
Computer Networks (WS23/24)
L6: The Network Layer - Part 2

Prof. Dr. Lin Wang
Computer Networks Group (PBNet)
Department of Computer Science
Paderborn University

Materials inspired by Shyam Gollakota and Laurent Vanbever

Learning objectives

2

Application

Transport

Network

Link

Physical

Part 2
- Routing, shortest-path algorithms
- Intra-domain routing (link-state vs. distance vector)
- Inter-domain routing (BGP)

How to find a path between two
entities on the Internet?

Switch
Router

Routing and Shortest Path
Algorithms

Problems with spanning tree

4

A B

C

D

E F

Unused!

Upon failures, it takes time to
reconstruct the spanning tree protocol

Many links are unused (not on the
spanning tree), leading to low
efficiency

Keep all the links, apply routing to
find the best path!

Bandwidth allocation
Many mechanisms, including routing, deal with bandwidth allocation

5

Mechanism Timescale / adaptation

Load-sensitive routing

Routing

Traffic engineering

Seconds / traffic hotspots

Minutes / equipment failures

Hours / network load

Months / network customersProvisioning

Delivery goals

6

Unicast Broadcast Multicast Anycast

Routing goals

7

Correctness

Find paths that work

Efficiency

Use network bandwidth well

Fairness

Does not starve any nodes

Fast

Recovers quickly after changes

Scalability

Works well as network grows large

Rules of routing algorithms

Decentralized, distributed setting

- All nodes are alike; no central controller

- Nodes only know what they learn by
exchanging messages with neighbors

- Nodes operate concurrently

- There might be node/link/message
failures

8

Whos's there?

Definition of "best" paths

Shortest paths

In terms of...

- Latency, avoid circuitous paths

- Bandwidth, avoid slow links

- Money, avoid expensive links

- Hops, to reduce switching

Only consider topology

- Not workload like hotspots

9

A B

C

D

E

F

G

H

Cost function on links

Approximate "best" by a cost function that captures
multiple factors

- Assign each link a cost (distance)

- Define best path between each pair of nodes as the
path that has the lowest total cost (or is shortest)

- Pick randomly to break any ties

Example: best path from A to E

- All links are bidirectional (can be extended to
asymetric cases)

10

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

3

Shortest paths

Shortest path A-E: A-B-C-E

- dist(ABCE) = 4 + 2 + 1 = 7

Other paths

- dist(ABE) = 8

- dist(ABFE) = 9

- dist(AE) = 10

- dist(ABCDE) = 10

11

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

3

Optimality property

Subpaths of shortest paths are also
shortest paths

- ABCE is a shortest path

- So are ABC, AB, BCE, BC, CE

Sink (or source) trees

- The union of all shortest paths towards
the destination (or from the source)

Example: find the sink tree of E

12

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

3

Sink tree

Implications

- Only need to use destination to
follow shortest paths

- Each node only need to send to the
next hop

Forwarding table at a node

- Lists next hop for each destination

- Routing table may know more

13

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

3

Shortest path calculation

14

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

Source tree for E

How to calculate the shortest path?

3

Edsger W. Dijkstra (1930-2002)

Famous computer scientiest

- Programming languages

- Distributed algorithms

- Program verification

- EWD manuscripts (nice to read)

Dijkstra's algorithm, 1969

- Single-source shortest paths, given network with
non-negative link costs

15https://www.cs.utexas.edu/~EWD/

https://www.cs.utexas.edu/~EWD/

Dijkstra's algorithm

Mark all nodes tentative, set distances from source to 0 for source, and infinity for all
other nodes

While tentative nodes remain

- Extract , a node with lowest distance

- Add link to to the shortest path tree

- Relax the distance of neighbors of by lowering any better distance estimates

N

N

N

17

Dijkstra's algorithm example
Initialize

18

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

∞

∞

∞
∞

∞

∞

∞

3

Dijkstra's algorithm example
Relax around A

19

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

10

∞

∞
∞

∞

∞

4

Distance reduced

3

Dijkstra's algorithm example
Relax around B

20

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

8

∞

6
∞

7

7

4

Distance reduced

3

Dijkstra's algorithm example
Relax around C

21

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

Distance reduced

3

Dijkstra's algorithm example
Relax around G

22

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

3

No changes needed

Dijkstra's algorithm example
Relax around F

23

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

3

No changes needed

Dijkstra's algorithm example
Relax around E

24

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

3

No changes needed

Dijkstra's algorithm example
Relax around D

25

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

3

No changes needed

Dijkstra's algorithm example
Relax around H

26

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2 2

0

7

8

6
9

7

7

4

3

Done!

Dijkstra's algorithm remarks

Finds shortest paths in order of increasing distance from source

- Leverages the optimality property

Runtime depends on efficiency of extracting min-cost node

- Superlinear in network size (grows fast), worst case where is the number of
nodes in the network

Gives the complete source/sink tree

- More than needed for forwarding

- Requires the complete topology

O(n2) n

27

Internet routing problems

28

Berlin

Munich

Bonn

Paderborn

Hamburg

Stuttgart

Frankfurt
Dresden

Intra-domain routing

Inter-domain routing

Internet routing problems

29

traceroute to www.google.de (142.250.186.99), 64 hops max, 52 byte packets
 1 192.168.2.1 (192.168.2.1) 3.151 ms 3.217 ms *
 2 p3e9bf336.dip0.t-ipconnect.de (62.155.243.54) 58.827 ms 14.692 ms 4.476 ms
 3 f-ed11-i.f.de.net.dtag.de (217.5.116.94) 13.844 ms 10.749 ms 11.293 ms
 4 80.156.160.118 (80.156.160.118) 13.974 ms 13.043 ms 12.354 ms
 5 * * *

 6 142.250.214.196 (142.250.214.196) 13.960 ms
 142.251.64.180 (142.251.64.180) 11.910 ms
 142.250.236.36 (142.250.236.36) 11.192 ms

 7 108.170.252.83 (108.170.252.83) 11.742 ms 11.915 ms 11.555 ms
 8 fra24s06-in-f3.1e100.net (142.250.186.99) 11.227 ms 11.496 ms 13.420 ms

Intra-domain routing
Inter-domain

routing

Intra-Domain Routing

Link-state protocol

Routers build a precise map of the network by flooding local views to everyone

- Each router keeps track of its incident links and cost (and up/down status)

- Each router broadcasts its own links state to give every router a complete view of the
graph

- Routers run Dijkstra's algorithm on the corresponding graph to compute their shortest
paths and forwarding tables

Flooding is performed as in L2 learning

- Every node sends its link state on all its links

- Next node does the same, except on the link where the information arrived

31

Reliability

All nodes are ensured to receive the latest version of all link states

Challenges

- Packet loss

- Out of order arrival

Solutions

- ACK and retranmissions

- Sequence number

- Time-to-live (TTL) for each link state

32

Flooding conditions

33

Topology change
(caused by link/node

failure/recovery)

Configuration change
(caused by link cost

change)

Periodically (to refresh
the link state
information)

Detecting topology changes
Using software-based beaconing

34

A B"hello"

Routers periodically exchange "hello"
messages in both directions (e.g., every 30s)

A failure is triggered if few "hello" messages
are missed in a row (e.g., after 3 missed ones)

Tradeoffs between:
- Detection speed
- Bandwidth and CPU overhead
- False positive/negatives

Consistency is important

35

Control-plane
consistency

Forwarding validity

Necessary

All nodes have the same link-state
database

The global forwarding state directs
packet to its destination

Hard to ensure consistency during network changes

Inconsistency: black holes

36

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2

3

Depending on the timeout for
detecting lost "hello" messages

Inconsistency: transient loops

37

A B

C

D

E

F

G

H

4

3
3

2

2

1
4

10

4

2

3

C learns about the failure and
reroute to B immediately, but B is

not aware of the failure yet

Two link-state protocols

38

OSPF
Open Shortest Path First

IS-IS
Intermediate Systems

Used in many enterprise / ISPs
Works on top of IP

Only route IPv4 by default

Used mostly in large ISPs
Works on top of link layer
Network protocol agnostic

Distance-vector protocols

Based on the Bellman-Ford algorithm

- Let be the cost of the least-cost path known by to reach

- Until convergence: each node bundles these distances into one message (called a
vector) that it repeatedly sends to all its neighbors

- Each node updates its distances based on neighbor's vectors

dx(y) x y

39https://en.wikipedia.org/wiki/Bellman–Ford_algorithm

dx(y) = min
v

c(x, v) + dv(y)

c(x, v)
v

dv(y)

...x y

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Conditions for sending new distance vectors
Similarly done as in the link-state protocols

40

Topology change
(caused by link/node

failure/recovery)

Configuration change
(caused by link cost

change)

Periodically (to refresh
the link state
information)

Distance-vector protocol example: one-hop

41

A
B

D

C
F

E

2

4

6

3 1

1 1

3

C

Dst Cost Next

A Inf -

B Inf -

C 0 C

D 1 D

E Inf -

F 1 F

D

Dst Cost Next

A Inf -

B 3 B

C 1 C

D 0 D

E Inf -

F Inf -

E

Dst Cost Next

A 2 A

B Inf -

C Inf -

D Inf -

E 0 E

F 3 F

F

Dst Cost Next

A 6 A

B 1 B

C 1 C

D Inf -

E 3 E

F 0 F

A

Dst Cost Next

A 0 A

B 4 B

C Inf -

D Inf -

E 2 E

F 6 F

B

Dst Cost Next

A 4 A

B 0 B

C Inf -

D 3 D

E Inf -

F 1 F

Distance-vector protocol example: two-hop

42

A
B

D

C
F

E

2

4

6

3 1

1 1

3

C

Dst Cost Next

A 7 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

D

Dst Cost Next

A 7 B

B 3 B

C 1 C

D 0 D

E Inf -

F 2 C

E

Dst Cost Next

A 2 A

B 4 F

C 4 F

D Inf -

E 0 E

F 3 F

F

Dst Cost Next

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

A

Dst Cost Next

A 0 A

B 4 B

C 7 F

D 7 B

E 2 E

F 5 E

B

Dst Cost Next

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Distance-vector protocol example: three-hop

43

A
B

D

C
F

E

2

4

6

3 1

1 1

3

C

Dst Cost Next

A 6 F

B 2 F

C 0 C

D 1 D

E 4 F

F 1 F

D

Dst Cost Next

A 7 B

B 3 B

C 1 C

D 0 D

E 5 C

F 2 C

E

Dst Cost Next

A 2 A

B 4 F

C 4 F

D 5 F

E 0 E

F 3 F

F

Dst Cost Next

A 5 B

B 1 B

C 1 C

D 2 C

E 3 E

F 0 F

A

Dst Cost Next

A 0 A

B 4 B

C 6 E

D 7 B

E 2 E

F 5 E

B

Dst Cost Next

A 4 A

B 0 B

C 2 F

D 3 D

E 4 F

F 1 F

Convergence analysis

44

A

B

C

D

E

F

G

t=0

t=1

t=2
t=3

t=4

Necessary condition for convergence: #iterations no
smaller than the diameter of the network

Convergence process: initial state

45

X Z

Y
4 1

Destination

X

Vector at Y Distance

4

Z 1

Destination

X

Vector at Z Distance

5

Y 1

Convergence process: t=0

46

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

5

Y 1

1

(X,Y) weight changes
from 4 to 1

Node detects local cost change, update their vectors, and
notify their neighbors if it has changed

4

Convergence process: t=1

47

X Z

Y
4 1

Destination

X

Vector at Y Distance

1

Z 1

Destination

X

Vector at Z Distance

5

Y 1

1

Y updates its vector,
sends it to X and Z

Convergence process: t=2

48

X Z

Y
4 1

Destination

X

Vector at Y Distance

1

Z 1

Destination

X

Vector at Z Distance

2

Y 1

1
Z updates its vector,

sends it to Y

No one moves any more, network has converged!

Good news travels fast!

Convergence process: t=0

50

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

5

Y 1

Node detects local cost change, update their vectors, and
notify their neighbors if it has changed

4

60

(X,Y) weight changes
from 4 to 60

Convergence process: t=1

51

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

5

Y 1

60

60

Y updates its vector,
sends it to X and Z

Convergence process: t=2

52

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

5

Y 1

60

60 Z notices that it has
a shorter path to X, send

this info to Y

Convergence process: t=3

53

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

5

Y 1

6

60

Y updates its vector,
sends it to X and Z

There is no way for Y to tell if the distance vector
advertised by Z is through itself

Convergence process: t=4

54

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

7

Y 1

6

60

Z does not know that Y has switched to use itself

Z updates its distance
vector and send it to Y

Convergence process: t=5

55

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

7

Y 1

8

60

Y updates its vector,
sends it to X and Z

This process will go on for quite a while until...

Convergence process: t>58

56

X Z

Y
4 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

61

Y 1

60

60

Y and Z realize that the link with increased cost is
actually the (only) better option

Bad news travels slowly!

Count-to-infinity

58

X Z

Y
Inf 1

Destination

X

Vector at Y Distance

Z 1

Destination

X

Vector at Z Distance

Inf

Y 1

Inf

If the link X-Y is down, the process will go on infinitely

Potential mitigations to count-to-infinity

Approximation of infinity

- For example, hop count is considered infinity when it reaches 16

- Limited to a small network

Split horizon (with poison reverse)

- A node does not send routes (or sends infinity) to nodes from which the routes were
learned

- Limited to loops involving two nodes

59

Routing information protocol (RIP)

An implementation of distance-vector routing for inter-network connections

- First protocol used by ARPANET (the forerunner of the Internet)

- Simply, easy to implement

- A cost of 16 represents infinity (poor scalability)

- Count-to-infinity issue (rarely used nowadays)

60https://datatracker.ietf.org/doc/html/rfc2453

https://datatracker.ietf.org/doc/html/rfc2453

Link-state vs. distance-vector routing

61

Message complexity Convergence speed Robustness

Link
state

Distance
vector

O(nE) Relatively fast
Node can advertise

incorrect link cost (but
compute its own table)

Between
neighbors

Slow

Node can advertise
incorrect path cost
(errors propagate)

: number of nodes, : number of linksn E

Inter-Domain Routing

Internet: a network of networks in ASes

63

AS20

AS50

AS10 AS30

AS40

AS: Autonomous System

Each AS has a
number in 16 bits

Border Gateway Protocol (BGP)

64

AS20

AS50

AS10 AS30

AS40

BGP sessions

ASes use BGP to exchange information about the IP prefixes they
can reach, directly or indirectly

130.69.0.0/16

BGP challenges

High number of networks and IP prefixes

- 1M prefixes, more than 70K networks, millions of routers

Networks do not want to divulge internal topologies

- Or their business relationships

Networks need to control where to send and receive traffic

- Without an Internet-wide notion of a link cost metric

65

Link-state routing does not solve them

Floods topology information

- High processing overhead

Requires each node to compute the entire graph

- High processing overhead

Minimizes some notion of total distance

- Works only if the policy is shared and uniform across ASes

66

Distance-vector routing is on the right track

Pros

- High details of the network topology: nodes determin only "next-hop" for each
destination

Cons

- Still minimizes some common distance: impossible to achieve in an inter-domain
setting

- Converges slowly: count-to-infinity problem

67

Path-vector routing in BGP
Advertise the entire path instead of distances

68

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 40)

Path-vector routing in BGP
Append the AS ID to the path received when advertising

69

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 10 40)

Path-vector routing in BGP
Each AS chooses (NOT) to advertise certain paths

70

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 50 10 40)

129.132.0.0/16 (Path: 10 40)

Path-vector routing in BGP
Check for possible loops

71

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 50 10 40) Discard since AS40 is
already in the path

Path-vector routing in BGP

Life of BGP routers

- Receives routes from its neighbors

- Select on best route for each prefix

- Export the best route to its neighbors

Each AS can apply local routing policies and is free to

- Select and use any path (preferably, the cheapest one)

- Decide which path to export (if any) to which neighbor (preferably none to minimize
carried traffic)

72

Path-vector routing in BGP

73

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 50 10 40)

129.132.0.0/16 (Path: 10 40)

AS20: always prefer Deutsche Telekom over Google

Path-vector routing in BGP

74

AS20

AS50

AS10 AS30

AS40

129.132.0.0/16 (Path: 40)

AS30: do not advertise to AS10 to hide the path

Policy and economics play a
bit role in BGP!

Innovations in the network layer

Many Future Internet projects 15 years back

- Named Data Networking (NDN)

- eXpressive Internet Architecture (XIA)

- MobilityFirst

Information Centric Networking (ICN)

- Still an open research topic

76http://www.nets-fia.net/

http://www.nets-fia.net/

Summary

Routing

- Goals and rules

- Best path definition

- Dijkstra's algorithm

- Internet routing

Intra-domain routing

- Link-state protocol

- Distance vector protocol

77

Inter-domain routing

- BGP

- Path-vector routing

Next time: transport layer

78

How to ensure reliability?

Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition).

- Section 5.2: Routing Algorithms

- Section 5.6: The Network Layer in the Internet

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach.

- Section 3.4: Routing

- Section 4.1: Global Internet

79

