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Learning objectives
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Application
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Network

Link

Physical

Part 2 
- Routing, shortest-path algorithms 
- Intra-domain routing (link-state vs. distance vector) 
- Inter-domain routing (BGP)

How to find a path between two 
entities on the Internet?

Switch
Router



Routing and Shortest Path 
Algorithms



Problems with spanning tree
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Unused!

Upon failures, it takes time to 
reconstruct the spanning tree protocol

Many links are unused (not on the 
spanning tree), leading to low 
efficiency

Keep all the links, apply routing to 
find the best path!



Bandwidth allocation
Many mechanisms, including routing, deal with bandwidth allocation
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Mechanism Timescale / adaptation

Load-sensitive routing

Routing

Traffic engineering

Seconds / traffic hotspots

Minutes / equipment failures

Hours / network load

Months / network customersProvisioning



Delivery goals
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Unicast Broadcast Multicast Anycast



Routing goals
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Correctness 

Find paths that work

Efficiency 

Use network bandwidth well

Fairness 

Does not starve any nodes

Fast 

Recovers quickly after changes

Scalability 

Works well as network grows large



Rules of routing algorithms

Decentralized, distributed setting 

- All nodes are alike; no central controller 

- Nodes only know what they learn by 
exchanging messages with neighbors 

- Nodes operate concurrently 

- There might be node/link/message 
failures 
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Whos's there?



Definition of "best" paths

Shortest paths 

In terms of... 

- Latency, avoid circuitous paths 

- Bandwidth, avoid slow links 

- Money, avoid expensive links 

- Hops, to reduce switching 

Only consider topology 

- Not workload like hotspots
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Cost function on links

Approximate "best" by a cost function that captures 
multiple factors 

- Assign each link a cost (distance) 

- Define best path between each pair of nodes as the 
path that has the lowest total cost (or is shortest) 

- Pick randomly to break any ties 

Example: best path from A to E 

- All links are bidirectional (can be extended to 
asymetric cases)
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Shortest paths

Shortest path A-E: A-B-C-E 

- dist(ABCE) = 4 + 2 + 1 = 7 

Other paths 

- dist(ABE) = 8 

- dist(ABFE) = 9 

- dist(AE) = 10 

- dist(ABCDE) = 10
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Optimality property

Subpaths of shortest paths are also 
shortest paths 

- ABCE is a shortest path 

- So are ABC, AB, BCE, BC, CE 

Sink (or source) trees 

- The union of all shortest paths towards 
the destination (or from the source) 

Example: find the sink tree of E
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Sink tree

Implications 

- Only need to use destination to 
follow shortest paths 

- Each node only need to send to the 
next hop 

Forwarding table at a node 

- Lists next hop for each destination 

- Routing table may know more
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Shortest path calculation
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How to calculate the shortest path?
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Edsger W. Dijkstra (1930-2002)

Famous computer scientiest 

- Programming languages 

- Distributed algorithms 

- Program verification 

- EWD manuscripts (nice to read) 

Dijkstra's algorithm, 1969 

- Single-source shortest paths, given network with 
non-negative link costs

15https://www.cs.utexas.edu/~EWD/ 

https://www.cs.utexas.edu/~EWD/




Dijkstra's algorithm

Mark all nodes tentative, set distances from source to 0 for source, and infinity for all 
other nodes 

While tentative nodes remain 

- Extract , a node with lowest distance 

- Add link to  to the shortest path tree 

- Relax the distance of neighbors of  by lowering any better distance estimates

N

N

N
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Dijkstra's algorithm example
Initialize
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Dijkstra's algorithm example
Relax around A
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Dijkstra's algorithm example
Relax around B
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Dijkstra's algorithm example
Relax around C

21

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

Distance reduced

3



Dijkstra's algorithm example
Relax around G
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Dijkstra's algorithm example
Relax around F
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Dijkstra's algorithm example
Relax around E
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Dijkstra's algorithm example
Relax around D
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Dijkstra's algorithm example
Relax around H
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Dijkstra's algorithm remarks

Finds shortest paths in order of increasing distance from source 

- Leverages the optimality property 

Runtime depends on efficiency of extracting min-cost node 

- Superlinear in network size (grows fast), worst case  where  is the number of 
nodes in the network 

Gives the complete source/sink tree 

- More than needed for forwarding 

- Requires the complete topology 

O(n2) n
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Internet routing problems

28

Berlin

Munich

Bonn

Paderborn

Hamburg

Stuttgart

Frankfurt
Dresden

Intra-domain routing
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Internet routing problems
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traceroute to www.google.de (142.250.186.99), 64 hops max, 52 byte packets 
 1  192.168.2.1 (192.168.2.1)  3.151 ms  3.217 ms * 
 2  p3e9bf336.dip0.t-ipconnect.de (62.155.243.54)  58.827 ms  14.692 ms  4.476 ms 
 3  f-ed11-i.f.de.net.dtag.de (217.5.116.94)  13.844 ms  10.749 ms  11.293 ms 
 4  80.156.160.118 (80.156.160.118)  13.974 ms  13.043 ms  12.354 ms 
 5  * * * 

 6  142.250.214.196 (142.250.214.196)  13.960 ms 
    142.251.64.180 (142.251.64.180)  11.910 ms 
    142.250.236.36 (142.250.236.36)  11.192 ms 

 7  108.170.252.83 (108.170.252.83)  11.742 ms  11.915 ms  11.555 ms 
 8  fra24s06-in-f3.1e100.net (142.250.186.99)  11.227 ms  11.496 ms  13.420 ms

Intra-domain routing
Inter-domain 

routing



Intra-Domain Routing



Link-state protocol

Routers build a precise map of the network by flooding local views to everyone 

- Each router keeps track of its incident links and cost (and up/down status) 

- Each router broadcasts its own links state to give every router a complete view of the 
graph 

- Routers run Dijkstra's algorithm on the corresponding graph to compute their shortest 
paths and forwarding tables 

Flooding is performed as in L2 learning 

- Every node sends its link state on all its links 

- Next node does the same, except on the link where the information arrived
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Reliability

All nodes are ensured to receive the latest version of all link states 

Challenges 

- Packet loss 

- Out of order arrival  

Solutions 

- ACK and retranmissions 

- Sequence number 

- Time-to-live (TTL) for each link state

32



Flooding conditions
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Topology change 
(caused by link/node 

failure/recovery)

Configuration change 
(caused by link cost 

change)

Periodically (to refresh 
the link state 
information)



Detecting topology changes
Using software-based beaconing
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A B"hello"

Routers periodically exchange "hello" 
messages in both directions (e.g., every 30s)

A failure is triggered if few "hello" messages 
are missed in a row (e.g., after 3 missed ones)

Tradeoffs between: 
- Detection speed 
- Bandwidth and CPU overhead 
- False positive/negatives



Consistency is important
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Control-plane 
consistency

Forwarding validity

Necessary

All nodes have the same link-state 
database

The global forwarding state directs 
packet to its destination

Hard to ensure consistency during network changes 



Inconsistency: black holes
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Inconsistency: transient loops
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Two link-state protocols
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OSPF 
Open Shortest Path First

IS-IS 
Intermediate Systems

Used in many enterprise / ISPs 
Works on top of IP 

Only route IPv4 by default

Used mostly in large ISPs 
Works on top of link layer 
Network protocol agnostic



Distance-vector protocols

Based on the Bellman-Ford algorithm 

- Let  be the cost of the least-cost path known by  to reach  

- Until convergence: each node bundles these distances into one message (called a 
vector) that it repeatedly sends to all its neighbors 

- Each node updates its distances based on neighbor's vectors

dx(y) x y

39https://en.wikipedia.org/wiki/Bellman–Ford_algorithm 

dx(y) = min
v

c(x, v) + dv(y)

c(x, v)
v

dv(y)

...x y

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm


Conditions for sending new distance vectors
Similarly done as in the link-state protocols

40

Topology change 
(caused by link/node 

failure/recovery)

Configuration change 
(caused by link cost 

change)

Periodically (to refresh 
the link state 
information)



Distance-vector protocol example: one-hop
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Distance-vector protocol example: two-hop
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Distance-vector protocol example: three-hop
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Convergence analysis
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Necessary condition for convergence: #iterations no 
smaller than the diameter of the network



Convergence process: initial state
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Convergence process: t=0
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Convergence process: t=1
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Convergence process: t=2
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Good news travels fast!



Convergence process: t=0
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Convergence process: t=1
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Convergence process: t=2
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Convergence process: t=3
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Convergence process: t=4
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Convergence process: t=5
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Convergence process: t>58
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Bad news travels slowly!



Count-to-infinity
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Potential mitigations to count-to-infinity

Approximation of infinity 

- For example, hop count is considered infinity when it reaches 16 

- Limited to a small network 

Split horizon (with poison reverse) 

- A node does not send routes (or sends infinity) to nodes from which the routes were 
learned 

- Limited to loops involving two nodes
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Routing information protocol (RIP)

An implementation of distance-vector routing for inter-network connections 

- First protocol used by ARPANET (the forerunner of the Internet) 

- Simply, easy to implement 

- A cost of 16 represents infinity (poor scalability) 

- Count-to-infinity issue (rarely used nowadays)

60https://datatracker.ietf.org/doc/html/rfc2453 

https://datatracker.ietf.org/doc/html/rfc2453


Link-state vs. distance-vector routing
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Message complexity Convergence speed Robustness

Link 
state

Distance 
vector

O(nE ) Relatively fast
Node can advertise 

incorrect link cost (but 
compute its own table)

Between 
neighbors

Slow

Node can advertise 
incorrect path cost 
(errors propagate)

: number of nodes, : number of linksn E



Inter-Domain Routing



Internet: a network of networks in ASes
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Each AS has a 
number in 16 bits



Border Gateway Protocol (BGP)
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BGP sessions

ASes use BGP to exchange information about the IP prefixes they 
can reach, directly or indirectly

130.69.0.0/16



BGP challenges

High number of networks and IP prefixes 

- 1M prefixes, more than 70K networks, millions of routers 

Networks do not want to divulge internal topologies 

- Or their business relationships 

Networks need to control where to send and receive traffic 

- Without an Internet-wide notion of a link cost metric
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Link-state routing does not solve them

Floods topology information 

- High processing overhead 

Requires each node to compute the entire graph 

- High processing overhead 

Minimizes some notion of total distance 

- Works only if the policy is shared and uniform across ASes
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Distance-vector routing is on the right track

Pros 

- High details of the network topology: nodes determin only "next-hop" for each 
destination 

Cons 

- Still minimizes some common distance: impossible to achieve in an inter-domain 
setting 

- Converges slowly: count-to-infinity problem
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Path-vector routing in BGP
Advertise the entire path instead of distances
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Path-vector routing in BGP
Append the AS ID to the path received when advertising
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Path-vector routing in BGP
Each AS chooses (NOT) to advertise certain paths 
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Path-vector routing in BGP
Check for possible loops
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Path-vector routing in BGP

Life of BGP routers 

- Receives routes from its neighbors 

- Select on best route for each prefix 

- Export the best route to its neighbors 

Each AS can apply local routing policies and is free to 

- Select and use any path (preferably, the cheapest one) 

- Decide which path to export (if any) to which neighbor (preferably none to minimize 
carried traffic)
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Path-vector routing in BGP
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AS20: always prefer Deutsche Telekom over Google



Path-vector routing in BGP
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Policy and economics play a 
bit role in BGP!



Innovations in the network layer

Many Future Internet projects 15 years back 

- Named Data Networking (NDN) 

- eXpressive Internet Architecture (XIA) 

- MobilityFirst 

Information Centric Networking (ICN) 

- Still an open research topic

76http://www.nets-fia.net/ 

http://www.nets-fia.net/


Summary

Routing 

- Goals and rules 

- Best path definition 

- Dijkstra's algorithm 

- Internet routing 

Intra-domain routing 

- Link-state protocol 

- Distance vector protocol
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Inter-domain routing 

- BGP 

- Path-vector routing



Next time: transport layer

78

How to ensure reliability?



Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition). 

- Section 5.2: Routing Algorithms 

- Section 5.6: The Network Layer in the Internet 

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach. 

- Section 3.4: Routing 

- Section 4.1: Global Internet
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