS
Parameter server (PS) AllReduce (ring)

The network remains a performance bottleneck in scaling distributed machine learning.

61

Turn the network into an ML accelerator

Data partitioned
across processors

Worker

Local gradient

Send data in
packets

Aggregation on the switch

62

Challenges

Data partitioned
across processors

Worker

Local gradient

Cannot send the data in full to
the switch for aggregation

100s of KBs

63

Streaming aggregation

Data partitioned
across processors

Worker

Local gradient 112

Data block 1 has finished aggregation
and has been broadcast to the workers

Data block 3 is being streamed to the
switch to take the idle aggregation slot

No.3 H: E No.2 Data block 2 has been aggregated

Aggregation slots

and is about to leave the switch

64

Questions to think about

How to craft packets to send to the switch for SwitchML?

How much data to send in each packet?

P2

How to perform aggregation on the switch?

- Respecting the Tofino switch register access restrictions

How to ensure reliability? T [T EEEN

- Handling packet loss : : ,
&P Lab5: Switches Do Dream of Machine Learning! (+ bonus)

How to achieve maximum throughput?

- What is the optimal streaming rate? How to calculate it?

65

Summary

Programmable @

switches

@ @

Servers Q Q @ Q

Leverage switches for in-network computing: in-network caching, in-
network coordination, in-network AllIReduce

Reading material

NetCache: Balancing Key-Value Stores
with Fast In-Network Caching

Xin Jin', Xiaozhou Li?, Haoyu Zhang®, Robert Soulé*?,
Jeongkeun Lee?, Nate Foster®®, Changhoon Kim?, Ion Stoica®

!Johns Hopkins University, *Barefoot Networks, *Pri University,
“Universita della Svizzera italiana, *Cornell University, ® UC Berkeley

ABSTRACT

‘We present NetCache, a new key-value store architecture that
leverages the power and flexibility of new-generation pro-
grammable switches to handle queries on hot items and bal-
ance the load across storage nodes. NetCache provides high
aggregate throughput and low latency even under highly-
skewed and rapidly-changing workloads. The core of Net-
Cache is a packet-processing pipeline that exploits the ca-
bilities of modern prog: ble switch ASICs to effi-
cunl]y detect, index, cach: and serve hot key-value items in
the switch data plane. Addluonauy our solution ;\nnnlees
cache coh with | head. We impl
NetCache prototype on Barefoot Tofino switches and com-
modity servers and demonstrate that a single switch can pro-
cess 2+ billion queries per second for 64K items with 16-byte
keys and 128-byte values, while only consuming a small por-

KEYWORDS
Key-value stores; Programmable switches; Caching

ACM Reference Format:

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, Ton Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching In Proceedings of
SOSP *17, Shanghai, China, October 28, 2017, 17 pages.

hitps://doi org/10.1145/3132747.3132764

1 INTRODUCTION

Modern Internet services, such as search, social networking
and e-commerce, critically depend on high-performance key-
value stores. Rendering even a single web page often requires
hundreds or even thousands of storage accesses [34]. So, as
these services scale to billions of users, system operators

tion of its hardware resources. To the best of our k led

gly rely on i y key-value stores to meet the

NetChain: Scale-Free Sub-RTT Coordination

Xin Jin', Xiaozhou Li?, Haoyu Zhang?, Nate Foster®*,
Jeongkeun Lee?, Robert Soulé®®, Changhoon Kim?, Ion Stoica®
! Johns Hopkins University, Barefoot Networks, > Princeton University,
#Cornell University, > Universita della Svizzera italiana, ® UC Berkeley

Abstract
Coordination services are a fundamental building block
of modemn cloud providing critical functi

ties like oouﬁgunuon management and distributed lock-
ing. The major challenge is to achieve low Iawocy
and high throughput while providing strong

DrTM (6], which can process hundreds of millions of
transactions per second with a latency of tens of mi-
croseconds, crucially depend on fast distributed locking
to mediate concurrent access to data partitioned in mul-
tiple servers. Unfortunately, acquiring locks becomes a
significant bottleneck which severely limits the transac-

and fault-tolerance. Traditional server-based soluti

require multiple round-trip times (RTTs) to process a

tion throughput [7]. Thisis b servers have to spend
their on (i)p ing locking reg and (ii)
bortil ions that cannot acquire all locks under

query. This paper presents NetChain, a new app

that provid le-free sub-RTT in dat-
ucemen. NetChain exploits recent advances in pro-
grammable switches to store data and process queries
entirely in the network data plane. This eliminates the
query processing at coordination servers and cuts the
end-to-end latency to as little as half of an RTT—<lients
only expenence pmoessmg delzy from their own soft-

oo desescnion et

ssscectasksabes sotccls doloss

hl;h—oonlenuon workloads, which can be otherwise used
to execute and commit lnnncuom Thu is one of lhe
main factors that led to rel;

in many recent large-scale distributed syslcms [8,9], and
the recent efforts to avoid coordination by leveraging ap-
plxcauen semantics [10 11). While these sysmns are

] in achieving high th h
they restrict the programming modcl and complicate l.he

Scaling Distributed Machine Learning with In-Network Aggregation

Amedeo Sapio® Marco Canini* Chen-Yu Ho Jacob Nelson
KAUST KAUST KAUST Microsoft
Panos Kalnis Changhoon Kim Arvind Krishnamurthy
KAUST Barefoor Networks University of Washington
Masoud Moshref Dan R. K. Ports Peter Richtdrik
Barefoot N N i P KAUST
Abstract 1ggreg primitive can ML work-
N . o loads, and can be implemented using programmable switch
,_ Training machine learning models in parallelis an increas- — parguare (5, 10]. Aggregation reduces the amour of data
ingly important workload. We accek buted perallc] phases, which increases

training by designing a communication primitive that uses &
programmable switch dataplane to execute a key step of the
training process. Our approach, SwitchML, reduces the vol-
ume of exchanged data by aggregating the model updates
from multiple workers in the network. We co-design the
switch processing with the end-host protocols and ML frame-
works to provide an efficient solution that speeds up training
by up to 5.5x for a number of real-world benchmark models.

1 Introduction

Today’s machine leaming (ML) solutions’ remarkable success
derives from the ability to build increasingly sophisticated
models on increasingly large data sets. To cope with the result-
ing increase in training time, ML practitioners use distributed
trainine [1.22). Laree-scale clusters use hundreds of nodes.

during
throughput, diminishes latency, and speeds up training time.

Building an in-network aggregation peimitive using pro-
grammable switches preseats many challenges. First, the per-
packet processing capabilities are limited, and so is on-chip
memory. We must limit our resource usage so that the switch
can perform ils primary function of coaveying packets, Sec-
ond, the units inside a switch oper-
ate on integer values, whereas ML frameworks and models
operate on floating-point values. Finally, the in-network ag-
gregation primitive is an all-to-all primitive, unlike traditional
unicast or multicast communication patterns. As a result, lw
network ion requires i for 1t
workers and detecting and recovering from packet loss.

‘We address these challenges in SwitchML, showing that
it is indeed possible for a programmable network device 1o
perform in-network aggregation at line rate. SwitchML is

67

Our own work on in-network computing

&

Switches for HIRE: Resource Scheduling for Data Center

In-Network Computing
Marcel Blcher Lin Wang
bloecher. marce @gmail com lin wang@vu.al

TU Darmstadt, Germany

Patrick Eugster
eugstp@usi ch
USI Lugano, Switzeriand
Purdue University, USA
TU Darmstadt, Germany

ABSTRACT
The recest trend o ds
1n data centers opens up new possibibties for distributed applica-
tions 10 leverage in-network computing (INC). Lkcratuce %0 far has
lergely focused os individual epplication scenerios of INC, leaviag
aside the problem of coordinating asage of potentialy scarce and
heterogeneous ewitch resources amorsg raultiple INC scenasios,
apphications, and users The tracitional model of resoarce pools
of isiated compate contamners does net fit aa INC-enabled data
comter

This pager describes HIRE, a Holistic INC-awase Besource mar-
agke which alowsfoe server-Jocal and INC resonrce 1 be cosel

HIRE istrod 1

AL el dd resource
and men- and
between resources and locations in 4 usifled cost model, cast a1 &
min-cost ma-flow preblem. In sheence of prioe wark, we compare
HIRE againgt vanants of state-of-the-art schedulers retrofitted to
handle INC sequests. Experimests with a workload trace of a 4000

VU Amsterdam, The Netherlands
TU Darmstadt, Germany

Max Schmidt
university max. schmidt@gmail com
TU Darmstact, Germany

KEYWORDS

data center, scheduling, in-network compating, heterogeneity, non-
linear resource usege

LinWang. 2001, Swixhes

for MIRE: Rescrssce Scheduling for Data Center lir-Network Computing.

In Procesdings of fhe 36th ACM International Corferemce en Architecturel

Support fer Programeng L. Systerns (ASPLOS 21)

Apeit 19-23, 2021, Virtwal, USA. ACM. New Yok, NY, USA, 18 pages. bt
Gl ong/ 101 LEIHGIAIHETGH

Don’t You Worry ’Bout a Packet: Unified
Programming for In-Network Computing

George Karlos Henri Bal Lin Wang
Vrije Universiteit Amsterdam Vrije U i A Vrije Ut iteit A
ABSTRACT such as data aggregation [47), caching [23, 29), stream pro-

I k comp is gaining as

ble switches are increasingly employed for compute acceler-
ation. Designed for packet processing, data plane program-
ming languages force developers to express compute in net-
working terms, resulting in a complex, error-prone practice.
We envision the unification of switch and host programming
and propose the Net Compute Language (NCL), a C/Ce+ ex-
tension for expressing computational kernels for swnchu to

cessing [21], query processing (28, 54), agreement (12, 22,60,
and ML training [17, 26, 48). Offloading heavy-duty tasks
like (de)compression [56) and ML inference [46, 52, 59), or
even simple data transformations [25), to on-path switches
has shown potential for substantial performance gains.

To aid data plane customization, a healthy number of lan-
guages have been proposed [5, 7, 49, 50], with P4 [5] and
NPL [7) arguably the most populu Bemn‘ AP differences,

execute. NCL implements Compute Centric C
(C3), our propesed programeming model for INC under which,

are d to carry out com-
pulamns We motivate our approach with real-world use
cases and discuss the technical challenges for its realization.

ACM Reference Format:

George Karlos, Henri Bal, and Lin Wang. 2021. Don't You Worry
"Bout a Packet: Unified Programming for In-Network Computing.
In The Twentieth ACM Workshop on Hot Topics in Netwerks (Hot-
Nets '21), November 10-12, 2021, Virtual Event, United Kingdom.
ACM, New York, NY, USA. 9 pages. https://doi.org/10.1145/3484266.
3487395

1 INTRODUCTION

“The fast evolution of software-defined networking (SDN) [14]

data plane L share tw First,
they are designed around nﬂwnrl(functionality and thus ex-
pose verbose packet pm«mr\(, Second, modern switching
fabrics rely d its (ASICs)
to maintain high speeds. These are not akin to gcmnl pur-
ing, so data plane
conﬁmd to a programming modd close to lhe hardwt
Theabove ch ke packet
parsers and match-action tables that, while crudal to packet
processing, fall short for expressing compute. Programmers
are thus forced to encode application logic in unfamiliar
terms, often employing clever tricks to realize simple func-
tionality. INC applications are encoded as L4/L5 protocols,
which also complicates host side code with packet crafting
mum&whhudkinuhﬂpwyunmmgd‘lﬁmlund

has led to nel\mrk rwmhn cap-bk of Th/s while

P - e b £ -t

prone, of its full potential.

NetCL: A Unified Programming Framework for
In-Network Computing

Anonymous Author(s)

Ab: The of pr data planes (PDPs)
has paved the way for i twork ing (INC), a di
wherein networking devices actively participate in distributed
computations. However, PDPs are still a niche technology, mostly
available to network operators, and rely on packet-processing
DSLs like P4. This necessitates great networking expertise from
INC programmers to articulate computational tasks in network-
ing terms and reason about their code. To lift this barrier to
INC we propose a unified compute interface for the data plane.
We introduce C/C++ extensions that allow INC to be expressed
as kernel ions p ing in-flight and APIs for

ishing INC-aware We develop a compiler
that translates kernels into P4, and thin runtimes that handle
the required network i ielding INC pr
from low-level networking details. We evaluate our system using
common INC applications from the literature.

1. INTRODUCTION

The past decade has a surge of p
data nlana (DND\ natwarking davicac 1211 1271 1821 101

forwarding decisions that depend on the physical network and
would normally be the operator’s responsibility.

Recent efforts on higher-level PDP abstractions [6], [27],
[33], [68] fall short for INC as they fundamentally focus
on packet processing and protocol handling. Studies specif-
ically addressing INC [79], [84] mostly follow a “bottom-
up" approach, building on primitives tailored towards existing
applications, and do not solve the two-language problem.
The situation resembles the pre-CUDA [57] era of GPGPU
programming with pixel shaders [42]. We believe that if PDP
devices are to serve as compute accelerators, they should
similarly have a compute API.

In the spirit of compute acceleration APIs like CUDA [57]
and OpenCL [70], we propose NetCL, a unified program-
ming framework for INC, based on extending C/C++. NetCL
features a compute-centric model wherein INC is expressed

as kemel functions processing in-| ﬂlght messages on PDP

~~~~~~~ ATt iiensieinial RN

68



Next time: network monitoring

Monitor

How to achieve fast and accurate network monitoring with programmable data plane?

69



