
Advanced Networked Systems SS24
Host Networking

Prof. Lin Wang, Ph.D.
Computer Networks Group
Paderborn University
https://cs.uni-paderborn.de/cn

This material is (partially) inspired by the slides from Mina Tahmasbi Arashloo (University of Waterloo)

https://en.cs.uni-paderborn.de/cn

Learning objectives

2

How to make the Linux kernel programmable for networking?

Why and how to offload to NIC?

How not to use the Linux kernel for networking?

Network programmability on end hosts

3

Programmability inside the network via
SDN and P4 programmable data planes

Network stack for preparing and
processing packets at the end hosts

End-host network stack

4

Physical

Data link

Network

Transport

Application

CPU

NIC

Division of labor

5

Physical

Data link

Network

Transport

Application

CPU

NIC

On packet transmit (egress):
- The host CPU generates packets on

application request
- Packets are sent to the NIC over PCIe
- The NIC transforms packets to bits and

then over the link

Division of labor

6

Physical

Data link

Network

Transport

Application

CPU

NIC

On packet receive (ingress):
- The NIC turns bits into packets
- Packets are sent to the host over PCIe
- The host CPU processes packets and

delivers them to applications

Division of labor

7

Physical

Data link

Network

Transport

Application

CPU

NIC

Fixed-function hardware

General-purpose processor
running software

Simple, does not
change often

Complicated,
changes frequently

Can CPU keep up with the NIC, i.e., process packets at line rate in reasonsable #cycles?

Network Interface Card (NIC)

Limits of software packet processing

9

Single-core
throughput in Mpps

Line rate

For min-sized packets

For max-sized packets

CPU cycles per packet

The rate at which the
NIC can pump the data

onto the link

Limits of software packet processing

10

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

Line rate for all
packet sizes

Line rate for some
packet sizes

Not line rate for
any packet sizes

The rate at which the
NIC can pump the data

onto the link

Limits of software packet processing

11

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

Line rate has been
increasing to 100-400 Gbps

Limits of software packet processing

12

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

If CPUs stays the same, we could do less
processing per-packet at line rate

Line rate has been
increasing to 100-400 Gbps

Limits of software packet processing

13

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

CPUs are getting better too,
but not as fast

If CPUs stays the same, we could do less
processing per-packet at line rate

Line rate has been
increasing to 100-400 Gbps

Limits of software packet processing

14

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

CPUs are getting better too,
but not as fast

If CPUs stays the same, we could do less
processing per-packet at line rate

Line rate has been
increasing to 100-400 Gbps

Why?

Limits of software packet processing

15

Single-core
throughput in Mpps

CPU cycles per packet

Line rate

CPUs are getting better too,
but not as fast

If CPUs stays the same, we could do less
processing per-packet at line rate

Line rate has been
increasing to 100-400 Gbps

Physical limits of the semiconductor
technologies: end of Moore's law and

Dennard scaling

What options do we have?

16

Processor
Takes over part (or even all) of packet
processing that is currently done by CPUs

What options do we have?

17

Processor
Takes over part (or even all) of packet
processing that is currently done by CPUs

Hardware Accelerator, specialized for network processing

What options do we have?

18

Processor
Takes over part (or even all) of packet
processing that is currently done by CPUs

Hardware Accelerator, specialized for network processing

Programmable Customizable offloading (what and how)

What options do we have?

19

Processor
Takes over part (or even all) of packet
processing that is currently done by CPUs

Hardware Accelerator, specialized for network processing

Programmable Customizable offloading (what and how)

On the NIC Co-locating with the NIC provides extra benefits

SmartNICs

20

A regular NIC
Programmable domain-

specific hardware

Field Programmable Gate Arrays (FPGA)
Multi-Core Systems on Chip (SoC)

P4-programmable pipelines
Or combinations of the above...

FPGA-based SmartNICs

FPGA

- A collection of small reconfigurable logic and memory
blocks

- Programmers can write code to assemble these blocks
to perform desired processing

Why good for SmartNIC?

- FPGA hardware resources (logic and memory) can be
highly customized for the intended computation

- Good fit for highly-parallelizable computation

21https://www.xilinx.com/products/boards-and-kits/alveo/u25.html

https://www.xilinx.com/products/boards-and-kits/alveo/u25.html

Why not creating our own NIC or switches to support in-network computing?

SoC-based SmartNICs

SoC

- A “small” computer on a single chip

- Includes (light-weight) processing cores and a
memory hierarchy

Why good for SmartNIC?

- Programming model is close to software

- Cores (and the architecture) can be specialized for
network processing

23https://www.nvidia.com/en-us/networking/products/data-processing-unit/

https://www.nvidia.com/en-us/networking/products/data-processing-unit/

FPGA vs SoC

25

FPGA SoC

Hardware
architecture

Programming
model

Performance

Reconfigurable hardware
and therefore can be highly

customized for the intended
packet processing

The cores’ instruction set and
memory architecture are fixed

and are therefore less
customizable

Hardware description languages
(e.g., Verilog) → hard to program

C-like languages →
easier to program

High throughput, low
latency

Lower throughput,
higher latency

Notes on SmartNIC

SmartNICs can (and do) have fixed-function blocks

- These blocks are optimized hardware implementations of common packet processing functionality:
encryption, hashing, certain common protocols

A fully ASIC-based NIC can still be considered a SmartNIC

- As long as it supports more complex functionality than a traditional NIC

In industry, SmartNICs have various names

- Nvidia Bluefield Data Processing Unit (DPU), Intel Infrastructure Processing Unit (IPU)

- A combination of FPGAs, SoCs, P4 programmable pipelines, fixed function accelerators

26

What can we do with SmartNICs?

27

Physical

Data link

Network

Transport

Application

We can move the line for the division of labor

Physical

Data link

Network

Transport

Application

Physical

Data link

Network

Transport

Application

Physical

Data link

Network

Transport

Application

TCP Offload Engine (ToE)IPSec, tunneling In-network computing

Programming abstractions for SmartNICs

There is such a wider range of functionality people can and are interested in
implementing on the NICs

There are many different SmartNIC architectures

- FPGAs, different kinds of SoCs, P4 pipelines, fixed-function blocks, combinations of these

Do we keep P4 and rely on architectures and their externs for all the extra functionality?

- There are efforts on creating a portable NIC architecture in p4.org

How do we partition/distribute the functionality over different kinds of hardware? What
is the best offloading strategy?

28

http://p4.org

Kernel Packet Processing

The Linux kernel network stack (simplified)

30

Physical

Data link

Network

Transport

Application

CPU

NIC

Uses system calls to create sockets,
write data to them to send to another

end-point, read the received data.

The Linux kernel network stack (simplified)

31

Physical

Data link

Network

Transport

Application

CPU

NIC

Breaks up the socket data into
segments, adds the transport layer

header, e.g., TCP and UDP.

The Linux kernel network stack (simplified)

32

Physical

Data link

Network

Transport

Application

CPU

NIC

Turns segments into packets and adds
the network layer header, e.g., IP.

The Linux kernel network stack (simplified)

33

Physical

Data link

Network

Transport

Application

CPU

NIC

Turns packets into frames, adds data
link header (and maybe trailer), e.g.,

Ethernet.

The Linux kernel network stack (simplified)

34

Physical

Data link

Network

Transport

Application

CPU

NIC

One or more
Tx queues

One or more
Rx queues

Packets travel between the NIC and the host
through transmit (TX) and receive (RX) queues.

The kernel has scheduling primitives that can
be used to influence which packets/flows are

prioritized over others.

Slightly more realistic

35https://openwrt.org/docs/guide-developer/networking/praxis

https://openwrt.org/docs/guide-developer/networking/praxis

Modifying the kernel is challenging

Understanding and optimizing the linux kernel network
stack is not an easy feat

Let alone modifying it to implement new functionality

Even if you figure out where to make changes without
breaking anything else, the actual implementation can
get challenging

- "computing the cube root function [...] requires using a table
lookup and a Newton-Raphson iteration instead of a simple
function call."

New functionalities must be approved by Linus Torvalds

36https://github.com/torvalds/linux/tree/master/net

https://github.com/torvalds/linux/tree/master/net

How to make the kernel more programmable?

Solution #1: make the kernel more modular

- Identify which parts of the stack need to change more
frequently and separate out those parts of the code as a
standalone "module"

- Define interfaces for these modules to interact with the
rest of the stack/kernel

Examples

- Pluggable TCP congestion control

- Packet scheduling with QDiscs

Problems: reliability and security

37

How to make the kernel more programmable?

Solution #2: allow modifications from user space

- eBPF (extended Berkeley Packet Filter)

- Allows you to run your user-space programs in a "sandbox" in certain locations in the kernel

- You can safely and efficiently extend kernel capabilities without having to change the kernel

38https://ebpf.io/what-is-ebpf/

https://ebpf.io/what-is-ebpf/

Berkeley Packet Filter (BPF)

A small virtual machine that can run programs
injected from the user space in the kernel space
without changing/recompiling the kernel code

- First implementation (BPF) → Linux Kernel 3.15 (1992)

- Better known as the packet filter language for
tcpdump

eBPF extends BPF

- 64 bits, 512 bytes stack, Maps (key/value)

- Flexible enough for general processing

39

tcpdump

TCP stack

BPF

NIC

User

Kernel

Network

BPF
bytecode

Express Data Path (XDP)
Suitable for high-performance customized packet processing

40https://medium.com/high-performance-network-programming/recapitulating-af-xdp-ef6c1ebead8

The earliest hook point in the
packet Rx path of the kernel

https://medium.com/high-performance-network-programming/recapitulating-af-xdp-ef6c1ebead8

eBPF workflow

41https://ebpf.io/what-is-ebpf/

https://ebpf.io/what-is-ebpf/

eBPF workflow

42https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

https://ebpf.io/what-is-ebpf/

eBPF workflow

43https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

2
eBPF program compiled
into bytecode by LLVM or

other compilers

https://ebpf.io/what-is-ebpf/

eBPF workflow

44https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

2
eBPF program compiled
into bytecode by LLVM or

other compilers

3

Bytecode deployed via
bpf() system call

https://ebpf.io/what-is-ebpf/

eBPF workflow

45https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

2
eBPF program compiled
into bytecode by LLVM or

other compilers

3

Bytecode deployed via
bpf() system call

4

Bytecode verified by the
Verifier for safty

https://ebpf.io/what-is-ebpf/

eBPF workflow

46https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

2
eBPF program compiled
into bytecode by LLVM or

other compilers

3

Bytecode deployed via
bpf() system call

4

Bytecode verified by the
Verifier for safty

5
Bytecode JIT compiled into native

opcodes (X86_64, arm64)

https://ebpf.io/what-is-ebpf/

eBPF workflow

47https://ebpf.io/what-is-ebpf/

1

Developer writes
eBPF program in C or

other languages

2
eBPF program compiled
into bytecode by LLVM or

other compilers

3

Bytecode deployed via
bpf() system call

4

Bytecode verified by the
Verifier for safty

5
Bytecode JIT compiled into native

opcodes (X86_64, arm64)

6
Instructions

triggered by events
like packet arrival

https://ebpf.io/what-is-ebpf/

An example eBPF program

48https://docs.cilium.io/en/stable/bpf/architecture/

Compile the program
clang -O2 -target bpf -c xdp_filter_prog.c
 -o xdp_filter_prog.o

Load the program (e.g., with the bpftool loader or
libbpf loader)
ip link set dev eth0 xdpgeneric obj
 xdp_filter_prog.o sec filter

Check the state of the program
bpftool prog show

https://docs.cilium.io/en/stable/bpf/architecture/

Bytecode verification

Verification goals

- The process loading the eBPF program has the required capabilities (CAP_BPF) or privileges (root)

- The program does not crash or otherwise harm the system (out-of-bound jumps, memory access)

- The program always runs to completion (i.e., no loop, limited number of instructions)

49https://docs.cilium.io/en/stable/bpf/architecture/

https://docs.cilium.io/en/stable/bpf/architecture/

Maps
Efficient key/value stores in kernel space to keep eBPF state, protected with the read-
copy-update (RCU) mechanism for thread safety

50https://docs.cilium.io/en/stable/bpf/architecture/

Share state across multiple
eBPF programs (invocations)

Can be accessed from user
space via file descriptors

https://docs.cilium.io/en/stable/bpf/architecture/

JIT

51https://docs.cilium.io/en/stable/bpf/architecture/

eBPF bytecode Native instructions

Reduced per-instruction cost compared to an interpreter, reduced executable
image size (more instruction cache friendly), optimized opcodes

https://docs.cilium.io/en/stable/bpf/architecture/

Offloading

52https://docs.cilium.io/en/stable/bpf/architecture/

eBPF bytecode
JIT-compiled to the

instruction set of the NIC

Futher optimize the performance of eBPF programs by running
them on the NIC hardware directly

https://docs.cilium.io/en/stable/bpf/architecture/

Kernel Bypassing

Recall traditional network stack

54

User application Data

OS kernel Copy

Hardware NIC

Packet processing in OS incurs high
latency, cannot support high throughput,
and leads to high CPU utilization

Not acceptable in today's data centers
- Few microseconds of latency
- 10s to 100s Gbps bandwidth
- CPU is costly

Remote direct memory access (RDMA)

55

User application Data

OS kernel Copy

Hardware NIC

Protocol offload
Zero-copy

OS by-pass

Traditionally used in Infiniband clusters for HPC: achieves low
latency, high throughput, and negligible CPU utilization

RDMA

Properties

- Remote: data is transferred between nodes and a network

- Direct: no CPU or OS kernel is involved in the data transfer

- Memory: data transferred between two apps and their virtual address spaces

- Access: support to send/receive, read/write, and atomic operations

Main highlights

- Zero-copy data

- Bypasses the CPU and OS kernel

- Message based transactions

56

RDMA use cases in data centers

Distributed storage

- Distributed key-value stores

- Distributed file systems

- NVMe over Fabric

Applications requiring low latency (e.g., search queries)

GPU direct communication (by-pass CPU): machine learning training

Other proposals

- Resource disaggregation, remote swapping, CPU-free computing

57

RMDA overview and components

58

RDMA NIC

Application

Verbs API

Application bypass the kernel and interact directly with the RDMA NIC
using the verbs API provided by the NIC driver

Memory traslation and protection

59

Application

Verbs API

Applications register memory regions with the NIC

Translation: MTP maintains virtual address to
physical address mapping

Protection: MTP assigns local and remote access
keys to memory region

RDMA NIC

Memory translation
and protection (MTP)

Queue pairs (QPs)

QPs are interfaces between the application
and the NIC

Different types

- Connection-oriented vs. datagram

- Reliable vs. unreliable

Completion queue

- Notify when the work has been completed

60

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

CQ

Work requests

61

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester Responder

Application issues a work request (WR) for a QP, containing all
the metadata assocaited with a message transfer

CQ CQ

Work requests

62

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

The WR gets stored as a Work Queue Element (WQE) at
the QP's send queue.

Multiple WQEs can get queued up in the send queue.

RDMA NIC processes these WQEs one after another.

Work requests

63

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

Each QP is associated with a completion queue (CQ).

Upone request completion: the WQE expires, CQE is
created, CQE notifies request completion to

application

RDMA is just a mechanism

RDMA does not specify the semantics of a data transfer

Two types of memory access models

- One-sided: RDMA read and write + atomic operations

- Two-sided: RDMA send and receive

64

RDMA send and receive

Traditional message passing where both the source and the destination processes are
actively involved in the communication

Both need to have created their queues

- A queue pair of a send and a receive queue, a completion queue for the queue pair

Sender's work request has a pointer to a buffer that it wants to send to

- WQE is enqueued in the send queue

Receiver's work request has a pointer to an empty buffer for receiving the message

- WQE is enqueued in the receive queue

65

RDMA send and receive

66

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

Send WQE metadata: local source virtual address, local key, data length
Receive WQE metadata: local sink virtual address

CQ

RDMA read and write

Only the sender side is active; the receiver is passive

- The passive side issues no operation, uses no CPU cycles, gets no indication that a "read" or a "write"
happend

To issue an RDMA read and write, the work request must include

- The remote side's virtual memory address

- The remote side's memory registration key

The active side must obtain the address and key of the passive side beforehand

- Typically, the traditional RDMA send/receive mechanisms are used

67

RDMA read

68

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local sink virtual address, local key, data
length, remote source virtual address, remote key

len, remote virtual addr., and key

RDMA write

69

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local source virtual address, local key, data
length, remote sink virtual address, remote key

len, remote virtual addr., and key

RDMA atomic

70

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local sink virtual address, local key, atomic
operation, remote source virtual address, remote key

op type, remote virtual addr., and key

Network protocols supporting RDMA

InfiniBand (IB): interconnects for high-performance computers

- Credit-based flow control: PFC (priority flow control), losses are rare

- Transport: discarding out-of-order packets, go-back-N on packet loss

RoCE: RDMA over Converged Ethernet

- Allows running RDMA over Ethernet and IP

iWARP: Internet wide area RDMA protocol

71

User-space networking

Write all packet processing code in a
regular program in user space

Packets go directly from the NIC to user
space (and vice versa) without any
interference from the kernel

Kernel-bypass via user-space networking

Example frameworks: DPDK, netmap

72

User application
Data

OS kernel Copy

Hardware NIC

Network stack

Summary

73

User application Data

OS kernel Copy

Hardware NIC
Hardware offloading:

SmartNICs

Kernel bypassing: RDMA,
user-space networking

kernel programmability:
eBPF/XDP

Next time: machine learning for networking

74

How can we leverage machine learning in networking?

