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Framing



From stream of bits to sequence of frames
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Stream of bitsSequence of frames Sequence of frames

The receiver has to know how to seperate the 
stream of bits into frames

Here, we assume the bits are delivered in exactly the same order in which 
they are sent, which is typically true for a single link (a wire-like channel).



Simple idea: byte count
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5 1 2 3 4 5 6 7 8 9 8 0 1 2 3 4 5 6 8 ...

Byte count (one byte long)

Frame 1 (5 bytes) Frame 2 (5 bytes) Frame 3 (8 bytes) Frame 4...

What are the problems?



Byte count issue
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5 1 2 3 4 7 6 7 8 9 8 0 1 2 3 4 5 6 8 ...

Error

Frame 1 (5 bytes) Frame 2 (wrong)

5 1 2 3 4 5 6 7 8 9 8 0 1 2 3 4 5 6 8 ...

Not a byte count, 
out of sync

Difficult to resync after framing error; needs a way to scan for the start of a frame



Framing through byte stuffing

7

Header Payload TrailerFLAG FLAG

Use a special FLAG byte to 
indicate the start/end of a frame

11111110



Byte stuffing: issues
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Header TrailerFLAG FLAGFLAG

What if FLAG appears in the 
payload as part of the message?

11111110



Byte stuffing: escape
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Header TrailerFLAG FLAGFLAG

Use an ESCAPE code to escape 
FLAG in the message

What if ESCAPE appears in the 
payload as part of the message?

11111110



Byte stuffing: escaping escape
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Header TrailerFLAG FLAGFLAG

We also need to escape the 
ESCAPE code!

ESCAPE appears in the payload as 
part of the message

11111110



Byte stuffing: example
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A FLAG B

A ESC B

A ESC BFLAG

A ESC BESC

A ESC BFLAG

A ESC BESC

A ESC BFLAGESC ESC

A ESC BESCESC ESC



Byte stuffing: rules

When you see 

- Solitary FLAG: start or end of a frame 

- Solitary ESC: something went wrong 

- ESC FLAG: remove ESC and pass FLAG through 

- ESC ESC FLAG: remove ESC, pass ESC through, and then start or end of a frame 

- ESC ESC ESC FLAG: pass ESC FLAG through
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Framing through bit stuffing

Stuffing at the bit level 

- Call a FLAG six consecutive 1s 

- On transmit, after five consecutive 1s in the message, insert a 0 

- On receive, a 0 after five 1s is deleted
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Data bits

Transmitted bits 
with stuffing

0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 0

Stuffed bits



Framing through coding violations

Recall 4B/5B encoding 

- Map every 4 data bits into 5 code bits without long runs of zeros 

- 16 out of 32 possibilities are unused (not in regular data) 

Use some of reserved signals to delimit the frame 

- Easy to find the start and end of the frame 

- No need to stuff the data
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Link example: point-to point protocol (PPP)
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IP

PPP

SONET

IP

PPP

SONET

Optical fiber

...101101100...



Byte stuffing in PPP
FLAG: 0x7E (01111110), ESC: 0x7D (01111101)
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FLAG 
0111110

Address 
11111111

Control 
00000011

Protocol Payload Checksum
FLAG 

01111110

≈
≈

Size (in 
bytes)

1 1 1 1 or 2 Variable 2 or 4 1



Link example: Ethernet
The physical layer helps with the detection of frame boundaries

17https://www.ieee802.org/3/ 

Preamble SFD DMAC SMAC EtherType Payload FCS IPG

Ethernet frame (link layer)

7 octets (repeating 
10101010 7 times for 

clock synchronization)

Start frame 
delimiter, 1 octet 

(10101011)

Interpacket gap, 12 
octets (idle state)

Physical layer Physical layer

https://www.ieee802.org/3/


Error Detection and 
Correction



Errors

Some bits may be received in error (due to noise) 

- Detect errors with codes: drop the frame and 
let the higher layers to take corrective 
measures  

- Correct errors with codes: correct as many 
errors as possible 

Reliability is a concern that cuts across the layers 

- We will cover more in the upper layers
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Frame Frame

Bit error-prone link

0 1 1 1 0 1 0 1



Problem
Noise may flip the received bits
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0

1 1

0 0 0 0

1

0 0 0 0 0

1 1 1

0 0 0 0 0

1 1 1

Signal

Slightly noisy

Very noisy

Bit flips



Approach: adding redundancy

Error detection codes 

- Add check bits to the message bits to let some errors be detected at the receiver 

Error correction codes 

- Add more check bits to let some errors be corrected  

Key issue: How to construct the check bits? 

- Detect many errors with few check bits 

- Resonable computation at both the sender and receiver
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Motivating example
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Send two copies of the same message; error if different

How many errors can it 
detect/correct?

How many errors will 
make it fail?



Error codes
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D R=fn(D)

 data bitsm  check bitsr

D R'

R=fn(D)

Computer  check bits based 
on the  data bits; send the 

codeword of  bits

r
m

m + r

Receive  bits with unknown errors; 
recompute  check bits based on the  

data bits: error if R does not match R'

m + r
r m

?



Intuition for error codes
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Codewords  ( )2n = 2m2r

Valid codewords 
2m

Randomly chosen codeword is unlikely to be correct; overhead is low

Invalid 
codewords 2r



R. W. Hamming (1915 - 1998)

25https://doi.org/10.1002/j.1538-7305.1950.tb00463.x 

"If the computer can tell when 
an error has occurred, surely 

there is a way of telling where 
the error is so the computer 
can correct the error itself."

https://doi.org/10.1002/j.1538-7305.1950.tb00463.x


Hamming distance (HD)

Definition 

- The number of positions at which the corresponding symbols are different for two 
strings of equal length 

Hamming distance between two codewords (D1 and D2) is the number of bit flips needed to 
change D1 to D2 

Hamming distance of a code is the minimum error distance between any pair of codewords 
(bit-strings) that cannot be detected
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karolin kathrin

HD = 3
kathrin kerstin

HD = 4



Hamming distance requirements
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Error detection

For a coding of distance , up to  
errors will always be detected

d + 1 d

Error correction

For a coding of distance , up to  
errors can always be corrected by 

mapping to the closest valid codeword

2d + 1 d

Valid Invalid Valid Valid Invalid Valid



Hamming distance requirements example
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D1 W1 W2 D2
HD = 1 HD = 1 HD = 1

Received

Case 1

Case 2

Case 3

Originally, D1 had been sent, but 1 bit error occured

Originally, D2 had been sent, but 2 bit errors occured

Originally, some other data had been sent, but at least 2 bit errors occured

Assuming fewer errors have happened, a received frame W1 is 
presumed to have been caused by sending D1!



Simple error detection: parity bit

Take  data bits, add one check bit that is the sum of the  bits 

- Sum is modulo 2 or XOR 

How well does parity work? 

- What is the HD of the code? 

- How many errors will it detect/correct? 

What about larger errors?

D D

29

1 10110011

Parity bitData bits



Parity bit analysis
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1 10110011

1 10100011

1 00100011

Valid codeword

Invalid codeword

Valid codeword

Parity bits have HD = 2 Detect  bit errord = 1



Checksums

Idea: sum up data in  bit words 

- Widely used in network protocols like TCP/UDP and IP 

- Stronger protection than parity 

Internet checksum 

- Sum is defined in 1s compliment arithmetic (must add back carries)

k

31https://datatracker.ietf.org/doc/html/rfc791 

"The checksum field is the 16-bit one's compliment of the one's 
complement sum of all 16-bit words." – RFC 791

https://datatracker.ietf.org/doc/html/rfc791


Internet checksum example

Sending 

- Arrange data in 16-bit word 

- Put zero in the checksum position, add 

- Add any carryover back to get 16 bits 

- Negate (complement) to get sum
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0000000000000001 
1111001000000100 
1111010011110101 
1111011011110111 

+ 0000000000000000 
---------------- 
21101110111110001 
+               2 
---------------- 
1101110111110011 

(n) 0010001000001100

Add carry back

Negade to get 
1's complement



Internet checksum example

Receiving 

- Arrange data in 16-bit word 

- Checksum will be non-zero, add 

- Add any carryover back to get 16 bits 

- Negate (complement) and check if it is 0
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0000000000000001 
1111001000000100 
1111010011110101 
1111011011110111 

+ 0010001000001100 
---------------- 
21111111111111101 
+                2 
---------------- 
1111111111111111 

(n) 0000000000000000

Add carry back

Negade to get 
1's complement



Internet checksum
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Cyclic redundancy check (CRC) 

How does it work? 

- Given  data bits, generate  check bits such that the 
 bits are evenly divisible by a generator  

- Example: , ,  

The catch 

- It is based on mathematics of finite fields, in which 
"numbers" represent polynomials 

- This means we work with binary values and operate 
using modulo 2 arithmetic (XOR operations)

n k
n + k C

n = 302 k = 1 C = 3
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10011010

x7 + x4 + x3 + x1

n k % C = 0



CRC procedures

Sending 

- Extend the  data bits with  zero bits 

- Divide by the generator value  (highest 
order is , hence  terms) 

- Keep remainder, ignore quotient 

- Adjust  check bits by remainder 

Receiving 

- Divide and check for zero remainder

n k

C
k k + 1

k

36

Data bits

10110011

Check bits

 
 

C(x) = x4 + x1 + 1
C = 10011

k = 4



CRC example
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Transmitted bits: 101100110100



CRC properties

Error protection depends on the generator 

- For standard CRC-32 it is 10000010 01100000 10001110 110110111 

Properties 

- , detects up to triple bit errors 

- Odd number of errors 

- Bursts of up to  bits in error 

- Not vulnerable to systematic errors like checksums

HD = 4

k

38



Why error correction is hard

If we had reliable check bits we could use them to narror down the position of the error 

- The correction can then be easily done 

Errors can be in the check bits as well as the data bits! 

- Data might even be correct, but not the check bits 

Intuition for error correcting code 

- Suppose we construct a code with a Hamming distance of at least 3 

- If we assume errors are only one bit, we can correct them by mapping an error to the 
closest valid codeword: works for  errors if the hamming distance d ≥ 2d + 1

39



Intuition

40

A

B

Valid codeword

Error codeword



Intuition
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A

B

Valid codeword

Error codeword

Single bit error from A

Three bits errors 
to get to B



Required redundancy bits

Assume we have  data bits and  check bits, i.e.,  

- For each of the  valid codewords, there are  invalid codewords at a distance of one 
from it (formed by systematically inverting each of the  bits) 

- Each of the  valid codewords requires  bit patterns dedicated to it 

The number of check bits required must satisfy 

m r n = m + r

2m n
n

2m n + 1

42

 ⇒ (n + 1)2m ≤ 2n (m + r + 1) ≤ 2r



Hamming code

A method for constructing a code with  

- Uses , e.g., ,  

- Put the check bits in positions  that are powers of 2, starting with position 1 

- Check bit in position  is parity of positions with a -th term in their values 

There is an easy way to correct errors

HD = 3

m = 2r − r − 1 m = 4 r = 3

p

p p

43

001 010 011 100 101 110 111

1 2 3 4 5 6 7



Hamming code example

Data: 0101, 3 check bits 

- 7-bit code, check bit positions 1, 2, and 4 

- Check 1 covers positions 1, 3, 5, and 7 

- Check 2 covers positions 2, 3, 6, 7 

- Check 4 covers positions 4, 5, 6, 7

44

1 2 3 4 5 6 7



Hamming code example

Data: 0101, 3 check bits 

- 7-bit code, check bit positions 1, 2, and 4 

- Check 1 covers positions 1, 3, 5, and 7 

- Check 2 covers positions 2, 3, 6, 7 

- Check 4 covers positions 4, 5, 6, 7 

Check bits calculation 

-  

-  

-

p1 = 0 + 1 + 1 = 0

p2 = 0 + 0 + 1 = 1

p4 = 1 + 0 + 1 = 0
45

0 1 0 0 1 0 1

1 2 3 4 5 6 7



Hamming code example

Decode 

- Recompute check bits (with parity sum 
including the check bit) 

- Arrange as a binary number 

- Value (syndrome) tells error position 

- Value of zero means no error; flip bit to 
correct the error otherwise

46

0 1 0 0 1 0 1

1 2 3 4 5 6 7

p1 = 0 + 0 + 1 + 1 = 0

p2 = 1 + 0 + 0 + 1 = 0

p4 = 0 + 1 + 0 + 1 = 0

 ⇒ no errorsyndrome = 0



Hamming code example

Decode 

- Recompute check bits (with parity sum 
including the check bit) 

- Arrange as a binary number 

- Value (syndrome) tells error position 

- Value of zero means no error; flip bit to 
correct the error otherwise

47

0 1 0 0 1 1 1

1 2 3 4 5 6 7

p1 = 0 + 0 + 1 + 1 = 0

p2 = 1 + 0 + 1 + 1 = 1

p4 = 0 + 1 + 1 + 1 = 1

 ⇒ flip position 6syndrome = 110

Data is 0101, correct after the flip!



Other error correction codes

Real-world codes are more involved than Hamming code 

Example: convolutional codes 

- Take a stream of data and output a mix of the input bits 

- Spreads the impact of errors across multiple bits in the encoded sequence; makes each 
output bit less fragile 

- Decode using Viterbi algorithm (which can use bit confidence values)

48https://en.wikipedia.org/wiki/Convolutional_code 

https://en.wikipedia.org/wiki/Convolutional_code


Other codes: Turbo codes

Turbo codes 

- Evolution of convolutional codes 

- Sends multiple sets of parity bits with payload, 
decodes sets togehter (e.g., Sudoku) 

- Used in 3G and 4G cellular technologies 

Low Density Parity Check (LDPC) codes 

- Based on sparse matrices 

- Decodes iteratively using a belief propagation 
algorithm

49

Claude Berrou

Robert Gallager



Error detection vs. correction

Which is better? 

- Depends on the error pattern 

- Example: 1000-bit messages with a bit error rate (BER) of 1 in 10.000 

Which has less overhead? 

- It still depends. We need to know more about the errors!

50



Error detection vs. correction

Assume bit errors are random 

- Messages have 0 or maybe 1 error (1/10 of the time) 

Error correction 

- Needs ~10 check bits per message 

Error detection 

- Needs ~1 check bits per message plus 1000 bits retransmission 1/10 of the time

51



Error detection vs. correction

Assume errors come in bursts of 100 

- Only 1 or 2 messages in 1.000 have significant (multi-bit) errors 

Error correction 

- Needs >> 100 check bits per message 

Error detection 

- Needs 32 check bits per message plus 1000 bits resend 2/1000 of the time

52



Error detection vs. correction

Error correction 

- Needed when errors are expected 

- When no time for retransmission 

- Example: wireless networks (physical), real-time video streaming (application) 

Error detection 

- More efficient when errors are not expected 

- When errors are large when they do occur 

- Example: TCP, UDP, IP

53



Error correction in practice

Heavily used in the physical layer 

- LDPC is the future, used for demanding links like 802.11 

- Convolutional codes widely used in practice 

Error detection (with retransmission) is used in the link layer and above for residual 
errors 

Correction also used in the application layer 

- Forward Error Correction (FEC) 

- Normally with an erasure error model, e.g., Reed-Solumon (CDs, DVDs...)

54



Reliability via 
Retransmission



Where should we place reliability functions?

56

Application

Transport

Network

Link

Physical



End-to-end principle
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Application

Transport

Network

Link

Physical

Retransmission for 
correctness

Retransmission for 
performance 
optimization

[TOCS'84]



ARQ (automatic repeat request)

ARQ is often used when errors are common or must be corrected 

- For example: WiFi (at the link layer), and TCP (at the transport layer) 

Rules at the sender and receiver 

- Receiver automatically acknowledges correct frames with an acknowledgement (ACK) 

- Sender automatically resends after a timeout, until an ACK is received

58



ARQ operations
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Sender Receiver

Frame

ACK
Time

Timeout

Sender Receiver

Frame

Time

Timeout

Resend

ACK



Problems with ARQ
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Sender Receiver

Frame

ACK
Time

Timeout

ACK can be lost

Sender Receiver

Frame

Time

Timeout

Resend

ACK

ACK

Was it a new frame or a repeated frame?



Problems with ARQ
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Sender Receiver

Frame

Time

Timeout

Timeout maybe too early

Sender Receiver

Frame

Time

Timeout

Frame

ACK

Was it a new frame or a repeated frame?

ACK
ACK



What's tricky about ARQ?

Two non-trivial issues 

- How long to set the timeout? 

- How to avoid accepting duplicate frames as new frames? 

Want performance in the common case and correctness always 

Any ideas?
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Timeouts

Timeouts should be 

- Not too big: link goes idle, low efficiency 

- Not too small: spurious resend, low efficiency 

Fairly easy on a local area network (LAN) 

- Clear worst case, little variation 

Fairly difficult over the Internet 

- Much variation, no obvious bound 

- We will revisit this problem with TCP later
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Sequence numbers

Frames and ACKs must both carry sequence numbers 

- Sender and receiver agree on the status of each frame to ensure correctness 

To distinguish the current frame from the next one, a single bit (two numbers) is 
sufficient 

- So called stop-and-wait

64



Stop-and-wait
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Sender Receiver

Frame 0

ACK 0
Time

Timeout

Frame 1

ACK 1

Sender Receiver

Frame 0

ACK 0

Timeout

Frame 0

ACK 0

Normal case With ACK lost

It was a resend, 
drop the duplicate



Stop-and-wait
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Sender Receiver

Frame

Time

Timeout

Sender Receiver

Frame 0

Timeout

Frame 0

ACK 0

ACK

ACK 0

It was a resend, 
drop the duplicateOK, let's 

proceed



Limitations of stop-and-wait

Allows only a single frame to be outstanding from the sender 

- Good for LAN, not efficient for high BDP 

Example:  Mbps,  ms 

- Per-frame latency: 100 ms → 10 frames/sec 

- Link utilization:  

- What if  Mbps?

R = 1 D = 50

(10 × 1500 × 8)/(1 × 106) = 12 %

R = 10
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Sliding window

Generalization of stop-and-wait 

- Allows  frames to be outstanding 

- Can send  frames per RTT (= ) 

- Various options for numbering frames/ACKs and handling loss

W

W 2D
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Sliding window

69

Last ACK 
Received

Last Frame 
Sent

 SWS≤

... ...

Sender

Last Frame 
Received

Last Acceptable 
Frame

 RWS≤

... ...

Receiver

We will discuss more about it in the transport layer



Summary

Framing 

- Byte stuffing 

- Bit stuffing 

- Coding violations 

Error detection and correction 

- Hamming distance and requirements 

- Error detection codes (parity, 
checksum, CRC) 

- Error correction codes (Hamming code)
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Reliability via retransmission 

- Automatic repeat request (ARQ) 

- Stop-and-wait 

- Sliding windows



Next time: data link layer 
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How to interconnect more than two end-devices on a network?

Hub vs. switch

Hosts (servers, laptops)



Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition). 

- Chapter 3: The Data Link Layer 

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach. 

- Chapters 2.3: Framing 

- Chapter 2.4: Error Detection 

- Chapter 2.5: Reliable Transmission
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