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Network monitoring tasks
Network monitoring is fundamental in network performance optimization and security
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Traffic engineering 

Flow size distribution

Anomaly detection (DDoS) 

Entropy, traffic changes

Worm detection 

Superspreaders

Accounting 

Heavy hitters



Traditional network monitoring
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Monitor

ping, traceroute

SNMP, sFlow

Use data plane network management 
tools like ping/traceroute to diagnose 

network issues

Send (sampled) traffic to a 
dedicated network monitor 
to analyze network traffic



Per-packet network monitoring
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Which path did 
my packet take?

Which rules on the switch 
did my packet follow?

How long did my packet 
queue at each switch?

Who did my packet 
share the queue with?

1 2

3 4

I visited switch 1 @720ns, 
switch 7 @1.8us

In switch 1, I followed rules 
39 and 102. In switch 9…

Delay: 100ns, 300ns, 
10200ns…

Flow 1: src1->dst1, 
Flow 2: src2->dst2…

How can we obtain such per-packet information in real time?



In-band network telemetry (INT) with programmable data plane
Leverage the programmability of switches to insert monitoring information in the 
packet header along the network path
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Use P4 to implement logic on switches to 
insert the switch ID, the ingress timestamp, 

the egress time stamp, and queue 
information in the packet header.

Collect network monitoring 
information from the packet 
header at the receiver side

ETH IP TCP INT

Can we monitor the network 
directly in the data plane?



Learning objectives
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How to perform heavy hitter detection in the programmable data plane?

What data structures we typically use for network monitoring?



What data structures are typically 
used for network monitoring?



Membership detection
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130.83.164.11 
130.83.165.12 
130.83.165.24 

…

Access Control List (ACL)

P1
P2

P3

P4

240.0.0.5 → {P1,P3} 
240.0.0.6 → {P1,P2} 
240.0.0.7 → {P2,P3} 

240.0.0.8 → {P1,P2,P3}

IP Multicast Load Balancer

10.0.2.10 → S1 
10.0.3.10 → S2 
10.0.4.10 → S3

Decides if an IP address 
is in the block list

Decides if a router port 
should replicate a packet

Decides if a source IP has 
been assigned to a server



Trivial solutions
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F B D G I C A HUnordered list: 

Ordered list: A B C D F G H I

Linear search:  time where  is the number of elementsO(n) n

Binary search:  time where  is the number of elementsO(log n) n

Can we achieve constant time  search?O(1)



Hashing
Mapping data (of arbitrary size) to fixed-size values (indices here) with a function, 
sometimes also called scattered storage addressing
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F B D G I C A H

A B C D F G H I

1 2 3 4 5 6 7 8

Hash values/codes

Hash function h(x)

Original data (keys)

Hash table indexed by hash values



Hashing
Mapping data (of arbitrary size) to fixed-size values (indices here) with a function, 
sometimes also called scattered storage addressing
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F B D G I C A H

A B C D F G H I

1 2 3 4 5 6 7 8

Hash values/codes

Hash function h(x)

Original data (keys)

Hash table indexed by hash values

- Constant time: , only computing a function 
- Can perform actions like add(x), find(x), and sometimes also delete(x) 
- Simple, easy to implement

O(1)



Hash collision
Describes the case where multiple data entries are mapped to the same hash value
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Let a = 0, b = 1, c = 2, … 
Hash function: h(data) = (∑ characters) mod table_size 
table_size: size of the hash table

1 2 3 40

“cab” “bea” “bad” “cba” “abc”Keys

Hash function h(data)

Hash table

Collision

How can we solve or mitigate this issue? 



Properties of good hash functions

Must return numbers: {0,…, table_size} 

Must be deterministic: always returns the same value for the same key 

Should be efficiently computable:  time 

Should not waste space unnecessarily:  

- For every index, there is at least one key that hashes to it 

- Load factor lambda = (# of keys) / table_size 

Should minimize collisions: keys are nicely spread out

O(1)
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Handling hash collisions
Designing a data structure that can resolve hash collisions
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0 as foo bar

1

2

3

with

link

int char

Separate chaining

0 as

1

2

3

foo

foo

Open addressing (linear/quadratic 
probing/cuckoo hashing)



Separate chaining
Creating a list of keys that map to the same hash value

15

0 as foo bar

1

2

3

with

link

int char

A list of keys maintained in a 
linked list for each hash value

h(x)

Still needs a good hash 
function to spread out the keys

What are the consequences to the hashing performance?



Separate chaining
Creating a list of keys that map to the same hash value
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0 as foo bar

1

2

3

with

link

int char

A list of keys maintained in a 
linked list for each hash value

h(x)

Still needs a good hash 
function to spread out the keys

Lookup time: average case , worse case  
(  is the total number of keys)

O(N/table_size) O(N )
N



Open addressing
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0 as

1

2

3

foo

bar
0 as

1

2

3

foo

bar

bar

44 bar

Linear probing (offset = 1, 2, 3,…) Quadratic probing (offset = 1, 4, 9,…)

link



Open addressing: linear probing
Probing with a linear offset: 1, 2, 3,…
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0 as

1

2

3

foo

insert(link)

link

4

Upon collision, inset(x) finds the first 
slot after  that is empty and 

inserts  in that slot
h(x)

x

Insertion

0 as

1

2

3

foo

find(link)

link

4

Keep checking from  until  is found in the 
hash table; does not exist if hitting an empty 

slot before  is found

h(x) x

x

Lookup

How to handle delete(x) operations?



Handling deletion operations in linear probing
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0 as

1

2

3

foo
delete(bar)

bar

4

int

char

0 as

1

2

3

foo
delete(bar)

4

int

char

Is this correct?



Handling deletion operations in linear probing
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0 as

1

2

3

foo
find(char)

4

int

char

Does not exit!

Problem: there are dependencies in locating the different keys in the hash table

Assume h(char) = 1

The key "char" actually exists!



Handling deletion operations in linear probing
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0 as

1

2

3

foo
find(char)

4

int

char

Maintain a flag of “deleted” for the emptied slots; adds in lookup time overhead

Assume h(char) = 1



Handling deletion operations in linear probing
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delete(bar) delete(bar) delete(bar)

Probe linearly to find the 
slot containing the target

Delete the target; keep probing and find a 
key that is movable to the empty slot

Move the found key 
to the empty slot

Repeat the process until an empty slot is hitWhat defined a slot movable?

0 as

1

2

3

foo

bar

4

int

char

0 as

1

2

3

foo

4

int

char

0 as

1

2

3

foo

4

int

char

char



Handling deletion operations in linear probing
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delete(bar) delete(bar) delete(bar)

Probe linearly to find the 
slot containing the target

Delete the target; keep probing and find a 
key that is movable to the empty slot

Move the found key 
to the empty slot

Repeat the process until an empty slot is hitWhat defined a slot movable?

0 as

1

2

3

foo

bar

4

int

char

0 as

1

2

3

foo

4

int

char

0 as

1

2

3

foo

4

int

char

charA slot is movable if the key contained in that slot has a hash value smaller 
than or equal to the hash value of the deletion target.



Open addressing: quadratic probing
Probing with a quadratic offset: 1, 4, 9,…
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0 as

1

2

3

foo

insert(link)

4 link

0 as

1

2

3

foo

find(link)

4 link

Insertion Lookup

Upon collision, inset(x) finds the first slot 
after  that is empty with a quadratic 

offset and inserts  in that slot
h(x)

x

Keep checking from  with a quadratic offset 
until  is found in the hash table; does not exist 

if hitting an empty slot before  is found

h(x)
x

x



Open addressing: cuckoo hashing
Pushing other keys to a different location upon collisions
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The name is derived from the behavior of some species of cuckoo, where the 
cuckoo chick pushes the other eggs or young out of the nest when it hatches.

ESA 2001 
Test-of-Time Award 2020



Cuckoo hashing
Using two hash functions to generate two possible slots for each key
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0

1

2

3

4

5

6

as

foo

h1(foo) = 1, h2(foo) = 4, h1(bar) = 1, h2(bar) = 5

insert(bar)

Collision detected

as

bar
insert(bar)

foo

foo is pushed to the slot 
computed from the second 

hash function

foo

0

1

2

3

4

5

6



Cuckoo hashing implementation
Typically using two separate hash tables, each indexed by one hash function

27

as

foo

h1(foo) = 1, h2(foo) = 4, h1(as) = 0, h2(as) = 4, h1(bar) = 1, h2(bar) = 5

insert(bar)
bar

foo

0

1

2

3

4

5

6

0

1

2

3

4

5

6



Cuckoo hashing operations
Insertion takes more time than lookup and deletion
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as

bar

foo

insert(char) char

as

foo

bar

Insertion time worse case , lookup time , deletion time O(N ) O(1) O(1)

0

1

2

3

4

5

6

0

1

2

3

4

5

6

h1(foo) = 1, h2(foo) = 4, h1(as) = 0, h2(as) = 4, h1(bar) = 1, h2(bar) = 5, h1(char) = 0, h2(char) = 2



Membership determination with hashing
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0 0

1

2

3

0

1

4

0

0

Hash value Binary indicator

h(x)

Set the binary indicator to 1 at insertion; return true if the binary indicator is 1 at lookup.

Is  in a given set?x

YES

Assume we do not have enough space to store all the keys, but we 
want to answer membership determination queries



False positive rate analysis
Assume we have in total N keys and we use a hash table of M slots
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Probability of a key 
mapped into a 

particular slot: 1/M

Probability of a key 
not mapped into a 

particular slot: 1-1/M

Probability of a slot to 
be 0 after inserting N 

keys: (1-1/M)^N

False positive rate 
(FPR): 1-(1-1/M)^N

# of keys # of slots FPR

1000

1000

10,000

100,000

9.5%

1%

Roughly 100x number of slots is required to have an FPR lower than 1%.



Bloom filter
Typically using multiple hash functions to lower collision rate
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0 1

1

2

3

0

1

4

0

0

Hash value Binary indicator

h1(x)

h2(x)

insert(x)

…



Bloom filter: insertion and lookup
Setting the binary indicators corresponding to the hash values from the input to 1 if 0

32

insert(x)

h1(x)

h2(x)
find(y)

Can we delete a key from the Bloom filter?

Insertion Lookup

find(z)

0 1

1

2

3

0

1

4

0

0

0 1

1

2

3

0

1

4

1

0



Bloom filter: insertion and lookup
Setting the binary indicators corresponding to the hash values from the input to 1 if 0

33

insert(x)

h1(x)

h2(x)
find(y)

Insertion Lookup

find(z)

0 1

1

2

3

0

1

4

0

0

0 1

1

2

3

0

1

4

1

0

A basic Bloom filter does not support deletion since 
the indicators may be shared by other keys.



False positive rate analysis
Assume we have N keys and we use a Bloom filter of M slots with K hash functions
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Probability of a key 
mapped into a 

particular slot: 1/M

Probability of a key 
not mapped into a 

particular slot: 1-1/M

Probability of a slot to be 0 
after inserting N keys each 

with K hashes: (1-1/M)KN

False positive rate 
(FPR): (1-(1-1/M)KN)K

# of keys # of slots FPR

1000

1000

10,000

100,000

0.82%

≈0%

# of hash functions

7

7

Consumes almost 10x less space than the single-hash case, but 
requires slightly more computation for the operations.



How to efficiently count the 
occurrences for a large set of elements?



Example: heavy hitter detection
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121
89

63
42

A flow is defined by a 5-tuple: <src_ip, dst_ip, src_port, dst_port, protocol>

Routers are resource-limited, so creating 
counters for each separate flow is not scalable.

There could be 
1000s of flows

Detecting the top-K flows (in terms of traffic volume, #packets) that have passed through a given router



Counting Bloom filter
Extension to Bloom filter that can count the occurrences of keys
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0 3+1

1

2

3

5

1+1

4

1

0

insert(x)

h1(x)

h2(x)

Hash value Counter

0 4

1

2

3

5

2

4

1

0

read(x)

h1(x)

h2(x)

Hash value Counter

Is the count always correct? If not, what guarantees do we have?

min(4,2) = 2

Increment the counters 
corresponding to the hash values

Lookup the counters corresponding to the 
hash values with the minimum count



Counting Bloom filter
Extension to Bloom filter that can count the occurrences of keys
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0 3+1

1

2

3

5

1+1

4

1

0

insert(x)

h1(x)

h2(x)

Hash value Counter

0 4

1

2

3

5

2

4

1

0

read(x)

h1(x)

h2(x)

Hash value Counter

min(4,2) = 2

Increment the counters 
corresponding to the hash values

Lookup the counters corresponding to the 
hash values with the minimum count

A counting Bloom filter cannot ensure correctness; the count is 
an upper-bound of the actual count.



Count-min sketch
A slight improvement to the counting Bloom filter
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0 7

1

2

3

5

9

4

1

3

0 4

1

2

3

5

6

4

1

8

0 3

1

2

3

5

0

4

4

3

insert(x)
h3(x)

h2(x)

h1(x)

Three hash functions are performed, each mapped to an array of counters (hash tables).



Count-min sketch
Incrementing the counters for the computed hash values
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0 7

1

2

3

5

9+1

4

1+1

3

0 4

1

2

3

5+1

6

4

1+1

8

0 3+1+1

1

2

3

5

0

4

4

3

insert(x)
h3(x)

h2(x)

h1(x)

insert(y)

h1(y)

h2(y) h3(y)



Count-min sketch
How to read the count from the count-min sketch?
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0 7

1

2

3

5

10

4

1

3

0 4

1

2

3

6

6

4

2

8

0 5

1

2

3

5

0

4

4

3

read(z)
h3(x)

h2(x)

h1(x)

min(7, 8, 5) = 5
Perform the same hash functions on 
all the arrays and obtain minimum 

of all the counters as output



Count-min sketch
How to read the count from the count-min sketch?
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0 7

1

2

3

5

10

4

1

3

0 4

1

2

3

6

6

4

2

8

0 5

1

2

3

5

0

4

4

3

read(z)
h3(x)

h2(x)

h1(x)

min(7, 8, 5) = 5
Perform the same hash functions on 
all the arrays and obtain minimum 

of all the counters as output

A count-min sketch cannot ensure correctness; the count is an 
upper-bound of the actual count.



How to perform heavy hitter detection 
in programmable data plane?



Heavy hitters
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Flow-1: 1750 
Flow-2: 1320 
Flow-3: 800 

…

Flow is defined by combinations of packet 
header fields, e.g., 5-tuple (src_ip, dst_ip, 

src_port, dst_port, protocol).

Challenge: finer-grained flows → larger size and number of keys → more 
bits to represent the key and more entries to track

Number of flows could be 
tens of thousands and higher

Network flows that are larger (in number of packets or bytes) than a fraction t of the 
total packets seen on the link or the top k flows by size



Design goals and constraints
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Accuracy: false positives (reporting a non-heavy flow as heavy), false negatives (not 
reporting a heavy flow), error in estimating the sizes of heavy flows

Overhead: total amount of memory for the data structure, the number of matching 
stages uses in the switch pipeline



Existing solutions
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Monitor 

sFlow/NetFlow

Packet sampling: use aggressive 
flow sampling range (1% or 0.01%) 

→ low accuracy

Streaming algorithms: use count-
min / count sketches → does not 

track flow entities



Can we simply use O(k) counters?
Assume we aim to obtain the top-k heavy flows
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Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Flow-9 46

Flow-3 31

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Flow-9 48

Flow-3 31

2 packets from 
Flow-9 arrive

Actual count, 
not tracked

Actual count, 
tracked

Flow-9 should be 
in top-5 instead 

of Flow-4



The space-saving algorithm
A counter-based algorithm that uses O(k) counters to track k heavy flows

48

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Actual 
count, 

tracked 1 packet from 
Flow-9 arrives

Flow-1

Flow-8

Flow-7

Flow-2

Flow-9

122

94

73

69

47+1

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73+1

69

47

1 packet from 
Flow-7 arrives



Properties of the space-saving algorithm

49
Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi. Efficient computation of frequent and top-k elements in data streams. 
International Conference on Database Theory (ICDT), 2005.

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Property 1: no flow counter in the table is ever underestimated, 
i.e., c_j <= val_j 

Property 2: the minimum value in the table val_r is an upper 
bound on the overestimation error of any counter, e.g., val_j <= 
c_j + val_r. 

Property 3: any flow with true count higher than the average 
table count, i.e., c_j >= C/m >= val_min will always be present in 
the table (C is the total packet count added into the table, m is 
the number of entries in the table)

Flow-9 46

Flow-3 31



Implementing the space-saving algorithm on switches
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If the flow has appeared in the table: hash to the 
flow key and increment the corresponding counter.

If the flow is not contained in the table: find the 
minimum counter in the table, replace the key with 

the current flow key, and increment the counter

How to find the minimum counter in the table?

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Flow-9 46

Flow-3 31



Recall the RMT architecture
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Implementation challenges
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Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

If the flow has appeared in the table: hash to the 
flow key and increment the corresponding counter.

If the flow is not contained in the table: find the 
minimum counter in the table, replace the key with 

the current flow key, and increment the counter

Read k locations, and write back to one location → multiple memory access

Sorted linked list or priority queue → hard to maintain on switches



Optimization with sampling
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Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Flow-7

h_1

h_2

h_d

Flow-1

Flow-8

Flow-7

Flow-2

Flow-3

122

94

73

69

47+1

Flow-3

h_1

h_2

h_d

If the flow key appears in one of the 
hashed locations, increment the 

corresponding counter.

Otherwise, choose the smallest counter 
among the d positions, and replace the 

key and increment the counter.

Number of memory reads: d, number of memory writes: 1



Optimization with multi-stages
Split the counter table into d stages and read only once per stage

54

Flow-7
h_1

Flow-7 h_2 Flow-7

h_d

First pass through all stages to identify the minimum counter

Second pass to update the counter with the minimum count

Second pass → packet recirculation for every packet → the bandwidth is halved



HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

55

First stage: if key K is a match (or the slot is empty), increment the counter and 
finish processing; otherwise, always insert the new key with count 1 at the hashed 

location and carry the old one with the metadata to the next stage

Always insert in the first stage ensures that some duplicate keys can be merged in later stages

Stage 1

(A, 5)

(B, 4)

(C, 6)

(D, 10)

Stage 2

(E, 3)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K



HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

56

Later stages: compare the counter at the hashed position (with the key from 
the metadata) and the counter from the metadata, replace the key-counter in 

the table if the one carried in the metadata is larger

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(E, 3)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K (B, 4)



HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

57

Later stages: compare the counter at the hashed position (with the key from 
the metadata) and the counter from the metadata, replace the key-counter in 

the table if the one carried in the metadata is larger

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(B, 4)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K (E, 3)



HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

58

Last stage: evict a relatively small flow

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(B, 4)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)



HashPipe implemented in P4
All required functionalities are supported in P4

59

Stage 1

(A, 5)

(K1, 4)

(B, 6)

(C, 10)

Stage 2

(K2, 3)

(D, 15)

(E, 25)

(F, 100)

Stage 3

(G, 4)

(H, 3)

(K3, 10)

(I, 9)

New key K (K1, 4)

Hash on 
packet header

Conditional updates to 
compute minimum

Packet 
metadata

Register arrays



Sketch-based network monitoring

60



Summary

61

Network monitoring: typical data structures for network monitoring, heavy 
hitter detection in programmable data plane

Monitor



Next time: network function virtualization 

62

Routing Firewall NAT

How to implement network functions in software running 
on commodity servers?



Lab5 introduction
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P4 switch

Host 1 Host 2 Host 3

P4Runtime

Controller

network.py

worker.py

p4/main.p4



Lab5 introduction
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P4 switch

Host 1 Host 2 Host 3

[1,2,1,3,2,3,1,1] [3,4,2,3,1,4,2,3] [2,2,1,1,3,2,1,3]

[1,2] [3,4] [2,2]

[6,8]

[6,8]

[6,8]

[6,8,0,0,0,0,0,0] [6,8,0,0,0,0,0,0] [6,8,0,0,0,0,0,0]

Vectors

Agg. results

Three levels: (1) Ethernet frames, (2) UDP sockets, (3) UDP sockets with reliability



SHKs for research 

- Both short-term and long-term projects 

- Topics 

- In-network aggregation for ML 

- TinyML: LLM on tiny devices 

- Tasks 

- Lab testbed setup 

- Experiments  

- Your own ideas/research

Call for SHKs (TAs and RAs)

SHKs for teaching 

- WS24/25: Computer Networks 

- SS25: Advanced Networked Systems 

- One year contract, 6.5 hours per week 

- Tasks: handling exercises + Q&A 

- Requirements 

- Interests in networking 

- Good grades in CN and ANS 

- Reliable
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Email your CV + transcripts (lin.wang@upb.de)

mailto:lin.wang@upb.de

