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Learning objectives
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How to make the Linux kernel programmable for networking?

Why and how to offload to NIC?

How not to use the Linux kernel for networking?



Network programmability on end hosts
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Programmability inside the network via 
SDN and P4 programmable data planes

Network stack for preparing and 
processing packets at the end hosts



End-host network stack
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Division of labor
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Application

CPU

NIC

On packet transmit (egress): 
- The host CPU generates packets on 

application request 
- Packets are sent to the NIC over PCIe 
- The NIC transforms packets to bits and 

then over the link



Division of labor
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Application

CPU

NIC

On packet receive (ingress): 
- The NIC turns bits into packets 
- Packets are sent to the host over PCIe 
- The host CPU processes packets and 

delivers them to applications



Division of labor
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Physical
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Transport

Application

CPU

NIC

Fixed-function hardware

General-purpose processor 
running software

Simple, does not 
change often

Complicated, 
changes frequently

Can CPU keep up with the NIC, i.e., process packets at line rate in reasonsable #cycles?



Network Interface Card (NIC)



Limits of software packet processing
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Single-core 
throughput in Mpps

Line rate

For min-sized packets

For max-sized packets

# CPU cycles per packet

The rate at which the 
NIC can pump the data 

onto the link



Limits of software packet processing
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Single-core 
throughput in Mpps

# CPU cycles per packet

Line rate

Line rate for all 
packet sizes

Line rate for some 
packet sizes

Not line rate for 
any packet sizes

The rate at which the 
NIC can pump the data 

onto the link



Limits of software packet processing
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Limits of software packet processing
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Single-core 
throughput in Mpps

# CPU cycles per packet

Line rate

CPUs are getting better too, 
but not as fast

If CPUs stays the same, we could do less 
processing per-packet at line rate

Line rate has been 
increasing to 100-400 Gbps

Why?



Limits of software packet processing
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Single-core 
throughput in Mpps

# CPU cycles per packet

Line rate

CPUs are getting better too, 
but not as fast

If CPUs stays the same, we could do less 
processing per-packet at line rate

Line rate has been 
increasing to 100-400 Gbps

Physical limits of the semiconductor 
technologies: end of Moore's law and 

Dennard scaling



What options do we have?

16

Processor
Takes over part (or even all) of packet 
processing that is currently done by CPUs
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What options do we have?
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Processor
Takes over part (or even all) of packet 
processing that is currently done by CPUs

Hardware Accelerator, specialized for network processing

Programmable Customizable offloading (what and how)

On the NIC Co-locating with the NIC provides extra benefits



SmartNICs
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A regular NIC
Programmable domain-

specific hardware

Field Programmable Gate Arrays (FPGA) 
Multi-Core Systems on Chip (SoC) 

P4-programmable pipelines 
Or combinations of the above...



FPGA-based SmartNICs

FPGA 

- A collection of  small reconfigurable logic and memory 
blocks 

- Programmers can write code to assemble these blocks 
to perform desired processing 

Why good for SmartNIC? 

- FPGA hardware resources (logic and memory) can be 
highly customized for the intended computation  

- Good fit for highly-parallelizable computation 

21https://www.xilinx.com/products/boards-and-kits/alveo/u25.html 

https://www.xilinx.com/products/boards-and-kits/alveo/u25.html


Why not creating our own NIC or switches to support in-network computing?



SoC-based SmartNICs

SoC 

- A “small” computer on a single chip  

- Includes (light-weight) processing cores and a 
memory hierarchy  

Why good for SmartNIC? 

- Programming model is close to software  

- Cores (and the architecture) can be specialized for 
network processing 

23https://www.nvidia.com/en-us/networking/products/data-processing-unit/ 

https://www.nvidia.com/en-us/networking/products/data-processing-unit/




FPGA vs SoC
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FPGA SoC

Hardware 
architecture

Programming 
model

Performance

Reconfigurable hardware 
and therefore can be highly 

customized for the intended 
packet processing

The cores’ instruction set and 
memory architecture are fixed 

and are therefore less 
customizable

Hardware description languages 
(e.g., Verilog) → hard to program

C-like languages → 
easier to program

High throughput, low 
latency

Lower throughput, 
higher latency



Notes on SmartNIC

SmartNICs can (and do) have fixed-function blocks 

- These blocks are optimized hardware implementations of common packet processing functionality: 
encryption, hashing, certain common protocols 

A fully ASIC-based NIC can still be considered a SmartNIC 

- As long as it supports more complex functionality than a traditional NIC 

In industry, SmartNICs have various names 

- Nvidia Bluefield Data Processing Unit (DPU), Intel Infrastructure Processing Unit (IPU) 

- A combination of FPGAs, SoCs, P4 programmable pipelines, fixed function accelerators

26



What can we do with SmartNICs?
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TCP Offload Engine (ToE)IPSec, tunneling In-network computing



Programming abstractions for SmartNICs

There is such a wider range of functionality people can and are interested in 
implementing on the NICs  

There are many different SmartNIC architectures  

- FPGAs, different kinds of SoCs, P4 pipelines, fixed-function blocks, combinations of these 

Do we keep P4 and rely on architectures and their externs for all the extra functionality? 

- There are efforts on creating a portable NIC architecture in p4.org 

How do we partition/distribute the functionality over different kinds of hardware? What 
is the best offloading strategy?

28

http://p4.org


Kernel Packet Processing



The Linux kernel network stack (simplified)
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Uses system calls to create sockets, 
write data to them to send to another 

end-point, read the received data.



The Linux kernel network stack (simplified)
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Breaks up the socket data into 
segments, adds the transport layer 

header, e.g., TCP and UDP.



The Linux kernel network stack (simplified)
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Turns segments into packets and adds 
the network layer header, e.g., IP.



The Linux kernel network stack (simplified)
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Turns packets into frames, adds data 
link header (and maybe trailer), e.g., 

Ethernet.



The Linux kernel network stack (simplified)
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One or more 
Tx queues

One or more 
Rx queues

Packets travel between the NIC and the host 
through transmit (TX) and receive (RX) queues. 

The kernel has scheduling primitives that can 
be used to influence which packets/flows are 

prioritized over others.



Slightly more realistic

35https://openwrt.org/docs/guide-developer/networking/praxis 

https://openwrt.org/docs/guide-developer/networking/praxis


Modifying the kernel is challenging

Understanding and optimizing the linux kernel network 
stack is not an easy feat 

Let alone modifying it to implement new functionality  

Even if you figure out where to make changes without 
breaking anything else, the actual implementation can 
get challenging  

- "computing the cube root function [...] requires using a table 
lookup and a Newton-Raphson iteration instead of a simple 
function call." 

New functionalities must be approved by Linus Torvalds

36https://github.com/torvalds/linux/tree/master/net 

https://github.com/torvalds/linux/tree/master/net


How to make the kernel more programmable?

Solution #1: make the kernel more modular 

- Identify which parts of the stack need to change more 
frequently and separate out those parts of the code as a 
standalone "module" 

- Define interfaces for these modules to interact with the 
rest of the stack/kernel 

Examples 

- Pluggable TCP congestion control 

- Packet scheduling with QDiscs 

Problems: reliability and security

37



How to make the kernel more programmable?

Solution #2: allow modifications from user space 

- eBPF (extended Berkeley Packet Filter)  

- Allows you to run your user-space programs in a "sandbox" in certain locations in the kernel 

- You can safely and efficiently extend kernel capabilities without having to change the kernel

38https://ebpf.io/what-is-ebpf/ 

https://ebpf.io/what-is-ebpf/


Berkeley Packet Filter (BPF)

A small virtual machine that can run programs 
injected from the user space in the kernel space 
without changing/recompiling the kernel code 

- First implementation (BPF) → Linux Kernel 3.15 (1992) 

- Better known as the packet filter language for 
tcpdump 

eBPF extends BPF 

- 64 bits, 512 bytes stack, Maps (key/value) 

- Flexible enough for general processing

39

tcpdump

TCP stack
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NIC
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Express Data Path (XDP)
Suitable for high-performance customized packet processing

40https://medium.com/high-performance-network-programming/recapitulating-af-xdp-ef6c1ebead8 

The earliest hook point in the 
packet Rx path of the kernel

https://medium.com/high-performance-network-programming/recapitulating-af-xdp-ef6c1ebead8


eBPF workflow

41https://ebpf.io/what-is-ebpf/ 

https://ebpf.io/what-is-ebpf/


eBPF workflow
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1

Developer writes 
eBPF program in C or 

other languages

https://ebpf.io/what-is-ebpf/


eBPF workflow
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eBPF workflow
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46https://ebpf.io/what-is-ebpf/ 

1

Developer writes 
eBPF program in C or 

other languages

2
eBPF program compiled 
into bytecode by LLVM or 

other compilers

3

Bytecode deployed via 
bpf() system call

4

Bytecode verified by the 
Verifier for safty

5
Bytecode JIT compiled into native 

opcodes (X86_64, arm64)

https://ebpf.io/what-is-ebpf/


eBPF workflow
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1

Developer writes 
eBPF program in C or 

other languages

2
eBPF program compiled 
into bytecode by LLVM or 

other compilers

3

Bytecode deployed via 
bpf() system call

4

Bytecode verified by the 
Verifier for safty

5
Bytecode JIT compiled into native 

opcodes (X86_64, arm64)

6
Instructions 

triggered by events 
like packet arrival

https://ebpf.io/what-is-ebpf/


An example eBPF program

48https://docs.cilium.io/en/stable/bpf/architecture/ 

Compile the program 
clang -O2 -target bpf -c xdp_filter_prog.c  
      -o xdp_filter_prog.o 

Load the program (e.g., with the bpftool loader or 
libbpf loader) 
ip link set dev eth0 xdpgeneric obj  
        xdp_filter_prog.o sec filter 

Check the state of the program 
bpftool prog show

https://docs.cilium.io/en/stable/bpf/architecture/


Bytecode verification

Verification goals 

- The process loading the eBPF program has the required capabilities (CAP_BPF) or privileges (root) 

- The program does not crash or otherwise harm the system (out-of-bound jumps, memory access) 

- The program always runs to completion (i.e., no loop, limited number of instructions)

49https://docs.cilium.io/en/stable/bpf/architecture/ 

https://docs.cilium.io/en/stable/bpf/architecture/


Maps
Efficient key/value stores in kernel space to keep eBPF state, protected with the read-
copy-update (RCU) mechanism for thread safety

50https://docs.cilium.io/en/stable/bpf/architecture/ 

Share state across multiple 
eBPF programs (invocations)

Can be accessed from user 
space via file descriptors

https://docs.cilium.io/en/stable/bpf/architecture/


JIT

51https://docs.cilium.io/en/stable/bpf/architecture/ 

eBPF bytecode Native instructions

Reduced per-instruction cost compared to an interpreter, reduced executable 
image size (more instruction cache friendly), optimized opcodes

https://docs.cilium.io/en/stable/bpf/architecture/


Offloading

52https://docs.cilium.io/en/stable/bpf/architecture/ 

eBPF bytecode
JIT-compiled to the 

instruction set of the NIC

Futher optimize the performance of eBPF programs by running 
them on the NIC hardware directly

https://docs.cilium.io/en/stable/bpf/architecture/


Kernel Bypassing



Recall traditional network stack
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User application Data

OS kernel Copy

Hardware NIC

Packet processing in OS incurs high 
latency, cannot support high throughput, 
and leads to high CPU utilization

Not acceptable in today's data centers 
- Few microseconds of latency 
- 10s to 100s Gbps bandwidth 
- CPU is costly 



Remote direct memory access (RDMA)
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User application Data

OS kernel Copy

Hardware NIC

Protocol offload 
Zero-copy 

OS by-pass

Traditionally used in Infiniband clusters for HPC: achieves low 
latency, high throughput, and negligible CPU utilization



RDMA

Properties 

- Remote: data is transferred between nodes and a network 

- Direct: no CPU or OS kernel is involved in the data transfer 

- Memory: data transferred between two apps and their virtual address spaces 

- Access: support to send/receive, read/write, and atomic operations 

Main highlights 

- Zero-copy data 

- Bypasses the CPU and OS kernel 

- Message based transactions

56



RDMA use cases in data centers

Distributed storage 

- Distributed key-value stores  

- Distributed file systems 

- NVMe over Fabric 

Applications requiring low latency (e.g., search queries) 

GPU direct communication (by-pass CPU): machine learning training 

Other proposals 

- Resource disaggregation, remote swapping, CPU-free computing

57



RMDA overview and components

58

RDMA NIC

Application

Verbs API

Application bypass the kernel and interact directly with the RDMA NIC 
using the verbs API provided by the NIC driver



Memory traslation and protection
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Application

Verbs API

Applications register memory regions with the NIC 

Translation: MTP maintains virtual address to 
physical address mapping 

Protection: MTP assigns local and remote access 
keys to memory region

RDMA NIC

Memory translation 
and protection (MTP)



Queue pairs (QPs)

QPs are interfaces between the application 
and the NIC 

Different types 

- Connection-oriented vs. datagram 

- Reliable vs. unreliable 

Completion queue 

- Notify when the work has been completed

60

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

CQ



Work requests
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester Responder

Application issues a work request (WR) for a QP, containing all 
the metadata assocaited with a message transfer

CQ CQ



Work requests
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

The WR gets stored as a Work Queue Element (WQE) at 
the QP's send queue.  

Multiple WQEs can get queued up in the send queue.  

RDMA NIC processes these WQEs one after another.



Work requests
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

Each QP is associated with a completion queue (CQ). 

Upone request completion: the WQE expires, CQE is 
created, CQE notifies request completion to 

application



RDMA is just a mechanism

RDMA does not specify the semantics of a data transfer 

Two types of memory access models 

- One-sided: RDMA read and write + atomic operations 

- Two-sided: RDMA send and receive

64



RDMA send and receive

Traditional message passing where both the source and the destination processes are 
actively involved in the communication 

Both need to have created their queues 

- A queue pair of a send and a receive queue, a completion queue for the queue pair 

Sender's work request has a pointer to a buffer that it wants to send to 

- WQE is enqueued in the send queue 

Receiver's work request has a pointer to an empty buffer for receiving the message 

- WQE is enqueued in the receive queue

65



RDMA send and receive
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

Send WQE metadata: local source virtual address, local key, data length 
Receive WQE metadata: local sink virtual address

CQ



RDMA read and write

Only the sender side is active; the receiver is passive 

- The passive side issues no operation, uses no CPU cycles, gets no indication that a "read" or a "write" 
happend 

To issue an RDMA read and write, the work request must include 

- The remote side's virtual memory address  

- The remote side's memory registration key 

The active side must obtain the address and key of the passive side beforehand 

- Typically, the traditional RDMA send/receive mechanisms are used

67



RDMA read
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local sink virtual address, local key, data 
length, remote source virtual address, remote key

len, remote virtual addr., and key



RDMA write
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RDMA NIC

Memory translation 
and protection (MTP)
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Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local source virtual address, local key, data 
length, remote sink virtual address, remote key

len, remote virtual addr., and key



RDMA atomic
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RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Requester

CQ

RDMA NIC

Memory translation 
and protection (MTP)

Application

Queue pair

Send Recv.

Responder

WR/WQE metadata: local sink virtual address, local key, atomic 
operation, remote source virtual address, remote key

op type, remote virtual addr., and key



Network protocols supporting RDMA

InfiniBand (IB): interconnects for high-performance computers 

- Credit-based flow control: PFC (priority flow control), losses are rare 

- Transport: discarding out-of-order packets, go-back-N on packet loss 

RoCE: RDMA over Converged Ethernet 

- Allows running RDMA over Ethernet and IP 

iWARP: Internet wide area RDMA protocol

71



User-space networking

Write all packet processing code in a 
regular program in user space 

Packets go directly from the NIC to user 
space (and vice versa) without any 
interference from the kernel 

Kernel-bypass via user-space networking 

Example frameworks: DPDK, netmap
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User application
Data
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Hardware NIC

Network stack



Summary
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User application Data

OS kernel Copy

Hardware NIC
Hardware offloading: 

SmartNICs

Kernel bypassing: RDMA, 
user-space networking

kernel programmability: 
eBPF/XDP



Next time: machine learning for networking

74

How can we leverage machine learning in networking?


