
Advanced Networked Systems SS24
In-Network Computing

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

Lab4 setup

2

P4 switch

Host 1 Host 2 Host 3

P4 program
(defining table

formats and actions)

P4Runtime

Controller

Packet header formats
Parser (state machine)
Ingress tables
Egress tables
Deparser

Table entries following the
defined table format

Topology specified in JSON Mininet

Lab4 examples

3

typedef bit<48> macAddr_t;
header ethernet_t {
 macAddr_t dstAddr;
 macAddr_t srcAddr;
 bit<16> etherType;
}

struct headers {
 ethernet_t ethernet;
}

state parse_ethernet {
 packet.extract(hdr.ethernet);

transition select(hdr.ethernet.etherType) {
 TYPE_ARP: parse_arp;
 TYPE_IPV4: parse_ipv4;
 default: accept;

 }
}

Header Parser

Lab4 examples

4

table ipv4_lpm {
 key = {
 hdr.network.ipv4.dstAddr: exact;
 }
 actions = {
 ipv4_forward;
 drop;
 NoAction;
 }
 size = 1024;
 default_action = drop();
}

Table definition

action ipv4_forward(
macAddr_t dstAddr,
egressSpec_t port) {...}

if (hdr.network.ipv4.isValid()) {
 ipv4_lpm.apply();
}

Table control flow

Lab4 examples

5

"table_entries": [
{
 "table": "MyIngress.ipv4_lpm",
 "match": {
 "hdr.network.ipv4.dstAddr": "10.0.1.1"
 },
 "action_name": "MyIngress.ipv4_forward",
 "action_params": {
 "dstAddr": "08:00:00:00:01:11",
 "port": 1
 }
}

]

Table rules in the
format of JSON

Check P4 tutorials: https://
github.com/p4lang/tutorials

https://github.com/p4lang/tutorials
https://github.com/p4lang/tutorials

Lab4: longest path routing

7

s1 s2

s3

h1 h2

h3

1 2

3

12

3

1

2 3
10.0.1.1

08:00:00:00:01:11
10.0.2.2

08:00:00:00:02:22

10.0.3.3
08:00:00:00:03:33

10.0.1.10
08:00:00:00:01:00

10.0.2.20
08:00:00:00:02:00

10.0.3.30
08:00:00:00:03:00

Routing + ARP resolving

Lab4: video interception

8

s1

s2

s3

s4

s5

s6

s7h1 h3 h7

10.0.1.1 10.0.3.3 10.0.7.7
1

2

3

1
2

3

1
32

1
2

3 4

1
2

3 1
2

1
2

3

1ms
3ms

1ms

1ms 5ms

2ms

2ms

2ms
2ms

1ms

1ms
1ms

Routing + ARP resolving + traffic replication + small fixes

Questions?

In-network computing

10

Servers

Programmable
switches

Developer

Network program

C/Java/Scala/
Python program

Application

In-network computing: performing application-specific computations “in the network” on
the path between data sources and sinks, leveraging modern programmable switches

In-network computing paradigm

11

Pr
og

ra
m

m
ab

le
 p

ar
se

r

D
ep

ar
se

r

Match-
action
stage

Match-
action
stage

Match-
action
stage

Stage 1 Stage 2 Stage N

Data

Queues

OUTIN

…

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Net INC INC

ETH IP UDP INC

Customized application-
layer packet header

Customize the match-action tables for
application-specific computations

Learning objectives

12

How to implement an in-network coordination service?

How to implement an in-network caching service?

How to use in-network computing for accelerating distributed machine learning?

How to implement an in-
network caching service?

Key-value storage

Store, retrieve, manage key-value objects

- Critical building block for large-scale cloud services

- Need to meet aggressive latency and throughput objectives efficiently

Target workloads

- Small objects

- Read intensive

- Highly skewed and dynamic key popularity

14

Challenge

15

How to provide effective dynamic load balancing?

Highly skewed and rapidly
changing workloads

Requirement: high
throughput, low (tail) latency

Opportunity

Fast, small cache can ensure load balancing

Cache hottest items

- E.g., 10,000 hot objects

: number of servers

- E.g., 100 backend servers with 100 billion items

Requirement: cache throughput >= backend aggregate throughput

- Cache not being the performance bottleneck of the system

O(N log N)

N

16
Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky. Small cache, big effect: provable load balancing for randomly
partitioned cluster services. ACM SoCC, 2011.

How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer

17

O(1) BQPS

?

in-memory

O(10) MQPS

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory

cache

cache

How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer

18

cache

cache

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory

in-memory

O(10) MQPS

O(1) BQPS

Multiple cache servers: (1) high cost, (2) high
overhead to ensure cache coherence

How to build the cache?
Cache needs to provide the aggregate throughput of the storage layer

19

in-memory

O(10) MQPS

in-network

Limited on-chip memory?
But we only need to cache small items!O(N log N)

O(1) BQPS

cache

cache

flash/disk

each: O(100) KQPS
total: O(10) MQPS

each: O(10) MQPS
total: O(1) BQPS

in-memory

Recall RMT

Programmable parser

- Extracts packet header fields and converts packet data into metadata

Programmable match-action pipeline

- Operate on packet header vector and metadata, and update memory states

20

Pr
og

ra
m

m
ab

le
 p

ar
se

r

D
ep

ar
se

r

Match-
action
stage

Match-
action
stage

Match-
action
stage

Stage 1 Stage 2 Stage N

Queues

OUT
IN

…

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

M
at

ch
 t

ab
le

Ac
ti

on

M
at

ch
 t

ab
le

Ac
ti

on

M
at

ch
 t

ab
le

Ac
ti

on

Use RMT for key-value store

Programmable parser

- Parse custom key-value fields in the
packet header

Programmable match-action pipeline

- Read and update key-value data:
read(key1), write (key6, value6)

- Provide query statistics for cache
updates

21

Registers
<key1, value1>

<key2, value2>
<key3, value3>

Cached entries will be updated based
on query statistics (e.g., frequency).

Pr
og

ra
m

m
ab

le
 p

ar
se

r

D
ep

ar
se

r

Match-
action
stage

Match-
action
stage

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

M
at

ch
 t

ab
le

Ac
ti

on

M
at

ch
 t

ab
le

Ac
ti

on

ETH IP UDP Key-Value

NetCache rack-scale architecture

Switch data plane (fast)

- Key-value store to serve queries for cached keys

- Query statistics to enable efficient cache
updates

Switch control plane (slow)

- Cache updates: insert hot items into the cache
and evict less popular items

- Memory management: memory allocation for
on-chip key-value store

22

Data plane query handling

23

Directly reply from the cache

Reply from the server

Write to the server and invalidate the cache

In-Network Caching
Key-value caching in network ASIC at line rate?!

24

How to identify application-
level packet fields?

How to store and serve
variable-length data on

switches?

How to efficiently keep the
cache up-to-date?

NetCache packet format

Application-layer protocol: compatible with existing L2-L4 layers

Only the top-of-rack switch needs to parse NetCache fields

25

Only the top-of-rack switch needs to parse NetCache fields for NetCache traffic

In-Network Caching
Key-value caching in network ASIC at line rate?!

26

How to identify application-
level packet fields?

How to store and serve
variable-length data on

switches?

How to efficiently keep the
cache up-to-date?

Use register array

27

Register index supplied
by the table entry

Cache

Table entries

Use stateful memory to
store key-value items

Exact match on
the key for lookup

Challenges with variable length

No loop or string in P4 due to strict timing requirements

Need to optimize hardware resources consumption

- Number of entries in the match-action tables

- Size of action data given by a table match

- Size of intermediate metadata across tables (in case of using multiple tables)

28

Use one register array

29

Match

Action

pkt.key == A

process_array([2,3,...])

Problem: not feasible due to limited number of lookups in one
register array (read only one index allowed), high action data

Register array

Use action data to
hold the indices

Use multiple register arrays (RAs)

30

Match

Action

pkt.key == A

process_array([1,5,3])
Register array 1 Register array 2 Register array 3

[1,5,3] [5,3] [3]
Metadata

Problem: high action data and metadata

Indices to multiple RAs carried
in the action data

Stage 1 Stage 2 Stage 3

Use multiple register arrays (RAs)

31

Match

Action

pkt.key == A

process_array1(1)

Match

Action

pkt.key == A

process_array2(5)

Problem: too many match action table entries

Register array 1 Register array 2

Match

Action

pkt.key == A

process_array3(3)

Register array 3

Use multiple tables to provide indices for the RAs

Stage 1 Stage 2 Stage 3

NetCache: two-level lookup

32

Small action data

Small match-action table
size (only two entries 0/1)

Combine outputs from multiple arrays

33

Memory management

34

Bins

Solve a bin-packing problem: use First-Fit heuristics

In-Network Caching
Key-value caching in network ASIC at line rate?!

35

How to identify application-
level packet fields?

How to store and serve
variable-length data on

switches?

How to efficiently keep the
cache up-to-date?

Cache insertion and eviction
Goal: react quickly and effectively to workload changes with minimal updates

36

Challenge: cache the hottest items with limited insertion rateO(N log N)

Query statistics

Cached key (small in size): per-key counter array

Uncached key (large in size):

- Count-min sketch (an approximate data structure): report new hot keys

- Bloom filter: remove duplicated hot key reports

37

How to implement an in-
network coordination service?

Coordination service

39

Coordination service

40

Configuration
management

Group
membership

Distributed
locking

Barrier

Strongly consistent, fault-tolerant key-value store

Server

Applications

Coordination
service

Workflow of coordination service

41

Request

Reply

Throughput: limited by
the server NIC throughput

Latency: at least one RTT,
typically a few RTTs

In-network coordination

42

Request

Reply

Programmable network

In-network coordination

43

Request

Reply

Client

Coordination switches running
a consensus protocol

Throughout: switch throughput
Latency: sub-RTT

NetChain design goals

44

High
throughput

Low latency Consistency Fault tolerance

Already satisfied with the high-
performance switches

How to?

NetChain design goals

45

High
throughput

Low latency Consistency Fault tolerance

Already satisfied with the high-
performance switches

Vertical Paxos

NetChain division of labor

46

Steady state protocol
(primary-backup)

Reconfiguration protocol
(fault-tolerance)

Vertical Paxos

Programmable
network

Chain replication for the steady state protocol

Nodes are organized in a chain structure

Handle operations:

- Read from the tail

- Write from head to tail

Provide strong consistency and fault tolerance

- Tolerate failures with nodes

- Fault tolerance based on the reconfiguration protocol in Vertical Paxos

f f + 1

47

NetChain overview

48

NetChain challenges

49

How to store and
serve key-value

items?

How to route queries
according to the
chain structure?

How to handle out of
order delivery in the

network?

How to handle
switch failures?

Data plane Control plane

NetChain switch design
Similar to NetCache, except the coordination components

50

NetChain packet format
Application-layer protocol: compatible with existing L2-L4 layers, invoked with a
reserved UDP port

51

UDP is not reliable: upon packet loss, retry! Designing a reliable transport
protocol for in-network computing is still an open challenge!

Source routing

In-network key-value storage

Key-value store in a single switch

- Store and serve key-value items using register arrays

Key-value store in the network

- Data partitioning with consistent hashing and virtual nodes

52

Virtual nodes are mapped to physical nodes (switches) with load balance; keys assigned to
a virtual node are replicated on virtual nodes that do not share physical nodes.f + 1

Use a hash function to hash both the
virtual nodes and the keys to a ring

NetChain routing - write requests
Segment routing according to the chain structure

53

Write from the head and update through the chain until the tail

NetChain routing - read requests

54

Always read from the tail

In case of S2 failure,
S1 will be queried

NetChain out of order delivery

55

W2 arrived before W1: out of order delivery on
the network → inconsistent state

Serialization with sequence number!

NetChain out of order delivery

56

Obsolete updates (with lower
sequence numbers) will be dropped

Handling switch failures

57

Fast failover Failure recovery

• Failover to remaining nodes

• Tolerate failures
• Efficiency: only need to update

neighbor switches of failed switch

f
f − 1

• Add another switch
• Tolerate failures again
• Consistency: two-phase atomic switching
• Minimize disruption: virtual groups

f + 1

Using in-network computing
to accelerate distributed

machine learning

Machine learning in data centers

59

Modern DNNs consist of up to hundreds of layers Typically billions of parameters

Data-parallel distributed machine learning

60

Data partitioned
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

AllReduce (all-to-all communication)

Local gradient

Aggregated gradient

Aggregation (100s of MBs to GBs) has to be performed in every iteration →
Network becomes the bottleneck in the training speed!

Worker

Two existing approaches

61

Parameter server (PS) AllReduce (ring)

The network remains a performance bottleneck in scaling distributed machine learning.

Turn the network into an ML accelerator

62

Send data in
packets

Aggregation on the switch

Data partitioned
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker

Challenges

63

Data partitioned
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker

100s of MBs

100s of KBs

Cannot send the data in full to
the switch for aggregation

Streaming aggregation

64

Data partitioned
across processors

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4Local gradient

Worker

3

3
No.1

No.1 No.1 No.1

No.2No.3

Aggregation slots

Data block 1 has finished aggregation
and has been broadcast to the workers

Data block 2 has been aggregated
and is about to leave the switch

Data block 3 is being streamed to the
switch to take the idle aggregation slot

Questions to think about

How to craft packets to send to the switch for SwitchML?

How much data to send in each packet?

How to perform aggregation on the switch?

- Respecting the Tofino switch register access restrictions

How to ensure reliability?

- Handling packet loss

How to achieve maximum throughput?

- What is the optimal streaming rate? How to calculate it?

65

Lab5: Switches Do Dream of Machine Learning! (+ bonus)

Summary

66

Leverage switches for in-network computing: in-network caching, in-
network coordination, in-network AllReduce

Servers

Programmable
switches

Reading material

67

Our own work on in-network computing

68

NetCL: A Unified Programming Framework for
In-Network Computing

Anonymous Author(s)

Abstract—The emergence of programmable data planes (PDPs)
has paved the way for in-network computing (INC), a paradigm
wherein networking devices actively participate in distributed
computations. However, PDPs are still a niche technology, mostly
available to network operators, and rely on packet-processing
DSLs like P4. This necessitates great networking expertise from
INC programmers to articulate computational tasks in network-
ing terms and reason about their code. To lift this barrier to
INC we propose a unified compute interface for the data plane.
We introduce C/C++ extensions that allow INC to be expressed
as kernel functions processing in-flight messages, and APIs for
establishing INC-aware communication. We develop a compiler
that translates kernels into P4, and thin runtimes that handle
the required network plumbing, shielding INC programmers
from low-level networking details. We evaluate our system using
common INC applications from the literature.

I. INTRODUCTION

The past decade has witnessed a surge of programmable
data plane (PDP) networking devices [31], [37], [53], [80].
PDP devices allow for custom packet processing beyond
traditional protocols, facilitating great networking innova-
tion [8], [15], [16], [49], [66], [73]. Leveraging their high
performance and convenient on-path placement, researchers
have investigated the offloading of computational tasks inside
the network during data movement—a new paradigm known
as in-network computing (INC) [40]. INC has been shown
to reduce communication and improve throughput, latency,
and energy efficiency, in applications like caching [39], [48],
coordination [22], [41], [46], [71], [81], query processing [75],
aggregation [24], [44], [65], [80], and ML inference [63], [78].
As devices become more capable this list is likely to grow.

Despite its successes, INC remains a niche enterprise so
far, only available to networking experts [9], largely due
to its challenging programmability. PDP devices employ
high-performance packet processing chipsets programmed in
domain-specific languages like P4 [11] and NPL [55]. These
languages are based on the match-action abstraction [52]
and expose low-level constructs tailored to network function
development. Imperative code is often not straightforwardly
expressible, adding a significant cognitive burden to “hack”
compute logic into low-level networking terms, resulting in
verbose and hard to reason about code. Moreover, PDP code
is often non-portable [69]. INC programmers not only need to
learn a second language to program the device, and ensure in-
teroperability with the host language but also do it in a target-
specific manner. Finally, due to the absence of data plane
virtualization mechanisms, INC programmers are required to
define the networking behavior of the device, which involves

forwarding decisions that depend on the physical network and
would normally be the operator’s responsibility.

Recent efforts on higher-level PDP abstractions [6], [27],
[33], [68] fall short for INC as they fundamentally focus
on packet processing and protocol handling. Studies specif-
ically addressing INC [79], [84] mostly follow a “bottom-
up" approach, building on primitives tailored towards existing
applications, and do not solve the two-language problem.
The situation resembles the pre-CUDA [57] era of GPGPU
programming with pixel shaders [42]. We believe that if PDP
devices are to serve as compute accelerators, they should
similarly have a compute API.

In the spirit of compute acceleration APIs like CUDA [57]
and OpenCL [70], we propose NetCL, a unified program-
ming framework for INC, based on extending C/C++. NetCL
features a compute-centric model wherein INC is expressed
as kernel functions processing in-flight messages on PDP
devices. NetCL intuitively couples in-network execution with
message passing and offers a declarative API for application-
specific forwarding. Low-level networking details facilitating
communication are handled by NetCL runtime mechanisms
allowing programmers to focus on application logic. In the rest
of the paper, we first present the background on PDP and INC
and motivate our idea (§II). Then, we present NetCL’s design
and workflow (§III), system model (§IV) and programming
model (§V). After that, we discuss the implementation of
NetCL’s compiler targeting Intel Tofino switches and runtime
(§VI), and evaluate our system on a set of representative INC
applications. We conclude with a discussion of limitations
(§VIII), related work (§IX), and final remarks (§X).

II. BACKGROUND AND MOTIVATION

P4 is the leading PDP language, enjoying multi-vendor
adoption [1], [3], [5], [7], [17], [37]. P4 PDPs are pipelines
of packet-processing blocks, as shown in Figure 1. Processing
starts with header parsing, followed by user-defined control
logic to forward a packet. Parsers are programmed as finite
state machines. Control blocks mix imperative code with
match-action tables (MATs). MATs execute code based on
matching conditions over headers and metadata. They com-
pactly express complex if-else chains and usually translate to
hardware-based lookup operations. MATs are runtime recon-
figurable only from the control plane [29].

Central to P4 is the concept of a P4 architecture [19]. This
is vendor-provided code defining each programmable block’s
interface. For instance, Intel’s Tofino Native Architecture
(TNA) [35] offers six programmable blocks. Lines 29-41 of

Next time: network monitoring

69

Monitor

How to achieve fast and accurate network monitoring with programmable data plane?

