

Computer Networks (WS23/24) L1: Introduction

Prof. Dr. Lin Wang

Computer Networks Group (PBNet) Department of Computer Science Paderborn University

Materials inspired by Laurent Vanbever and Shyam Gollakota

About me

Full Professor at Paderborn University: since November 1, 2023

- Head of the Computer Networks Group
- Goal: making networked systems more scalable and sustainable

Assistant Professor at Vrije Universiteit Amsterdam: 2018 - 2023

- Led a team in the Computer Systems section

Previous positions

- TU Darmstadt (AYI, 2016 - 2018), SnT Luxembourg (RA, 2015 - 2016), ICT-CAS (PhD, 2012 - 2015), IMDEA Networks Institute (guest, 2012 - 2014), University of Oregon (guest, 2018)

https://linwang.info/

Data center in-network computing

Battery-free computing and networking

Looking for Postdocs, PhDs, and student assistants...

Course structure

Lectures

- Two lectures (Tuesdays and Fridays) per week, two hours each

Exercises

- Two exercise sessions per week, three hours each
- Exercises are organized in **two groups**; please attend the sessions accordingly

Projects (TBA)

- Two project assignments
- Implementation in C/C++, and/or Python

Textbooks

https://www.amazon.de/-/en/Andrew-S-Tanenbaum/dp/0132126958 https://book.systemsapproach.org/

Assessment

Exam

- 100% of the final grade
- Closed-book, closed-note, closed-laptop, written exam (90 mins, February 5, 2024)

Exercises are not graded

- But critically important for your exam preparation

Projects

- Bonus grades: passing a project bumps up a level of your final grade
- Only if you pass the final exam

Administrivia

Office hours

- Available by appointment
- Drop me an email at <u>lin.wang@upb.de</u> with title "[CN-WS23/24] Office hours"

Course material

- All teaching material will be released on PANDA
- Slides will be released (hopefully) right before each lecture
- Exercise questions will be released few days before the exercise sesssion

Integrity

Zero tolerance: You should never plagiarize anything in this course (and other courses)

What are considered plagiarism?

- Copy (part of) a solution from another team or from the Internet
- Buy a solution from any source
- Copy + make changes to any of the above

What happens if someone commits plagiarism

- The case will be reported to the examination committee
- It is up to them to decide on disciplinary actions

Computer Networks

What really happens when you visit google.com?

Google				
٩		<u>.</u>		
	Google Search I'm Feeling Lucky			
	Google offered in: Nederlands Frysk			

Can you name or even explain some of the terminologies behind it?

Course goals

After taking this course, you will be able to...

- Explain the basic principles of computer networks and the Internet
- Describe the layered architecture and explain the essential function(s) in each layer
- Apply basic information theory and network protocol specifications to calculate network properties
- Implement network protocols to build own customized networks and networked applications

Non-goals: preparation for Cisco certification, etc., althought relevant

Societal impact

The Internet is behind virtuall every service of our modern daily life

Societal impact

Network innovations can change the world in many different ways

Internet growth

LUMETA

Today's Internet

Estimated number of Internetconnected devices in 2023 Estimated **daily** global IP traffic in 2022

How large is one Exabyte?

Dominant traffic on the Internet

Internet changes during the pandemic

Following the lockdown in March 2020, a traffic increase by **15-20%** was seen on (wired) networks.

Internet changes during the pandemic

Internet is fragile

Internet outages are normal

Optus parent company Singtel says 'priority is about setting on a path of renewal for the benefit of the community and customers'

• Follow our Australia news live blog for latest updates

Get our morning and afternoon news emails, free app or daily news podcast

Doptus CEO Kelly Bayer Rosmarin resigns following Senate grilling about 14-hour network outage two weeks ago. Photograph: Mike Bowers/The Guardian

"Human factors are responsible for 50% to 80% of network outages"

Juniper Networks, What's Behind Network Downtime?, 2008

Networking Basics

Key questions to answer

- 1. What is a network made of?
- 2. How the network is shared?
- **3.** How is it organized?
- 4. How does communication happen?
- 5. How do we characterize it?

Key questions to answer

- 1. What is a network made of?
- 2. How the network is shared?
- 3. How is it organized?
- 4. How does communication happen?
- 5. How do we characterize it?

Basic network components

Key questions to answer

1. What is a network made of?

2. How the network is shared?

- 3. How is it organized?
- 4. How does communication happen?
- 5. How do we characterize it?

Requirements for the network topology

Tolerate failures

- More than one path should exist between nodes

Allow sharing to be feasible and cost-effective

- Number of links should not be too high

Provide ample capacity

- Number of links should not be too low

Different topology designs

Switched networks

Pro: sharing the per-node capacity can be adapted to fit the network needs **Con:** require special devices to perform: forwarding, routing, resource allocation

Sharing on switched networks

Two approaches to sharing

Circuit switching (reservation-based)

Packet switching (on-demand)

Circuit switching

Relies on the Resource Reservation Protocol

Step 1: source sends a reservation request for 10 Mpbs to destination

Step 2: switches on the path "establish a circuit"

Step 3: source starts sending data

Step 4: source sends a "teardown circuit" message

Data transfer with circuit switching

Low utilization when traffic is busty

High overhead for small traffic flows

Dealing with failures in circuit switching

Packet switching

Data transfer through independent packets

deciding where to forward the packet

Packet switching

Data transfer through independent packets that may "clash"

Packets are **buffered** to avoid transient overload

Dealing with failures in circuit switching

Circuit switching vs. packet switching

	Advantages	Disadvantages
Circuit switching	 Predictable performance Simple & fast switching 	 Inefficient for short/bursty traffic Complex circuit setup/teardown New circuit upon failure
Packet switching	 Efficient use of resources Simple to implement Route around failures 	 Unpredictable performance Buffer management and congestion control

Packet switching beats circuit switching

With repsect to resilience and efficiency

We will focus on packet switching in the rest of this course

Key questions to answer

- 1. What is a network made of?
- 2. How the network is shared?

3. How is it organized?

- 4. How does communication happen?
- 5. How do we characterize it?

The Internet is a network of networks

Internet hierarchy

IXP: Internet Exchange Point

Key questions to answer

- 1. What is a network made of?
- 2. How the network is shared?
- 3. How is it organized?
- 4. How does communication happen?
- 5. How do we characterize it?

Communication happens with protocols

A protocol is like a conversational convention: who should talk next and how they should respond

Each protocol is governed by a specific interface

Called Application Programming Interface (API)

Numerous protocols on the Internet

How to organize these protocols?

Modularity to the rescue

Photo: Donna Coveney

Modularity, based on abstractions, is **the** way things get done.

— Barbara Liskov, MIT

Layered architecture of network protocols

Internet protocols standardized by IETF

Andrew L. Russel. 'Rough Consensus and Running Code' and the Internet-OSI Standards War. IEEE Annals of the History of Computing, vol. 28(3), pp. 48-61, 2006.

Each layer provides a service to the upper layer

Network access

End-to-end delivery (reliable & unreliable)

Global best-effort delivery

Local best-effort delivery

Physical transfer of bits

The Internet hourglass

Applications ...built on... Reliable (or unreliable) transport ...built on... Best effort global packet delivery ...built on... Best effort local packet delivery ...built on... Physical transfer of bits

Each layer has a unit of data

Exchanges messages between processes

Transports **segments** between end-systems

Moves **packets** around the network

Moves **frames** across a network link

Moves **bits** across a communication medium

Encapsulation

Layers on network devices

Key questions to answer

- 1. What is a network made of?
- 2. How the network is shared?
- 3. How is it organized?
- 4. How does communication happen?
- 5. How do we characterize the network?

Network performance metrics

Delay

How long does it take for a packet to reach the destiantion?

Loss rate What fraction of packets

sent to a destination are dropped?

Throughput

At what rate is the destination receiving data from the source?

Different types of delay

Due to traffic mix and switch internals

Delay calculation

Transmission delay: amount of time required to push all of the bits onto the link, e.g., 1000 bits / 100 Gbps = 10 ns Queueing delay: the time a packet has to sit in a buffer before being processed, depending on the traffic pattern (burstiness)

Propagation delay: amount of time required for a bit to travel to the end of the link, e.g., 30 km / 2x10⁸ m/s = 150 μs

Loss rate

Throughput

The instantaneous rate at which a host receives data (need to consider the bottleneck link)

Throughput = min{
$$R_1, R_2$$
}, time = $\frac{s}{\min\{R_1, R_2\}} = \frac{80 \text{ Mb}}{5 \text{ Mbps}} = 16 \text{ sec}$

Network performance improvement

Throughput \uparrow delay \downarrow (propagation delay \approx , due to speed of light)

Content Distribution Networks (CDN), Edge Computing

Summary

What is a network made of?

- End-devices
- Switches/routers
- Links

How the network is shared?

- Circuit switching vs. packet switching

How the network is organized?

- ISPs, IXP, peering

How does communication happen?

- Protocols
- Layered architecture

How do we characterize a network?

- Delay
- Loss rate
- Throughput

Next time: network physical layer

Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition).

- Section 1: Introduction

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach.

- Section 1.5.1: Bandwidth and Delay

James F. Kuros, Keith W. Ross. Computer Networking: A Top-Down Approach.

- Chapter 1: Computer Networks and the Internet