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Learning objectives

How to leverage machine learning for video streaming?

How to leverage machine learning for network packet classification?



Machine learning paradigms

Supervised learning . . Reinforcement
: Unsupervised learning
(regression,

classification)

learning (decision

(clustering) making)

Where does deep learning sit? Well, deep learning is part of a broader family of machine learning
methods that are based on artificial neural networks and can fit in any of the above categories.



Deep reinforcement learning in the spotlight
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Proteins are essential to life, supporting practically all its functions. They are large complex
molecules, made up of chains of amino acids, and what a protein does largely depends on its
unique 3D structure. Figuring out what shapes proteins fold into is known as the “protein folding
° The AlpheFeid teemn problem”, and has stood as a grand challenge in biology for the past 50 years. In a major scientific azero's 9
advance, the latest version of our Al system AlphaFold has been recognised as a solution to this
grand challenge by the organisers of the biennial Critical Assessment of protein Structure tional” st

AlphaGo is the first computer program to
defeat a professional human Go player, the first
to defeat a Go world champion, and is arguably

the strongest Go player in history.

Prediction (CASP). This breakthrough demonstrates the impact Al can have on scientific discovery
andits ial to dramati progress in some of the most fundamental fields that ' cgame b
explain and shape our world.

RL-based agent beat human experts on Go and more

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
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ML in networking: examples
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Decision tree for packet classification Clustering for anomaly detection




Machine Learning for
Adaptive Video Streaming



Modern video streaming

Dynamic Streaming over HTTP (DASH)
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vitrate  Adaptive bitrate (ABR) algorithms:
- Rate-based
- Buffer-based
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Why is video streaming a challenging problem?

Throughput

Buffer size

(Mbps)
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Challenge 1: Network throughput
is highly variable and uncertain
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Challenge 2: Adaptation decisions may
have a cascading effect over time
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Existing solutions

Rate-based: pick bitrate based on predicted throughput

- FESTIVE (CoNEXT12), PANDA (JSAC14), CS2P (SIGCOMM'6)

Buffer-based: pick bitrate based on buffer occupancy

- BBA (SIGCOMM'4), BOLA (INFOCOM'®6)

Hybrid: use both throughput prediction and buffer occupancy

- PBA (HotMobile'15), MPC (SIGCOMM'5)

All these solutions are fixed heuristics and are based on the designer's insight. All of them
rely on simplified inaccurate model which leads to suboptimal performance.

Can we automatically learn how to choose bitrates?



Pensieve: learning-based ABR algorithm

bandwidth

bit rate

buffer

ABR agent

bitrates

network and video measurements

Pensieve learns ABR algorithm automatically through experience

Neural Adaptive Video Streaming with Pensieve

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh
MIT Computer Science and Artificial Intelligence Laboratory
{hongzi,ravinet,alizadeh}@mit.edu

ABSTRACT

Client-side video players employ adaptive bitrate (ABR) algorithms
to optimize user quality of experience (QoE). Despite the abundance
of recently proposed schemes, state-of-the-art ABR algorithms suffer
from a key limitation: they use fixed control rules based on simplified
or inaccurate models of the deployment environment. As a result,
existing schemes mnevitably fail to achieve optimal performance
across a broad set of network conditions and QoF objectives.

‘We propose Peasieve, a system that generates ABR algorithms
using reinforcement learning (RL). Pensieve trains a neural network
madel that selects bitrates for future video chunks based on obser-
vations collected by client video players. Peasieve does not rely
on models or ions about the i
Instead, it learns to make ABR decisions solely through observations
of the resulting performance of past decisions. As a result, Pensieve
automatically learns ABR algorithms that adapt to a wide range of

content providers [ 1 ]. content provi continue
to struggle with delivering high-quality video to their viewers.
Adaptive bitrate (ABR) algorithms are the primary tool that con-
tent providers use to optimize video quality. These algorithms run
on client-side video players and dynamically choose a bitrate for
each video chunk (e g., 4-second block). ABR algorithms make bi-
trate decisions based on various observations such as the estimated
network throughput and playback buffer occupancy. Their goal is
to maximize the user’s QuE by adapting the video bitrate to the
underlying network conditions, However, selecting the right bitrate
can be very challenging due to (1) the variability of network through-
put [18, 42, 49, 52, 53]; (2) the conflicting video QoE requirements
(high bitrate, mimimal rebuffering, smeothness, etc.); (3) the cascad-
ing effects of bitrate decisions (e g., selecting a high bitrate may
drain the playback buffer to a dangt s level and cause i
in the future); and (4) the coarse-grained nature of ABR decisions.
We elab on these chall in §2.

environments and QoE metrics. We compare Pensieve to st: f-the-
art ABR algorithms using trace-driven and real world experiments
spanning a wide variety of network conditions, QoF. metrics, and

The majority of existing ABR algorithms (§7) develop fixed con-
trol rules for making bitrate decisions hased on estimated network

video properties. In all considered scenarios, Pensieve outp

the best state-of-the-art scheme, with improvements in average QoE
of 12%-25%. Pensieve also generalizes well, outperforming existing
schemes even on netwarks for which it was not explicitly trained.

put (“rate-based” (21, 42]), playback buffer size
(“buffer-based” schemes [19, 41]), or a combination of the two
signals [26]. These schemes require significant tuning and do not
ize to different network conditions and QoE objectives. The
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Markov decision process (MDP)
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State

Action

030 State transition probability
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Markov chain: only one action for each state, all rewards are zero
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Reinforcement learning

Decision maker taking l

all factors with a
clearly-defined goal

Reward measures how good an action is

Reward 7

‘ Agent

Take action (4

All factors that can affect

|

>

the decision making

Environment

Observe state Sy

Goal: maximize the cumulative reward Z T

t
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Pensieve design

Rewardr,
State s, Agent + q(be) — uTe — Alq(b) — q(be—4)|
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A DNN to capture
the state-action-

reward relationship



Training of the system

ABR agent policy
Neural Network ne(s, a)
@
RA A0 240

[N /
SO
W S¢.

XXK ~ X350 480P

Observe state s

state Take action a

Y

next bitrate

parameter 0

Train the system by letting the system experience collected history data:
trajectories of [state, action, reward]

Gradient descent: 0«0 + QVHEwg [Z Tt]
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Training of the system

Large corpus of

network traces
cellular, broadband, synthetic

Video playback

Fast chunk-level simulator

Q

r
r/

r
r/

Model update
TensorFlow

Pensieve
worker

{state, action, reward}
experiences

Pensieve
worker

Pensieve
master

Pensieve
worker

updated neural
network parameters
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Advantages of Pensieve

Learn the dynamics Optimize the high level
directly from QoE objective end-to-
experience end

Extract control rules
from raw high-
dimensional signals
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Trace-driven evaluation

Dataset

- Network traces: two datasets, each
dataset consists of 1000 traces,
each trace 320 seconds

- Video: 193 seconds, encoded at
bitrates {300, 750, 1200, 2850,

4300} Kbps

Video player and server

- Google Chrome browser with

Apache web server

Norway 3G cellular dataset

BOLA
- -MPC

— robustMPC

:: 7
! I
4 —Pen'SIeve .
by sy ==-offline optimal

-1 2 5 8 11
Average QoE

14

CDF

05 r

FCC broadband dataset
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-

'."’P ---Buffer-based
----- Rate-based
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- -MPC
— robustMPC
—Pensieve
. °°°offline optlimal

5 8 11 14
Average QoE

Pensieve improves the state-of-the-art by 12-25% and is
within 9-14% of the offline optimal
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QoE breakdown
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Pensieve reduces rebuffing by 10-32% over the state-of-the-art.
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Generalization of Pensieve
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Train Pensieve with synthetically generated (using a hidden Markov model) network
traces, covering a wide range of average throughput and network variation.



Generalization of Pensieve

— robustMPC
---Pensieve (synthetic)
—Pensieve

8 11 14

5
Average QoE

When we train Pensieve on synthetic network traces and test it on the real 3G

network trace, we only see ~5% performance degradation.
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Machine Learning for Packet
Classification



Packet classification

Fundamental problem in computer networking

- Building blocks for routing, access control, QoS, defense against attacks

- - - ey

Decides the action to take based
on the matched rule

\

/
Payload Header | \ Payload Header
[ o
| Flow classification ]
Fiber | Fiber

optics
I

Src IP addr
Dst IP addr —
Src port #
Dst port #

\

Classifier (Rule Database)

Predicate

Action

_+ 100Kk rules or more!
[
[
[

Protocol type — A

Router /
¢ Firewall

22



Packet classification example

Exact matching Prefix matching Range matching

/ / /

Priority | Src IPJ Dst IP J Src Port / Dst Port | Protocol
2 10.0.0.0 10.0.0.0/16 | * J * *

1 * * [0, 1023] |[0, 1023] | TCP

0 * * * * 4 *
Example: (10.0.0.0,10.0.0.1, 0, O, G) Any matching

Matches on all the 3 rules in the above table, but only the one with
the highest priority will be taken.

23



Two approaches

| Matched output

»
>

Input

v

TCAM

Hardware-based (e.g., TCAM):
energy-consuming, hard to scale

, expensive,

root split

L 2 Y
°®®q -
(22 °] [c==-] [+ -]
T

1% child split 2™ child split

s g B

Input Matched output

n

> Processor i

Software-based (e.g., decision-tree): ,
slow and require large memory
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Packet classification: a point-location problem

Dimension 2 ,

Problem: find out which hypercube
contains the given point?

:

Rules are hypercubes in the

high-dimension space

E—

[

Dimension 3

.....

N

»

Dimension 1
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Theoretical analysis on packet classification complexity

Hard time-space tradeoff for point-location problem
- O(log N) time and O(N%) space
- O(logd N) time and O(N) space

- N: number of rules, d: number of attributes to match on, N ~ 100K,d = 5

TL;DR: logarithmic time, exponential space; linear space,
exponential time — none of them is attractive

Even harder than the point-location problem

- Rules have priorities and can overlap with each other

http://yuba.stanford.edu/~nickm/papers/classification_tutorial _01.pdf

26
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Existing techniques: node cutting

Cut the space into smaller areas and each area
corresponds to a leaf in the decision tree

! = ) ) RO, R1, R2,
" ; R3, R4, R5
i R fi]
! | ! R1, R3, (RO, R1, | (R1, R2, ] [R1, R4,
------ 1-=====-r=====rrRE R4 R4 R4 R5
Y [ i Rj- ! /\ A /\ . /\
R3 i i ] [R1][RB,][RO,][R4][R1,][R4 [R1,][R4,]
i i i R4 J|R1 R2 JIR5 [R5
X
(a) Packet classifier. (b) Decision tree.

Match by traveling through the decision tree and select the rule in
the matched leaf with the highest priority

Fast but memory inefficient due to redundancies
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Existing techniques: rule partitioning

Partition the space into two parts and build a separate

decision tree (or a subtree) for each part

RO

R2

e Lo )l e = ]

E)

b { [ —

(a) Partition 1.

(b) Partition 2.

Match by traveling through all the decision tree and select the rule in

the matched leaf in every tree with the highest priority

Memory efficient but slow due to the need to travel through all branches



20 years of active research

Google Scholar Results

800

600

400

200

0

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

AN t "

HiCuts ('99), HyperCuts ('03), EffiCuts ('10), CutSplit ('15)

Almost all of these solutions are engineered with hand-tuned heuristics
targeting different objectives

29



Can we apply learning?

Reinforcement learning models Reinforcement learning can
long-term outcomes of actions optimize for the end objectives
unlike heuristics directly unlike heuristics

Historically, efficient RL formulation means super-human
performance (e.g., AlphaZero, AlphaStar, AlphaFold).

30



End-to-end learning

Packets Decisions

v
v

DNN/RL

Replace the decision tree with a DNN or an RL agent, does this work?

31



End-to-end learning

Packets Decisions

v
v

RL Model

Pros

- May not need to build a data structure at all

Cons
- Cannot guarantee classification correctness (critical for applications like access control)
- Very large space of inputs = hard to check model correctness
- Packet inference takes too long (required time within 100s of ns)

- Need specialized inference hardware (e.g., GPU, TPU)

32



NeuroCuts

Use deep reinforcement learning to tackle the problem of building decision trees,
of applying per-packet inference directly

packet

classification
rules

Train a
NeuroCuts
Agent with RL

v

optimized tree
data structure

deploy
artifact

Neural Packet Classification

Eric Liang', Hang Zhu?, Xin Jin?, lon Stoica’
1UC Berkeley, Johns Hopkins University
eki@berkeley.edu, hzhu@jhu.edu, xinjing@es jhu.edu, istoica@cs berkeley.edu

ABSTRACT

g puter mecwork-
Ing, This problem expases a hard tradeaff between the computation
and state complexity, which makes it particularly challenging. To
mavigate this tradeall, existing solutions rely on complex hand-
tunex! heuristics, which are brittle and hard to optimize
In this paper, we propose a deep reinforcement learning (RL) ap-
peoach to sclve the packet classification problem. There are several
characteristics that make this problem a good fit for Deep RL. First,
many existing solutions iteratively buld a decision tree by splitting
nodes in the tree. Second, the effocts of these sctions (e.g., spltting
modes) can only be evaluated once the entire tree is built. These
two characteristics are raturally captured by the ability of RL to
take actions that have sparse and delayed rewards. Third, it is com-
putationally efficient 10 generate data traces and evaluate decision
trees, which alleviate the notoriously high sample camplexity prob-
lem of Deep RL algoeithens. Our solution, NeuroCuts, uses suxccinet
repeesentations to encode state and action space, and efficiently
exploce candidate decision trees to optimize for a global objective
It produces compact decision trees optimized far a specific set of
rules and & given performance wetric, such as classification time.
tprint, or  the two. Eval, Class
Reneh thaws that Navralists acstnerfrme evictine hand.crafted

given packet to  rule from a set of rules, and to do so while opti-
mizng the dassification time and/or memory footprint. Packet clas-
sification is a key building block for many network functionalities,
inchading fircwalls, access control. traffic engineering, and network
measurements (13, 29, 55). As sach, packet classifiers are widely
deployed by eaterprises, cloud providers, ISPs, and IXPs [, 29, 43].

Existing solations for packet classification can be divided Into
two beoad categortes. Scbatsans in the first category are hardware-
based. They leverage Termary Content-Addressable Mermories (TCAMs)
to store all rules in an associative memory, and then metch &
packet to all these rules in parallel [23). As a resalt. TCAMSs provide
constant classification time, but come with significant limitations.
TCAMs are inherently complex, and this complexity leads to high
cost and power consumption. This makes TCAM-based solutions
prohibstive for implementing large classsfiers [55]

The solutions in the second category are software based. These
sclutions build 4 in-memory data ypicalty
decision trees—ta efficently perform packet classification [29]
‘While these solutions are far mose scalable than TCAM-hased so-
lutions, they are slower, as the classification operation needs to
traverse the decision tree from the root 1o the matching leaf

Building efficient decision trees is difficult. Over the past two
decades, rescarchers have proposed a larpe number of decision tree

instead

33



NeuroCuts design

Action: either cutting a node or partitioning a set of rules

Agent Environment
Neural Network

Packet Classifier

action
A
—p Decision Tree

State

Reward: classification time,

state I reward , or memory footprint, or a
R N o

t e v combination of the two
I S

<

The reward is delayed and is only given when the whole tree is built.

34



Naive MDP formulation

Sequential Markov Decision Process (MDP)
- Assumes Depth-First Search (DFS) order of building the tree node by node

- Action is to cut or partition current node

———————————————————————————————————————————————————————————————————————————————————————————————

! reward = -
depth[tree] +
. . alpha * -size[tree] |

state s, 5 state s, ; state s, ; | state sy



Challenges

m
E m reward = -52

Size of the state grows in each step: Reward delayed until the end:

hard to define the state sparse reward problem

36



Challenge 1: state definition

Observation: node state is independent from the parent and sibling nodes

s2 can be represented as a fixed-length vector
describing N3's bounding hypercube

{SrcIPMin, SrcIPMax,
DstIPMin, DstIPMax,
SrcPortMin, SrcPortMax,
DstPortMin, DstPortMax,
ProtocolMin, ProtocolMax}

state s,

L e e e e e I I T T
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Challenge 2: reward

Observation: building a tree is a branching decision process, not sequential MDP

Sequential MDP: O(n) steps delay between action time and reward time

reward reward reward reward reward
=21 =-24 =-26 =-28 =-2.9 (temporally discounted)

Branching decision process: O(logn) steps delay between action time and reward time

—> done (reward = -1)

done (reward = -1)

reward

= min(rey;qg) -1

=-3 reward
= min(rey;q) - 1
=-2

done (reward = -1)

done (reward = -1)

e
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Result: classification time

30
HiCuts = HyperCuts m EffiCuts = CutSplit = NeuroCuts
)
.g
-+
- 20
Re,
)
©
e
=
97 10
L.
O
0

acll 1k acl2 1k acl3 1k acl4 1k

NeuroCuts significantly improves the classification time over the
state-of-the-art heuristic approaches.

39



Results: scalability

Classification Time

HiCuts = HyperCuts m EffiCuts ®m CutSplit ® NeuroCuts

40
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NeuroCuts scales to large rule sets and achieves 18% (median) time improvement (up to 2x).

40



Result: space efficiency

Bytes per Rule (log space)

HiCuts = HyperCuts m EffiCuts ® CutSplit ® NeuroCuts
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Up to 3x better memory over all baselines. CutSplit is better at median.
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Machine learning for other networking problems

Network routing
- Deciding how packets should be forwared on a network by learning

- Optimizing network utilization, congestion, etc.

Congestion control
- Deciding how to control the congestion window by learning

- Accounting for multiple objectives: throughput, latency, smoothness

Cache management

- Learning-based CDN cache eviction policies

Machine Learning for Computer Systems and Networking:
A Survey

MARIOS EVANGELOS KANAKIS, Vrije Universiteit 2
RAMIN KHALILI, Huawei Munich Research Center
LIN WANG, Vrije Universiteit Amsterizm und TU Durmstadt

Machine learning (ML) has become the de-facto approach for various scien '
ion and natural langusge f ing. Despite recent breakthroughe, machine lesring has only made its
waty into the fundamental challenges in compulter systems und networking recently. This article altempls
n recent Literuture that uppeals for muchine learning-based solutions to traditional problems
tems and network st intraduce a taxonamy based on a set of major
nsive review per domain, where we compare the
traditional approaches against the machine learning based ones. Finally, we discuss the general limitations
of machine learning for computer systems and networking, including Jack of training data, training overhead,
real-time performance, and explainability, and reveal fisture research directions targeting these limitations.

CCS Concepts: + General and reference — Surveys and overviews; « Computer systems organization;
« Networks;

Additional Key Words and Phrases: Machine lesrning, computer systems, computer networking

ACM Reference format:
B Kanakis, Ramin Khalili, and Lin Wang, 2022. Machine Learni
y. ACM Comput, Surv. 88, 4, Article 77 (November 20,

for Computer Systems and

1 INTRODUCTION

Revolutionary research in machine learning (ML) has significantly disrupted the scientific com-
b solutions to long-lived chall Thanks to the i}

cloud data centers) and performance capabilities of processing units
nd TPUs), ML, p larly its rather ¢ tat subset
n [120 ished
ation, object recognition [3¢), and more to fol

munity by
in computing resources (
(e, accelerators like GPUs o
numely deep learning (DL), has g
dominance in vision tasks such as image cla:
low [58, 156). Other remarkable examples where ML is thriving include speech recognition

i
131]. In general, ML has estal

ed its
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Summary

oo &

Machine learning can be leverage to solve the decision-making problems in
networking, e.g., adaptive bitrate selection and packet classification.
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Next time: course summary
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