Advanced Networked Systems SS24

Network Monitoring

Prof. Lin Wang, Ph.D.

Computer Networks Group
Paderborn University

https://cs.uni-paderborn.de/cn

>
)

https://en.cs.uni-paderborn.de/cn

Network monitoring tasks

Network monitoring is fundamental in network performance optimization and security

Traffic engineering Anomaly detection (DDoS)
Flow size distribution Entropy, traffic changes
Worm detection Accounting

Superspreaders Heavy hitters

Traditional network monitoring

to analyze network traffic

Send (sampled) traffic to a
dedicated network monitor

SNMP, sFlow

ping, traceroute

Use data plane network management
tools like ping/traceroute to diagnose
network issues

Per-packet network monitoring

| visited switch 1 @720ns, In switch 1, | followed rules
switch 7 @1.8us 39 and 102. In switch 9...
Which path did Which rules on the switch

my packet take? did my packet follow?

Who did my packet

e How long did my packet
queue at each switch? share the queue with?

Delay: 100ns, 300ns, Flow 1: src1->dst1,

10200ns... Flow 2: src2->dst2...

How can we obtain such per-packet information in real time?

In-band network telemetry (INT) with programmable data plane

Leverage the programmability of switches to insert monitoring information in the
packet header along the network path

/* INT: add switch id */
action int_set_header_0() {
add_header (int_switch_id_header) ;
modify field(int_switch id header.switch_id,

Use P4 to implement logic on switches to) SR IR
insert the switch ID, the ingress timestamp, e
add_header (int_ingress_tstamp_header) ;
. modify field(int ingress ts header.ingress ts -
the egress time stamp, and queue A?z._mds.c..iig,i:._i.c.m;f;““"- e
information in the packet header. /* TNT: ada egcess sinestan °/

add_header (int_egress_tstamp_header) ;
modify field(int_eg _tstamp_header. _tstamp,

} eg_intr_md_ from _p:rscr_auxquoss_global_tstamp) ;
ETH | IP | TCP
<

Collect network monitoring

Can we monitor the network information from the packet
directly in the data plane? header at the receiver side

Learning objectives

What data structures we typically use for network monitoring?

How to perform heavy hitter detection in the programmable data plane?

What data structures are typically
used for network monitoring?

Membership detection

130.83.164.11
130.83.165.12
130.83.165.24

Access Control List (ACL)

Decides if an IP address
isin the block list

240.0.0.5 — {P1,P3}

240.0.0.6 — {P1,P2}

240.0.0.7 — {P2,P3}
240.0.0.8 — {P1,P2,P3}

o1 P2
P3
P
IP Multicast

Decides if a router port
should replicate a packet

10.0.2.10 — S1
10.0.3.10 — S2
10.0.4.10 — S3

Load Balancer

Decides if a source IP has
been assigned to a server

Trivial solutions

Unordered list: F B u G I C A H

Linear search: O(n) time where n is the number of elements

Ordered list: A B C u F G H I

Binary search: O(log n) time where n is the number of elements

Can we achieve constant time O(1) search?

Hashing

Mapping data (of arbitrary size) to fixed-size values (indices here) with a function,
sometimes also called scattered storage addressing

Original data (keys) F

Hash function h(x)

Hash values/codes

Hash table indexed by hash values

10

Hashing

Mapping data (of arbitrary size) to fixed-size values (indices here) with a function,
sometimes also called scattered storage addressing

Original data (keys) F B D G I C A H

- Constant time: O(1), only computing a function

- Can perform actions like add(x), find(x), and sometimes also delete(x)

- Simple, easy to implement

Hash values/codes

Hash table indexed by hash values

n

Hash collision

Describes the case where multiple data entries are mapped to the same hash value

Leta=0,b=1c=2,..
Hash function: h(data) = (§ characters) mod table_size
table_size: size of the hash table

Keys “Cab” “bea” “bad” “Cba” “abC”

Hash function h(data)

Collision
/

Hash table 0 1 2 3 4

How can we solve or mitigate this issue?

12

Properties of good hash functions

Must return numbers: {0...., table_size}

Must be deterministic: always returns the same value for the same key

Should be efficiently computable: O(1) time hash
keys function hashes
: 00
Should not waste space unnecessarily: JoNISIE 01
- Forevery index, there is at least one key that hashes to it Lisa Smith E
04
- Load factor lambda = (# of keys) / table_size Sam Doe =
Sandra Dee '
15

Should minimize collisions: keys are nicely spread out

13

Handling hash collisions

Designing a data structure that can resolve hash collisions

foo
O ** as **> foo ** bar — 0] as
1 *> with 1 foo >
2 °** link 2
3 ** int ** char 3

Open addressing (linear/quadratic

S te chaini
eparate chaining probing/cuckoo hashing)

14

Separate chaining

Creating a list of keys that map to the same hash value

O *— as ** foo ** bar

— with

— h(x)

/)

2 *— link

Still needs a good hash
function to spread out the keys 3 e— int ** char

A list of keys maintained in a
linked list for each hash value

What are the consequences to the hashing performance?

15

Separate chaining

Creating a list of keys that map to the same hash value

O *— as ** foo ** bar

— with

— h(x)

/)

2 *— link

Still needs a good hash
function to spread out the keys 3 e— int ** char

A list of keys maintained in a
linked list for each hash value

Lookup time: average case O(N/table_size), worse case O(N)
(N is the total number of keys)

16

Open addressing

bar

1 foo
>
2 bar
3
4

Linear probing (offset =1, 2, 3,..)

bar

1 foo
2 link
3
4

Quadratic probing (offset = 1,4,9,..)

17

Open addressing: linear probing

Probing with a linear offset: 1, 2, 3,...

Insertion Lookup
insert(link) find(link)
— 0] as 0] as X
> — >
1 foo > 1 foo ZX
: N E
3 3
4 4
Upon collision, inset(x) finds the first Keep checking from h(x) until x is found in the
slot after h(x) that is empty and hash table; does not exist if hitting an empty
inserts x in that slot slot before x is found

How to handle delete(x) operations? 8

Handling deletion operations in linear probing

0] as 0] as
delete(bar) delete(bar)
— 1 foo — 1 foo
2 * 2
3 int 3 int
4 char 4 char

Is this correct?

19

Handling deletion operations in linear probing

Assume h(char) =1

0] as
find(char)
- 1 foo
) Does not exit!
2
3 int

4 The key "char" actually exists!

Problem: there are dependencies in locating the different keys in the hash table

20

Handling deletion operations in linear probing

Assume h(char) =1

0] as
find(char)
— 1 foo
2 X
3 int
4 char

Maintain a flag of “deleted” for the emptied slots; adds in lookup time overhead

21

Handling deletion operations in linear probing

0] as 0] as 0] as
delete(bar) delete(bar) delete(bar)
- 1 foo — 1 foo — 1 foo
: > I > -
3 int 3 int 3 int
4 char 4 4 char —
Probe linearly to find the Delete the target; keep probing and find a Move the found key
slot containing the target key that is movable to the empty slot to the empty slot

T

Repeat the process until an empty slot is hit

What defined a slot movable?

22

Handling deletion operations in linear probing

0] as 0] as as
delete(bar) delete(bar) delete(bar)

E— 1 foo — 1 foo — 1 foo

A slot is movable if the key contained in that slot has a hash value smaller

than or equal to the hash value of the deletion target.

4 char 4 4 char —
Probe linearly to find the Delete the target; keep probing and find a Move the found key
slot containing the target key that is movable to the empty slot to the empty slot

T

Repeat the process until an empty slot is hit

What defined a slot movable?

23

Open addressing: quadratic probing

Probing with a quadratic offset: 1, 4, 9,...

Insertion Lookup
insert(link) find(link)
— 0 as — 0 as X
1 foo 1 foo X
2 2
3 3
: :
Upon collision, inset(x) finds the first slot Keep checking from h(x) with a quadratic offset
after h(x) that is empty with a quadratic until x is found in the hash table; does not exist
offset and inserts x in that slot if hitting an empty slot before x is found

24

Open addressing: cuckoo hashing

Pushing other keys to a different location upon collisions

Cuckoo Hashing

Rasmus Pagh‘

BI{ICS’, Department of Compuler Science, Aarhus University
Ny Munkegade Bldg. 540, DK 8000 Arhus €, Denmark.
E-mail: paghfidaimi.an.dk
and

Flemming Friche Rodlert
ESA 2001
Test-of-Time Award 2020 _

ing the theoretical ;;erfurxnauce of the classic dynamic perfect he;shing scheme
of Dietzfelbi et al. (Dy perfect hashing: Upper and lower bounds.

SIAM J. Comprut., 25(4):788-761, 1994). The space usage is similar Lo that
of binary search trees, i.e., three words per key on average.

Besides being conceptually much simpler than previous dynamic dictionaries
with worst case constant lookup time, our data structure is interesting in that
it does not use perfect hashing, but rather a variant of open addressing where
keys can be moved back in their probe sequences.

The name is derived from the behavior of some species of cuckoo, where the

cuckoo chick pushes the other eggs or young out of the nest when it hatches.

25

Cuckoo hashing

Using two hash functions to generate two possible slots for each key

insert(bar)

[
»

h1(foo) =1, h2(foo) = 4, h1(bar) =1, h2(bar) = 5

as _ 0] as
insert(bar)
foo X > 1 bar foo —
Collision detected 2
3
5 foo is pushed to the slot
computed from the second
6 hash function

26

Cuckoo hashing implementation

Typically using two separate hash tables, each indexed by one hash function

h1(foo) =1, h2(foo) = 4, hi(as) = 0, h2(as) = 4, hi(bar) =1, h2(bar) = 5

0 as 0]
insert(bar)
> 1 foo 1
2 2
3 3
4 > 4 foo
5 5

27

Cuckoo hashing operations

Insertion takes more time than lookup and deletion

h1(foo) =1, h2(foo) = 4, h1(as) = 0, h2(as) = 4, hi(bar) =1, h2(bar) = 5, hi(char) = 0, h2(char) = 2

insert(char) > o) as —] o)
1 @ bar 1
2 2
3 3
4 4 ’ foo
6 6

Insertion time worse case O(N), lookup time O(1), deletion time O(1)

28

Membership determination with hashing

Assume we do not have enough space to store all the keys, but we
want to answer membership determination queries

Hash value Binary indicator
Is x in a given set? 0 — 0
— h(x)] e > 0
\ —
3 ° > 0
4 > O

Set the binary indicator to 1 at insertion; return true if the binary indicator is 1 at lookup.

29

False positive rate analysis

Assume we have in total N keys and we use a hash table of M slots

Probability of a key Probability of a key Probability of a slot to o
: : : : False positive rate
mapped into a — not mapped intoa —* be O afterinserting N —>
: : (FPR): 1-(1-1/M)AN
particular slot: 1/M particular slot: 1-1/M keys: (1-1/M)AN
of keys # of slots FPR
1000 10,000 9.5%
1000 100,000 1%

Roughly 100x number of slots is required to have an FPR lower than 1%.

30

Bloom filter

Typically using multiple hash functions to lower collision rate

insert(x)

/

h1(x)

h2(x)

Hash value Binary indicator
o ——
>< 1 - > 0
. ——H
3 ° > 0
4 ° > 0

31

Bloom filter: insertion and lookup

Setting the binary indicators corresponding to the hash values from the input to1if O

Insertion
h1(x) 0

h2(x)

oo o — I
insert(x) 1 *— O
— il

find(y)
find(2) <

Can we delete a key from the Bloom filter?

32

Bloom filter: insertion and lookup

Setting the binary indicators corresponding to the hash values from the input to1if O

Insertion

h1(x) 0
o

insert(x) 1 *— O

\ find(y)
h2(x)
2 ._>- find(z) <

A basic Bloom filter does not support deletion since

the indicators may be shared by other keys.

33

False positive rate analysis

Assume we have N keys and we use a Bloom filter of M slots with K hash functions

Probability of a key Probability of a key Probability of a slot to be O -
False positive rate

mapped intoa —* not mapped intoa —* after inserting N keys each —* (FPR): (1-(1-1/M)KN)K

particular slot: 1/M particular slot: 1-1/M with K hashes: (1-1/M)kN
of keys # of slots # of hash functions FPR
1000 10,000 7 0.82%
1000 100,000 7 =0%

Consumes almost 10x less space than the single-hash case, but
requires slightly more computation for the operations.

34

How to efficiently count the
occurrences for a large set of elements?

Example: heavy hitter detection

Detecting the top-K flows (in terms of traffic volume, #packets) that have passed through a given router

A flow is defined by a 5-tuple: <src_ip, dst—ip, src_port, dst_port, protocol>

B2 Me3
Bso P42

[[
» »

There could be
1000s of flows

Routers are resource-limited, so creating
counters for each separate flow is not scalable.

36

Counting Bloom filter

Extension to Bloom filter that can count the occurrences of keys

Hash value Counter Hash value Counter
insert(x) | ——» 5 read(x) 1 ——— 5 min(4,2) =

M\AZ n }(XR;2

3 > 1
4 *—— O 4

Lookup the counters corresponding to the
hash values with the minimum count

Increment the counters
corresponding to the hash values

Is the count always correct? If not, what guarantees do we have?

2

37

Counting Bloom filter

Extension to Bloom filter that can count the occurrences of keys

Hash value Counter Hash value Counter

I o) 0
insert(x) 1 read(x) : min(4,2) =
h2(x h2(x
Increment the counters Lookup the counters corresponding to the
corresponding to the hash values hash values with the minimum count

2

38

Count-min sketch

A slight improvement to the counting Bloom filter

h3(x)
insert(x) 200
. - . o — I
h1(x)
> 2 2 ——>p 6 2 *——>» O

Three hash functions are performed, each mapped to an array of counters (hash tables).

Count-min sketch

Incrementing the counters for the computed hash values

insert(x)

h1(x)

v

hily) >

insert(y) ——

h2(x)

v

h3(x)

h2(y)

h3(y)

<

40

Count-min sketch

How to read the count from the count-min sketch?

h3(x)
read(z) h200

ol | e

‘| ——>p l) ‘| ——» 6
h1(x)
2 *——>p 13 2 *——> 6
4 —> 3 — 4
Perform the same hash functions on

all the arrays and obtain minimum
of all the counters as output

> min(7,8,5) =5+

41

Count-min sketch

How to read the count from the count-min sketch?

h3(x)

read(z)

A count-min sketch cannot ensure correctness; the countis an

upper-bound of the actual count.

Perform the same hash functions on

all the arrays and obtain minimum > min(7,8,5) =5+
of all the counters as output

42

How to perform heavy hitter detection
in programmable data plane?

Heavy hitters

Network flows that are larger (in number of packets or bytes) than a fraction t of the
total packets seen on the link or the top k flows by size

Flow-1: 1750
Flow is defined by combinations of packet Flow-2:1320
header fields, e.g., 5-tuple (src_ip, dst_ip, Flow-3: 800

src_port, dst_port, protocol). Number of flows could be

EE

Challenge: finer-grained flows — larger size and number of keys = more

tens of thousands and higher

bits to represent the key and more entries to track

44

Design goals and constraints

Accuracy: false positives (reporting a non-heavy flow as heavy), false negatives (not
reporting a heavy flow), error in estimating the sizes of heavy flows

Overhead: total amount of memory for the data structure, the number of matching
stages uses in the switch pipeline

45

Existing solutions

Monitor

sFlow/NetFlow

Packet sampling: use aggressive
flow sampling range (1% or 0.01%)
— low accuracy

hi(value)

value h2(value) d

hy(value)

Streaming algorithms: use count-
min / count sketches = does not
track flow entities

46

Can we simply use O(k) counters?

Assume we aim to obtain the top-k heavy flows

Top-5 Top-5
Flow-8 122 Flow-8 122
Flow-1 94 2 packets from Flow-1 94
Actual count, .
Flow-7 73 Flow-9 arrive Flow-7 73
tracked
Flow-2 69 > Flow-2 69
Flow-4 47 Flow-4 a7 | IFleRES s ae
in top-5 instead
Flow-9 48

of Flow-4

Actual count,
not tracked

The space-saving algorithm

A counter-based algorithm that uses O(k) counters to track k heavy flows

Flow-8 122
Flow-1 94
Top-5 1 packet from Flow-7 73+1
Flow-7 arrives
Flow-8 122 _ Flow-2 69
Actual Flow-1 94 Flow-4 47
count, Flow-7 73
tracked 1 packet from
Flow-2 69) Flow-8 122
Flow-9 arrives
Flow-4 47 , Flow-1 94
Flow-7 73
Flow-2 69
Flow-9 47+1

48

Properties of the space-saving algorithm

Flow-8
Flow-1
Flow-7
Flow-2
Flow-4

122
94
73
69
47

Property 1: no flow counter in the table is ever underestimated,
l.e,, c_j <=val_]

Property 2: the minimum value in the table val_ris an upper
bound on the overestimation error of any counter, e.g., val_j <=
c—j+val_r.

Property 3: any flow with true count higher than the average
table count, i.e, c_j >= C/m >= val_min will always be present in
the table (C is the total packet count added into the table, m is
the number of entries in the table)

Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi. Efficient computation of frequent and top-k elements in data streams.
International Conference on Database Theory (ICDT), 2005.

49

Implementing the space-saving algorithm on switches

Flow-8
Flow-1
Flow-7
Flow-2
Flow-4

122
94
73
69
47

If the flow has appeared in the table: hash to the
flow key and increment the corresponding counter.

If the flow is not contained in the table: find the
minimum counter in the table, replace the key with
the current flow key, and increment the counter

How to find the minimum counter in the table?

50

Recall the RMT architecture

ouT

Queues

Josiedaq

£ 1444444

lapeay 19)oed

=

()

folt)}

8

wn

(QV|

()

fol})}

8

n
HERREEN

uo11oY .

_ . D

©

a|gel yolew &
lapeay 19)0ed

lasied sajgewweigolid

IN

Data

51

Implementation challenges

If the flow has appeared in the table: hash to the

Flow-8 122 . .
flow key and increment the corresponding counter.
Flow-1 94
Flow-7 73
If the flow is not contained in the table: find the
Flow-2 69 o . .
minimum counter in the table, replace the key with
AU, 47 the current flow key, and increment the counter

Sorted linked list or priority queue — hard to maintain on switches

Read k locations, and write back to one location = multiple memory access

52

Optimization with sampling

Flow-8 122 Flow-8 122
h h
/ Flow-1 94 / Flow-1 94
h_2 —
Flow-7 —* Flow-7 73 Flow-3 — > Flow-7 73
Flow-2 69 S Flow-2 69
e :
Flow-4 47 Flow-3 47+1
If the flow key appears in one of the Otherwise, choose the smallest counter
hashed locations, increment the among the d positions, and replace the
corresponding counter. key and increment the counter.

Number of memory reads: d, number of memory writes: 1

53

Optimization with multi-stages

Split the counter table into d stages and read only once per stage

First pass through all stages to identify the minimum counter

Flow-7 Flow-7 h_2 Flow-7

11
"
11

Second pass to update the counter with the minimum count

Second pass — packet recirculation for every packet = the bandwidth is halved

54

HashPipe: feed-forward packet processing

Two key ideas: tracking a rolling minimum and always inserting in the first stage

Stage 1 Stage 2 Stage 3

Packet with key K (A, 5) (E,3) (. 4)
=) (F.15) (. 3)

(C, 6) (G, 25) (L, 10)

(D, 10) (H, 100) (M, 9)

First stage: if key K is a match (or the slot is empty), increment the counter and
finish processing; otherwise, always insert the new key with count 1 at the hashed
location and carry the old one with the metadata to the next stage

Always insert in the first stage ensures that some duplicate keys can be merged in later stages

55

HashPipe: feed-forward packet processing

Two key ideas: tracking a rolling minimum and always inserting in the first stage

Packet with key K (A.5) (B, 4) (I,4)

» (K, 1) » (F,15) (, 3)

(C, 6) (G, 25) (L,10)

(D, 10) (H, 100) (M, 9)

Later stages: compare the counter at the hashed position (with the key from
the metadata) and the counter from the metadata, replace the key-counter in
the table if the one carried in the metadata is larger

56

HashPipe: feed-forward packet processing

Two key ideas: tracking a rolling minimum and always inserting in the first stage

Stage 1 Stage 2 Stage 3

Packet with key K (A, 5) (B, 4) (E, 3) (1, 4)

» (K, 1) (F, 15) » U, 3)
(C.6) (G, 25)

(D, 10) (H,100) (M, 9)

Later stages: compare the counter at the hashed position (with the key from
the metadata) and the counter from the metadata, replace the key-counter in
the table if the one carried in the metadata is larger

57

HashPipe: feed-forward packet processing

Two key ideas: tracking a rolling minimum and always inserting in the first stage

Stage 1 Stage 2 Stage 3

(A, 5) (B, 4) (I, 4)
(K, 1) (F, 15) (J, 3)
(C, 6) (G, 25) (L, 10)
(D, 10) (H, 100) (M, 9)

Last stage: evict a relatively small flow

58

HashPipe implemented in P4

All required functionalities are supported in P4
Register arrays

Packet
metadata

New key K (A, 5) (K1, 4) (K2, 3) (G, 4)
» » (D, 15) »
o o

Hash on (C, 10) (F, 100) (1,9)
packet header

Stage 2

Stage 3

Conditional updates to
compute minimum

59

Sketch-based network

Heavy-Hitter Detection Entirely in the Data Plane

Vibhaalakshmi

Sivaraman
Princeton University

S. Muthukrishnan

Rutgers University

ABSTRACT

Identifying the “heavy hitter” flows or flows with large
traffic volumes in the data plane is important for several
applications e.g., flow-size awnre routing, DoS detec-
tion, and traffic ineeri

in the data plane is constramed by the need for line-
rate processing (at 10-100Gb/s) and limited memory in
mtchmg hardwm We propose Huhl’\pe. a heavy hn-
ter d ithm using

data planes. HashPlpe mplements a p\pelme of hash
tables which retain counters for heavy flows while evict-
ing lighter flows over time. We prototype HashPipe in P4
and evaluate it with packet traces from an ISP backbone
link and a data center. On the ISP trace (which contains
over 400,000 flows), we find that HashPipe identifies
95% of the 300 heaviest flows with less than 80KB of
memory.

Srinivas Narayana
MIT CSAIL

Ori Rottenstreich
Princeton University

Jennifer Rexford
Princeton University

variations [1, 5]) can enable dynamic routing of heavy
flows [16, 35] and dynamic flow scheduling [41].

It is desirable to run heavy-hitter monitoring at all
switches in the network all the time, to respond quickly
to sh traffic Can packets belonging to
heavy flows be identified as the packets are processed in
the switch, so that switches may treat them spedially?

Existing approaches to momtonng heavy items ma.ke
it hard to achieve y at
overheads (§2.2). While packet sampling in the form of
NetFlow [] ls widely dcpluyed lhz CPU and band-
width ds of p g d packets in soft-
ware make it infeasibl loumplcll ficiently high
rates (sampling just 1 in 1000 packets is common in
practice [17]). An al is to use sketches, eg.
[14, 24, 25, 45] that hash and count all packets in switch
hardware. However, these systems incur a large memory
overhead to retrieve the heavy hitters — ideally, we wish

monitoring

One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

Zaoxing Liu', Antonis Manousis*, Gregory Vorsanger!, V'

Sekar*, Vladimir Bravermant

yas
1 Johns Hopkins University - Carnegle Mellon University

ABSTRACT

Network management requires accurate estimates of met-
nies for many applications including traffic engineering (e.g.,
heavy hittors), anomaly detoction {c.g., cntropy of saurce
addresses), and security (e.g., DTNS detection). Oh
ing accurate estimates givea router CPU and memoey con-
straints is & challenging problem, Existing approaches fall
in ane of two undesirable extremes: (1) low fidelity gencral-
purpose appeoaches such as sampling. or (2) high fidelity
but complex algorithms customized o specitic application:
level metrics, Tdeally, a solution shauld be bath genersl
e,
parsble 1w cuuum algocithms. This paper preseats Univ-
Mow, & framework for flow moniodng whlch leverages re-
cenl theorelcal advances and demoestrates that it is possible
10 ackieve both generality and high accuracy. UnivMon uses
a0 applicato-agnostic dita plane monitoring primitive; dit-
ferent fand possibly unfoeesocn) estimsstion algorithens run
in the control plane, and use the statistics from te data plane
10 compute applicaton-level metrics. We peeseot a proot-
af-concept itmplementation of UnisMon using P4 snd de-
velop simple coordination fechriques Lo provide a “one-big-
swilch”™ sbstraction for network-wide monitoring. We eval-
uale the effectivensss of UnivMon using o range of trce-
driven evaluations and show thit it offers comparable (and
sometimes betler) sccuracy relalive 1o custom sketching so-
lutions across & range of monitocing tasks.

1 Introduction

Netwark management is multi faceted and encompasses a
range of tasks including traffic engineering [11.32], attack
and unomaly detection [£9), and farensic aralysis [46). Each
such management task requires accurate and timely statis-
tics on different application level metrics of interest; e.g.. the
flaw size distribution [37], beavy hitters [10], entropy mea-
sures [38,50], or desecting changes in traffic patterns [44).
At high level, there sre two classes of lechaigues o estis
mate these metrics of interest, The fisst clisss of spprusches
relies oa gemeric flow monitoring, typically with some form
af packet sampling (e.g., NetFlow [25]). While generic flaw
manituring is good for coamse-grained visibility, price work
hass shown that it provides low aceuracy foe mare fine-grained
metrics [30,31,43). These well-known limitations of sam-
pling motivated =n sllemative cluss of technigues bsed on
sketching ve streaming algorichms. Tere, custam online -
gosithms and data structures are designed for specific met-

rics of isterest that can yield provable resource-accuracy trade-

offs (e.g., [17,18,20,31,36,38,43]).

While the body of woek in dats srcuming and sketching
has made significant contribuations, we angve that this trajec-
tory of crafting special-purpose algorithms is unterable in
1 o b Ax the namber of moitocing Lasks grows, diis
entails significant investment in algorithm design and hard-
ware suppart for new metrcs of inferest. While recent tools
kkOptlﬁkzuﬁ I"IINH!S(.R.EAM Nllprmndt Iih lkl

SketchLib: Enabling Efficient Sketch-based Monitoring on
Programmable Switches

Hun Namkung®, Zaoxing Liu’, Daehyeok Kim*!, Vyas Seh:‘ Pelcr Steenkiste®

*Carnegie Mellon

*Boston

Abstract
Sketching algorithms or sketches enable accurate network
measurement results with low resource footprints. While
emerging programmable switches are an aitractive target to
get these benefits, curreat implementations of sketches are
cither incflicical and/or infeasible on hardware. Our contri-
butions in the paper are: (1) systematically analyzing the re-
of

open challenge. For example, off-the-shelf sketch implemen-
tations often cannot run with the desired accuracy levels due
to insufficient hardware rescurces (see §3). Indoed, some pro-
posed sketches (6.2, [41]) arc infeasible as implemented. or
cven if they are feasible, consume significant resources.
Even if more hardware resources may become available,
50 100 do eperators’ demands of in-switch applications, ard

source isting skeich i ions in hard-

ware: (2) identifying practical and cormect-by-Construction op-

timzation techniques 10 tackle the identified bottlenecks; and

(3) designing an easy-to-use library called SketchLib to help

d«m efficiently 'lwlsml their sketch algorithms in
o bea -

hh it from th

Our evaluati of-th
SkeschLib redeces the hardware resource loapnll wpw m
without impacting fidelity.
1 Introduction
The ability to monitor network traffic is necessary for var-
ious network managemeat tasks such os traffic emgineer-
ing. anomaly detection, load balancing, and resource pro-
visioning (10, 13,27,29,43,45, 54). In this respect, recent
developments in programmable switches and attendant lan-
guages 19, 14]) make it possidle 10 support richer fine-grained
and real-time moaitonng capabilities.

With this network programmability, sketch-based moni-

torine hae emerved as a neomisine altemative to traditional

the med by sketches will be unavailable for
other switch functions. Thus, it is essential to explore if, and
how, we can efficienty realize sketch-based telemetry on pro-
grammable switches, This is the central question that this
paper tackles. Specifically, we focus on programmuble hard.
ware switches based on the Recoafigarable Match-Action
Tebles (RMT) paradigm [1].

We icentify and analyze four key resource battlenecks for
realizing sketches on RMT switch hardware:

® Hash calls: Sketches make & number of counter updates
based on independent hash functions. requiring a large
number of hash calls in hardware.

* Memory accesses: Skeiches need 10 access on-chip mem-
ory (e.g.. SRAM) for coanter updates, but the number of
memory accesses per packet is limited in hardware.

o Pipeline stages: Some sketches need to select a subset
of counter srrays for coanter updates (23,37, 41). How-
ever, implementing this naively caa cause a long chain of
sequeatial computation dependencics which stresses the

60

Summary

Monitor

Network monitoring: typical data structures for network monitoring, heavy
hitter detection in programmable data plane

61

Next time: network function virtualization

/> <> <>
Routing Firewall NAT

How to implement network functions in software running
on commodity servers?

62

Lab5 introduction

network.py

Controller

P4Runtime p4/main.pa

Host 1 Host 2 Host 3

worker.py

63

Lab5 introduction

[1.2]

Host 1

Vectors [1,2,1,3,2,3,1,1]

Agg. results

T

[3.4]

Host 2

[3,4,2’3,1 ,4,2’3]

Host 3

[2,2,1 ,1 ,3’2,1 ,3]

Three levels: (1) Ethernet frames, (2) UDP sockets, (3) UDP sockets with reliability

64

Call for SHKs (TAs and RAs)

SHKs for teaching SHKs for research
- WS24/25: Computer Networks - Both short-term and long-term projects
- SS25: Advanced Networked Systems - Topics
- One year contract, 6.5 hours per week - In-network aggregation for ML
- Tasks: handling exercises + Q&A - TinyML: LLM on tiny devices
- Requirements - Tasks
- Interests in networking - Lab testbed setup
- Good grades in CN and ANS - Experiments
_ Reliable - Your own ideas/research

Email your CV + transcripts (lin.wang@upb.de)

65

mailto:lin.wang@upb.de

