
Advanced Networked Systems SS24
Network Monitoring

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://cs.uni-paderborn.de/cn

https://en.cs.uni-paderborn.de/cn

Network monitoring tasks
Network monitoring is fundamental in network performance optimization and security

2

Traffic engineering

Flow size distribution

Anomaly detection (DDoS)

Entropy, traffic changes

Worm detection

Superspreaders

Accounting

Heavy hitters

Traditional network monitoring

3

Monitor

ping, traceroute

SNMP, sFlow

Use data plane network management
tools like ping/traceroute to diagnose

network issues

Send (sampled) traffic to a
dedicated network monitor
to analyze network traffic

Per-packet network monitoring

4

Which path did
my packet take?

Which rules on the switch
did my packet follow?

How long did my packet
queue at each switch?

Who did my packet
share the queue with?

1 2

3 4

I visited switch 1 @720ns,
switch 7 @1.8us

In switch 1, I followed rules
39 and 102. In switch 9…

Delay: 100ns, 300ns,
10200ns…

Flow 1: src1->dst1,
Flow 2: src2->dst2…

How can we obtain such per-packet information in real time?

In-band network telemetry (INT) with programmable data plane
Leverage the programmability of switches to insert monitoring information in the
packet header along the network path

5

Use P4 to implement logic on switches to
insert the switch ID, the ingress timestamp,

the egress time stamp, and queue
information in the packet header.

Collect network monitoring
information from the packet
header at the receiver side

ETH IP TCP INT

Can we monitor the network
directly in the data plane?

Learning objectives

6

How to perform heavy hitter detection in the programmable data plane?

What data structures we typically use for network monitoring?

What data structures are typically
used for network monitoring?

Membership detection

8

130.83.164.11
130.83.165.12
130.83.165.24

…

Access Control List (ACL)

P1
P2

P3

P4

240.0.0.5 → {P1,P3}
240.0.0.6 → {P1,P2}
240.0.0.7 → {P2,P3}

240.0.0.8 → {P1,P2,P3}

IP Multicast Load Balancer

10.0.2.10 → S1
10.0.3.10 → S2
10.0.4.10 → S3

Decides if an IP address
is in the block list

Decides if a router port
should replicate a packet

Decides if a source IP has
been assigned to a server

Trivial solutions

9

F B D G I C A HUnordered list:

Ordered list: A B C D F G H I

Linear search: time where is the number of elementsO(n) n

Binary search: time where is the number of elementsO(log n) n

Can we achieve constant time search?O(1)

Hashing
Mapping data (of arbitrary size) to fixed-size values (indices here) with a function,
sometimes also called scattered storage addressing

10

F B D G I C A H

A B C D F G H I

1 2 3 4 5 6 7 8

Hash values/codes

Hash function h(x)

Original data (keys)

Hash table indexed by hash values

Hashing
Mapping data (of arbitrary size) to fixed-size values (indices here) with a function,
sometimes also called scattered storage addressing

11

F B D G I C A H

A B C D F G H I

1 2 3 4 5 6 7 8

Hash values/codes

Hash function h(x)

Original data (keys)

Hash table indexed by hash values

- Constant time: , only computing a function
- Can perform actions like add(x), find(x), and sometimes also delete(x)
- Simple, easy to implement

O(1)

Hash collision
Describes the case where multiple data entries are mapped to the same hash value

12

Let a = 0, b = 1, c = 2, …
Hash function: h(data) = (∑ characters) mod table_size
table_size: size of the hash table

1 2 3 40

“cab” “bea” “bad” “cba” “abc”Keys

Hash function h(data)

Hash table

Collision

How can we solve or mitigate this issue?

Properties of good hash functions

Must return numbers: {0,…, table_size}

Must be deterministic: always returns the same value for the same key

Should be efficiently computable: time

Should not waste space unnecessarily:

- For every index, there is at least one key that hashes to it

- Load factor lambda = (# of keys) / table_size

Should minimize collisions: keys are nicely spread out

O(1)

13

Handling hash collisions
Designing a data structure that can resolve hash collisions

14

0 as foo bar

1

2

3

with

link

int char

Separate chaining

0 as

1

2

3

foo

foo

Open addressing (linear/quadratic
probing/cuckoo hashing)

Separate chaining
Creating a list of keys that map to the same hash value

15

0 as foo bar

1

2

3

with

link

int char

A list of keys maintained in a
linked list for each hash value

h(x)

Still needs a good hash
function to spread out the keys

What are the consequences to the hashing performance?

Separate chaining
Creating a list of keys that map to the same hash value

16

0 as foo bar

1

2

3

with

link

int char

A list of keys maintained in a
linked list for each hash value

h(x)

Still needs a good hash
function to spread out the keys

Lookup time: average case , worse case
(is the total number of keys)

O(N/table_size) O(N)
N

Open addressing

17

0 as

1

2

3

foo

bar
0 as

1

2

3

foo

bar

bar

44 bar

Linear probing (offset = 1, 2, 3,…) Quadratic probing (offset = 1, 4, 9,…)

link

Open addressing: linear probing
Probing with a linear offset: 1, 2, 3,…

18

0 as

1

2

3

foo

insert(link)

link

4

Upon collision, inset(x) finds the first
slot after that is empty and

inserts in that slot
h(x)

x

Insertion

0 as

1

2

3

foo

find(link)

link

4

Keep checking from until is found in the
hash table; does not exist if hitting an empty

slot before is found

h(x) x

x

Lookup

How to handle delete(x) operations?

Handling deletion operations in linear probing

19

0 as

1

2

3

foo
delete(bar)

bar

4

int

char

0 as

1

2

3

foo
delete(bar)

4

int

char

Is this correct?

Handling deletion operations in linear probing

20

0 as

1

2

3

foo
find(char)

4

int

char

Does not exit!

Problem: there are dependencies in locating the different keys in the hash table

Assume h(char) = 1

The key "char" actually exists!

Handling deletion operations in linear probing

21

0 as

1

2

3

foo
find(char)

4

int

char

Maintain a flag of “deleted” for the emptied slots; adds in lookup time overhead

Assume h(char) = 1

Handling deletion operations in linear probing

22

delete(bar) delete(bar) delete(bar)

Probe linearly to find the
slot containing the target

Delete the target; keep probing and find a
key that is movable to the empty slot

Move the found key
to the empty slot

Repeat the process until an empty slot is hitWhat defined a slot movable?

0 as

1

2

3

foo

bar

4

int

char

0 as

1

2

3

foo

4

int

char

0 as

1

2

3

foo

4

int

char

char

Handling deletion operations in linear probing

23

delete(bar) delete(bar) delete(bar)

Probe linearly to find the
slot containing the target

Delete the target; keep probing and find a
key that is movable to the empty slot

Move the found key
to the empty slot

Repeat the process until an empty slot is hitWhat defined a slot movable?

0 as

1

2

3

foo

bar

4

int

char

0 as

1

2

3

foo

4

int

char

0 as

1

2

3

foo

4

int

char

charA slot is movable if the key contained in that slot has a hash value smaller
than or equal to the hash value of the deletion target.

Open addressing: quadratic probing
Probing with a quadratic offset: 1, 4, 9,…

24

0 as

1

2

3

foo

insert(link)

4 link

0 as

1

2

3

foo

find(link)

4 link

Insertion Lookup

Upon collision, inset(x) finds the first slot
after that is empty with a quadratic

offset and inserts in that slot
h(x)

x

Keep checking from with a quadratic offset
until is found in the hash table; does not exist

if hitting an empty slot before is found

h(x)
x

x

Open addressing: cuckoo hashing
Pushing other keys to a different location upon collisions

25

The name is derived from the behavior of some species of cuckoo, where the
cuckoo chick pushes the other eggs or young out of the nest when it hatches.

ESA 2001
Test-of-Time Award 2020

Cuckoo hashing
Using two hash functions to generate two possible slots for each key

26

0

1

2

3

4

5

6

as

foo

h1(foo) = 1, h2(foo) = 4, h1(bar) = 1, h2(bar) = 5

insert(bar)

Collision detected

as

bar
insert(bar)

foo

foo is pushed to the slot
computed from the second

hash function

foo

0

1

2

3

4

5

6

Cuckoo hashing implementation
Typically using two separate hash tables, each indexed by one hash function

27

as

foo

h1(foo) = 1, h2(foo) = 4, h1(as) = 0, h2(as) = 4, h1(bar) = 1, h2(bar) = 5

insert(bar)
bar

foo

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Cuckoo hashing operations
Insertion takes more time than lookup and deletion

28

as

bar

foo

insert(char) char

as

foo

bar

Insertion time worse case , lookup time , deletion time O(N) O(1) O(1)

0

1

2

3

4

5

6

0

1

2

3

4

5

6

h1(foo) = 1, h2(foo) = 4, h1(as) = 0, h2(as) = 4, h1(bar) = 1, h2(bar) = 5, h1(char) = 0, h2(char) = 2

Membership determination with hashing

29

0 0

1

2

3

0

1

4

0

0

Hash value Binary indicator

h(x)

Set the binary indicator to 1 at insertion; return true if the binary indicator is 1 at lookup.

Is in a given set?x

YES

Assume we do not have enough space to store all the keys, but we
want to answer membership determination queries

False positive rate analysis
Assume we have in total N keys and we use a hash table of M slots

30

Probability of a key
mapped into a

particular slot: 1/M

Probability of a key
not mapped into a

particular slot: 1-1/M

Probability of a slot to
be 0 after inserting N

keys: (1-1/M)^N

False positive rate
(FPR): 1-(1-1/M)^N

of keys # of slots FPR

1000

1000

10,000

100,000

9.5%

1%

Roughly 100x number of slots is required to have an FPR lower than 1%.

Bloom filter
Typically using multiple hash functions to lower collision rate

31

0 1

1

2

3

0

1

4

0

0

Hash value Binary indicator

h1(x)

h2(x)

insert(x)

…

Bloom filter: insertion and lookup
Setting the binary indicators corresponding to the hash values from the input to 1 if 0

32

insert(x)

h1(x)

h2(x)
find(y)

Can we delete a key from the Bloom filter?

Insertion Lookup

find(z)

0 1

1

2

3

0

1

4

0

0

0 1

1

2

3

0

1

4

1

0

Bloom filter: insertion and lookup
Setting the binary indicators corresponding to the hash values from the input to 1 if 0

33

insert(x)

h1(x)

h2(x)
find(y)

Insertion Lookup

find(z)

0 1

1

2

3

0

1

4

0

0

0 1

1

2

3

0

1

4

1

0

A basic Bloom filter does not support deletion since
the indicators may be shared by other keys.

False positive rate analysis
Assume we have N keys and we use a Bloom filter of M slots with K hash functions

34

Probability of a key
mapped into a

particular slot: 1/M

Probability of a key
not mapped into a

particular slot: 1-1/M

Probability of a slot to be 0
after inserting N keys each

with K hashes: (1-1/M)KN

False positive rate
(FPR): (1-(1-1/M)KN)K

of keys # of slots FPR

1000

1000

10,000

100,000

0.82%

≈0%

of hash functions

7

7

Consumes almost 10x less space than the single-hash case, but
requires slightly more computation for the operations.

How to efficiently count the
occurrences for a large set of elements?

Example: heavy hitter detection

36

121
89

63
42

A flow is defined by a 5-tuple: <src_ip, dst_ip, src_port, dst_port, protocol>

Routers are resource-limited, so creating
counters for each separate flow is not scalable.

There could be
1000s of flows

Detecting the top-K flows (in terms of traffic volume, #packets) that have passed through a given router

Counting Bloom filter
Extension to Bloom filter that can count the occurrences of keys

37

0 3+1

1

2

3

5

1+1

4

1

0

insert(x)

h1(x)

h2(x)

Hash value Counter

0 4

1

2

3

5

2

4

1

0

read(x)

h1(x)

h2(x)

Hash value Counter

Is the count always correct? If not, what guarantees do we have?

min(4,2) = 2

Increment the counters
corresponding to the hash values

Lookup the counters corresponding to the
hash values with the minimum count

Counting Bloom filter
Extension to Bloom filter that can count the occurrences of keys

38

0 3+1

1

2

3

5

1+1

4

1

0

insert(x)

h1(x)

h2(x)

Hash value Counter

0 4

1

2

3

5

2

4

1

0

read(x)

h1(x)

h2(x)

Hash value Counter

min(4,2) = 2

Increment the counters
corresponding to the hash values

Lookup the counters corresponding to the
hash values with the minimum count

A counting Bloom filter cannot ensure correctness; the count is
an upper-bound of the actual count.

Count-min sketch
A slight improvement to the counting Bloom filter

39

0 7

1

2

3

5

9

4

1

3

0 4

1

2

3

5

6

4

1

8

0 3

1

2

3

5

0

4

4

3

insert(x)
h3(x)

h2(x)

h1(x)

Three hash functions are performed, each mapped to an array of counters (hash tables).

Count-min sketch
Incrementing the counters for the computed hash values

40

0 7

1

2

3

5

9+1

4

1+1

3

0 4

1

2

3

5+1

6

4

1+1

8

0 3+1+1

1

2

3

5

0

4

4

3

insert(x)
h3(x)

h2(x)

h1(x)

insert(y)

h1(y)

h2(y) h3(y)

Count-min sketch
How to read the count from the count-min sketch?

41

0 7

1

2

3

5

10

4

1

3

0 4

1

2

3

6

6

4

2

8

0 5

1

2

3

5

0

4

4

3

read(z)
h3(x)

h2(x)

h1(x)

min(7, 8, 5) = 5
Perform the same hash functions on
all the arrays and obtain minimum

of all the counters as output

Count-min sketch
How to read the count from the count-min sketch?

42

0 7

1

2

3

5

10

4

1

3

0 4

1

2

3

6

6

4

2

8

0 5

1

2

3

5

0

4

4

3

read(z)
h3(x)

h2(x)

h1(x)

min(7, 8, 5) = 5
Perform the same hash functions on
all the arrays and obtain minimum

of all the counters as output

A count-min sketch cannot ensure correctness; the count is an
upper-bound of the actual count.

How to perform heavy hitter detection
in programmable data plane?

Heavy hitters

44

Flow-1: 1750
Flow-2: 1320
Flow-3: 800

…

Flow is defined by combinations of packet
header fields, e.g., 5-tuple (src_ip, dst_ip,

src_port, dst_port, protocol).

Challenge: finer-grained flows → larger size and number of keys → more
bits to represent the key and more entries to track

Number of flows could be
tens of thousands and higher

Network flows that are larger (in number of packets or bytes) than a fraction t of the
total packets seen on the link or the top k flows by size

Design goals and constraints

45

Accuracy: false positives (reporting a non-heavy flow as heavy), false negatives (not
reporting a heavy flow), error in estimating the sizes of heavy flows

Overhead: total amount of memory for the data structure, the number of matching
stages uses in the switch pipeline

Existing solutions

46

Monitor

sFlow/NetFlow

Packet sampling: use aggressive
flow sampling range (1% or 0.01%)

→ low accuracy

Streaming algorithms: use count-
min / count sketches → does not

track flow entities

Can we simply use O(k) counters?
Assume we aim to obtain the top-k heavy flows

47

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Flow-9 46

Flow-3 31

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Flow-9 48

Flow-3 31

2 packets from
Flow-9 arrive

Actual count,
not tracked

Actual count,
tracked

Flow-9 should be
in top-5 instead

of Flow-4

The space-saving algorithm
A counter-based algorithm that uses O(k) counters to track k heavy flows

48

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Top-5

Actual
count,

tracked 1 packet from
Flow-9 arrives

Flow-1

Flow-8

Flow-7

Flow-2

Flow-9

122

94

73

69

47+1

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73+1

69

47

1 packet from
Flow-7 arrives

Properties of the space-saving algorithm

49
Ahmed Metwally, Divyakant Agrawal, Amr El Abbadi. Efficient computation of frequent and top-k elements in data streams.
International Conference on Database Theory (ICDT), 2005.

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Property 1: no flow counter in the table is ever underestimated,
i.e., c_j <= val_j

Property 2: the minimum value in the table val_r is an upper
bound on the overestimation error of any counter, e.g., val_j <=
c_j + val_r.

Property 3: any flow with true count higher than the average
table count, i.e., c_j >= C/m >= val_min will always be present in
the table (C is the total packet count added into the table, m is
the number of entries in the table)

Flow-9 46

Flow-3 31

Implementing the space-saving algorithm on switches

50

If the flow has appeared in the table: hash to the
flow key and increment the corresponding counter.

If the flow is not contained in the table: find the
minimum counter in the table, replace the key with

the current flow key, and increment the counter

How to find the minimum counter in the table?

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Flow-9 46

Flow-3 31

Recall the RMT architecture

51

Pr
og

ra
m

m
ab

le
 p

ar
se

r

D
ep

ar
se

r

Match-
action
stage

Match-
action
stage

Match-
action
stage

Stage 1 Stage 2 Stage N

Data

Queues

OUTIN

…

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

Pa
ck

et
 h

ea
de

r

M
at

ch
 t

ab
le

Ac
ti

on

M
at

ch
 t

ab
le

Ac
ti

on

M
at

ch
 t

ab
le

Ac
ti

on

Implementation challenges

52

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

If the flow has appeared in the table: hash to the
flow key and increment the corresponding counter.

If the flow is not contained in the table: find the
minimum counter in the table, replace the key with

the current flow key, and increment the counter

Read k locations, and write back to one location → multiple memory access

Sorted linked list or priority queue → hard to maintain on switches

Optimization with sampling

53

Flow-1

Flow-8

Flow-7

Flow-2

Flow-4

122

94

73

69

47

Flow-7

h_1

h_2

h_d

Flow-1

Flow-8

Flow-7

Flow-2

Flow-3

122

94

73

69

47+1

Flow-3

h_1

h_2

h_d

If the flow key appears in one of the
hashed locations, increment the

corresponding counter.

Otherwise, choose the smallest counter
among the d positions, and replace the

key and increment the counter.

Number of memory reads: d, number of memory writes: 1

Optimization with multi-stages
Split the counter table into d stages and read only once per stage

54

Flow-7
h_1

Flow-7 h_2 Flow-7

h_d

First pass through all stages to identify the minimum counter

Second pass to update the counter with the minimum count

Second pass → packet recirculation for every packet → the bandwidth is halved

HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

55

First stage: if key K is a match (or the slot is empty), increment the counter and
finish processing; otherwise, always insert the new key with count 1 at the hashed

location and carry the old one with the metadata to the next stage

Always insert in the first stage ensures that some duplicate keys can be merged in later stages

Stage 1

(A, 5)

(B, 4)

(C, 6)

(D, 10)

Stage 2

(E, 3)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K

HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

56

Later stages: compare the counter at the hashed position (with the key from
the metadata) and the counter from the metadata, replace the key-counter in

the table if the one carried in the metadata is larger

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(E, 3)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K (B, 4)

HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

57

Later stages: compare the counter at the hashed position (with the key from
the metadata) and the counter from the metadata, replace the key-counter in

the table if the one carried in the metadata is larger

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(B, 4)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

Packet with key K (E, 3)

HashPipe: feed-forward packet processing
Two key ideas: tracking a rolling minimum and always inserting in the first stage

58

Last stage: evict a relatively small flow

Stage 1

(A, 5)

(K, 1)

(C, 6)

(D, 10)

Stage 2

(B, 4)

(F, 15)

(G, 25)

(H, 100)

Stage 3

(I, 4)

(J, 3)

(L, 10)

(M, 9)

HashPipe implemented in P4
All required functionalities are supported in P4

59

Stage 1

(A, 5)

(K1, 4)

(B, 6)

(C, 10)

Stage 2

(K2, 3)

(D, 15)

(E, 25)

(F, 100)

Stage 3

(G, 4)

(H, 3)

(K3, 10)

(I, 9)

New key K (K1, 4)

Hash on
packet header

Conditional updates to
compute minimum

Packet
metadata

Register arrays

Sketch-based network monitoring

60

Summary

61

Network monitoring: typical data structures for network monitoring, heavy
hitter detection in programmable data plane

Monitor

Next time: network function virtualization

62

Routing Firewall NAT

How to implement network functions in software running
on commodity servers?

Lab5 introduction

63

P4 switch

Host 1 Host 2 Host 3

P4Runtime

Controller

network.py

worker.py

p4/main.p4

Lab5 introduction

64

P4 switch

Host 1 Host 2 Host 3

[1,2,1,3,2,3,1,1] [3,4,2,3,1,4,2,3] [2,2,1,1,3,2,1,3]

[1,2] [3,4] [2,2]

[6,8]

[6,8]

[6,8]

[6,8,0,0,0,0,0,0] [6,8,0,0,0,0,0,0] [6,8,0,0,0,0,0,0]

Vectors

Agg. results

Three levels: (1) Ethernet frames, (2) UDP sockets, (3) UDP sockets with reliability

SHKs for research

- Both short-term and long-term projects

- Topics

- In-network aggregation for ML

- TinyML: LLM on tiny devices

- Tasks

- Lab testbed setup

- Experiments

- Your own ideas/research

Call for SHKs (TAs and RAs)

SHKs for teaching

- WS24/25: Computer Networks

- SS25: Advanced Networked Systems

- One year contract, 6.5 hours per week

- Tasks: handling exercises + Q&A

- Requirements

- Interests in networking

- Good grades in CN and ANS

- Reliable

65

Email your CV + transcripts (lin.wang@upb.de)

mailto:lin.wang@upb.de

