Computer Networks (WS23/24)
L7: The Transport Layer - Part 1

Prof. Dr. Lin Wang

Computer Networks Group (PBNet)
Department of Computer Science
Paderborn University

Materials inspired by Laurent Vanbever

>
)

Learning objectives

Part 1

- Reliable delivery

- Correctness conditions

- Tradeoffs (timeliness, efficiency, fairness, etc.)
Application - Example transport mechanisms

Network *‘% Y Ce

e e i

T -

Physical

How to ensure what received is what sent?

Reliable Delivery

l

<

q < "».“)

22N o> 4’&‘

‘«i

Network layer provides best-effort delivery

Packet loss/corruption is

still possible

Reliable delivery in the transport layer

Reliablity delivery in the transport layer

Goals
- Keep the network simple, dumb: make it relatively easy to build and operate a network
- Keep applications as network agnostic as possible: a developer should focus on the APP,
not the specifics of the network the APP will run on
Design
- Implement reliability in between the network and the APP — the network layer

- Relieve the burden from both the APP and the network

The Internet hourglass

email WWW phone...| «—
kSMTP HTTP RTP...)
TCP UDP...

«——— Reliable end-to-end delivery

..built on...

A

Best-effort global packet delivery

ethernet PPP..

(CSMA async sonet...‘\

copper fibre radio...

Reliabile delivery: example

Packet 1
—_—

Packet 3
—

Packet 1
—_—

Packet 3
—

)

Packet loss or delay

Packet 1
—_—

Packet 3
—

b5

Packet corruption

Payload: 101
—

Payload 001
—

)

b5

Payload 111
b

Payload 010
—

10

Packet out-of-order

Packet 1 Packet 3

— —
Packet 1
——

Packet 3

—

)

b s

Packet duplication

Packet 1

Packet 3
—

b5

Packet 1
_—

Packet 1
—_—

Packet 3

12

Reliable transport

Correctness

If and only if...

Tradeoffs

Timeliness, efficiency...

Mechanisms

Go-Back-N...

13

Correctness Conditions

l

<

g ‘4 "».“ “‘» 2

22N o> 4’&‘

‘i

Correctness conditions for routing

Necessary and sufficient

A global forwarding state is valid if and only if.. conditions

_..there are no dead ends (no outgoing

port undefined in the table)

_..there are no loops (packets will never

go around the same set of nodes)

15

Correctness conditions for reliable transport

A reliable transport design is valid if...

— > ..packets are delivered to the receiver

Consider a network is partitioned

We cannot say a transport design is incorrect if it does not
work in a partitioned network

16

Correctness conditions for reliable transport

A reliable transport design is valid if...

..packets are delivered to the receiver if
and only if it was possible to deliver them

If the network is only available one instant in time, only an

oracle would know when to send

We cannot say a transport design is incorrect if it does not

know the unknowable

17

Correctness conditions for reliable transport

A reliable transport design is valid if...

..it resends a packet if and only if it detects
the previouse packet was lost or corrupted

Consider two cases:
- Packet made it to the receiver and all packets from receiver were dropped
- Packet is dropped on the way and all packets from receiver were dropped

In both cases, the sender has no feedback at all
Does it resend or not?

18

Correctness conditions for reliable transport

A reliable transport design is valid if...

..it resends a packet if and only if it detects
the previouse packet was lost or corrupted

WIGelaRelliaolsai=l® |t refers to what the design does (which it can control), not

whether it always succeeds (which it cannot control)

19

Correctness conditions for reliable transport

A reliable transport design is valid if...

—— - a packet is always resent if it detects the
previous packet was lost or corrupted
- a packet maybe resent at other times

20

Correctness conditions for reliable transport

A reliable transport mechanism is correct if and only if

it resents all dropped or corrupted packets

Sufficient The mechanism will always keep trying to deliver undelivered packets

Necessary If it ever lets a packet go undelivered without resending it, it is not reliable

It is okay to give up after a while but the sender
must notify the application about it

21

Tradeoffs

‘n e, *‘&”

l

<

q < "».“ “‘» <

22N o> 4’&‘

Design goals of reliable transport

Timeliness Efficiency Fairness

(minimize time until (optimal use of available
data is transferred) bandwidth)

(play well with

concurrent transfers)

Correctness
(ensure data is delivered in order and untouched)

23

Example transport mechanism

for word in list:
send_packet(word)
set_timer()

upon timer going off:
i1f no ACK received:
send_packet(word)
reset timer()

upon ACK:
pass

Sender

receive_packet(p)

i1f check(p.payload) == p.checksum:

send_ack()

if p.payload not delivered:

deliver_word(p.payload)

else:
pass

Receiver

24

Tradeoff between timeliness and efficiency

for word in list:
send_packet(word)
set_timer()

upon timer going off:
i1f no ACK received:
send_packet(word)
reset timer()

upon ACK:
pass

Sender

receive_packet(p)

i1f check(p.payload) == p.checksum:

send_ack()

if p.payload not delivered:

deliver_word(p.payload)

else:
pass

Receiver

25

Tradeoff between timeliness and efficiency

Small timers
Timeliness - Faster retransmission
- Might lead to unnecessary retransmissions

Large timers
- Slow retransmission

- Avoid unnecessary retransmissions

26

Poor timeliness, nonetheless

Sender Receiver

—a

A

—

A

Time

Only one packet per round-trip-time (RTT)

27

Improvement idea: multiple packets simultaneously

0 Add a sequence number inside each packet

e Add buffers to the sender and receiver

Sender: store packets sent & not ACKed
Receiver: store out of order packets received

28

Improved timeliness

4 packets sent
without ACKs

Sender

Receiver

\

s

\

Time

29

Overwhelmed receiver

i K
[&
"* il
Sender Receiver

\ Time

Sending at 1000 Processing at 10
packets per second packets per second

30

Flow control

Sender keeps a list of the sequence numbers it can send
(known as the sending window)

Receiver also keeps a list of the acceptable sequence numbers
(known as the receiving window)

Sender and receiver negotiate the window size
(ensure sending window <= receiving window)

31

Sending window example

UnACKed UnACKed
packets packets

0O 1 2 3[4 5 » 0O 1 2 3 4|5
ACKed - ACKed
After receiving
packets packets
ACK4

32

Window sizing

How big should the window be to maximize timeliness?

Sender

100 Mbps, 5 ms (one way)

Receiver

A

What should be the

window size (in bits)?

v

33

Window sizing

How big should the window be to maximize timeliness?

Sender Receiver

100 Mbps, 5 ms (one way)

A
v

2XBDP + 1

Efficiency

Receiver feedback
(How much information does the sender get?)

Behavior upon losses
(How does the sender detect and react to losses?)

35

Idea: ACKing individual packets

Provides detailed feedback, but triggers unnecessary retransmission upon losses

Advantages Disadvantages
- Know fate of each packet - Loss of an ACK packet requires a
- Simple window algorithm (multiple retransmission

instances of the single-packet algorithm)

- Not sensitive to reordering c
auses unnecessary

retransmission

ldea: cumulative ACKs

Approach ACK the highest sequence number for which all the
previous packets have been received

Advantages Recover from lost ACKs

Disadvantages Confused by reordering
Imcomplete information about which packets have
arrived (which causes unnecessary retransmission)

37

ldea: cumulative ACKs improved

Approach

Advantages

Disadvantages

List all packets that have been received
Highest cumulative ACK, plus any additional
packets

Complete information, resilient form of
individual ACKs

High overhead (hence lowering efficiency)
Especially when there are large gaps between
received packets

38

Loss detection via ACK: individual ACKs

Assume packet 5 is lost, but no others

ACK stream

2

3

4 Sender can infer that 5 is missing, and
6 resend 5 after k subsequent packets

7

39

Loss detection via ACK: cumulative ACKs

Assume packet 5 is lost, but no others

ACK stream 1

Duplicate ACKs

4 sent when G arrives

4 sent when 7 arrives

40

Duplicate ACKs

ACK stream
1 .
Lack of ACK progress means that 5 has not made it
2
3 Stream of ACKs means that (some) packets are delivered
4 :
Sender could trigger resend upon
4 sent when 6 arrives receiving k duplicate ACKs

4 sent when 7 arrives

Q: What does the sender resend?
Only 5 or 5 and everything after?

41

Loss detection via ACK: full information

Assume packet S is lost, but no others

ACK stream

up tol
upto?2
up to3

up to4

Sender learns that 5 is missing, and

up to 4, plus 6

retransmits after k packets
up to 4, plus 6-7

42

Fairness

Fair allocation of bandwidth among all entities using the transport mechanism

1Gbps 1Gbps

A
&=

B
&=

Flow 1

v

Flow 2

C
&=

Flow 3

v

v

What is the fair allocation for the 3 flows?

43

Equal allocation

1Gbps 1Gbps

C
=

A B
= =

Flow 1

500 Mbps Flow 2
500 Mbps
Flow 3

500 Mbps

An equal allocation is certainly "fair’, but the efficiency

is not optimal: total traffic is 1.5 Gbps

44

Unfair but more efficient allocation

1Gbps 1Gbps

C
=

A B
= =

Flow 1

An unfair but more efficient

allocation: total traffic is 2 Gbps

What is fairness?

1Gbps 1Gbps

C
=

A B
= =

Flow 1

500 Mbps Flow 2
500 Mbps
Flow 3

500 Mbps

[
»

Equal-per-flow is not really fair as A-C crosses two links: it uses more resources

46

What is fairness?

1Gbps 1Gbps

C
=

A B
= =

Flow 1

500 Mbps Flow 2
500 Mbps
Flow 3

500 Mbps

[
»

Equal-per-flow is fair as A gets 1 Gbps for 2 flows while B gets 500 Mbps for 1 flow

47

Max-min fairness

Intuitively, give users with small demands what they want, and evenly distribute the rest

Max-min fair allocation
- Step 1: start with all flows at rate O
- Step 2: increase the rate of flows until there is a new bottleneck in the network
- Step 3: hold the fixed rate of the flows that are bottlenecked
- Step 4: go to step 2 for the remaining flows

- Donel

48

Max-min fair allocation

1Gbps 1Gbps

A
&

B
&

Flow 1

Flow 2

G-

Flow 3

What is the max-min fair allocation?

49

Max-min fair allocation

2 Gbps 1Gbps

A
&

B
&

Flow 1

Flow 2

G-

Flow 3

What is the max-min fair allocation?

50

Approximating max-min fair allocation

Intuition

Progressively increase the
sending window size

Whenever a loss is detected,
decrease the window size

Repeat

max = receiving window
Signal of congestion

51

Different ACK schemes

Unreliable network situation
Reordering Long delays Packet duplicates
Individual ACKs No problem Useless timeouts No problem
Full feedback No problem Useless timeouts No problem
Cummulative ACKs Create duplicate ACKs Useless timeouts Create duplicate ACKs
(maybe treated as (maybe treated as
packet loss) packet loss)

52

Some Transport Mechanisms

>4
&
”‘ “» !"'.“

PP (e < ("M

4“‘?4
W

¥
» S

Transport mechanisms categorization

No

ACK subsequent

packets?

Yes

Go-Back-N

Selective Repeat (What

sequence number to put?)

Last packet in order

Sequence # ranges received so far

Cumulative ACK

Selective ACK (SACK)

TCP's default on modern OSes

54

Go-Back-N (GBN)

RTO

o

B B BB

Packet with Packets discarded

error by the receiver

The sender spends time to retransmit data the receiver has already seen

55

Selective repeat with cumulative ACK

RTO

Packet with Packets buffered by
error the receiver

o

The sender only retransmits the first unACKed packet, not all its successors

56

Selective repeat with selective ACK

RTO

o

Packet with Packets buffered by
error the receiver

The receiver keeps ACKing the first in-order sequence number, plus the

packets that have been received after the missing packet

57

SACK in action

P Frame 31 (78 bytes on wire, 78 bytes captured)
P Ethernet II, Src: AsustekC b3:01:84 (00:1d:60:b3:01:84), Dst: Action
P Internet Protocol, Src: 192.168.1.3 (192.168.1.3), Dst: 63.116.243.9
¥ Transmission Control Protocol, Src Port: 58816 (58816), Dst Port: ht
Source port: 58816 (58816)
Destination port: http (80)
[Stream index: 0]
Sequence number: 461 (relative sequence number)
Acknowledgement number: 17377 (relative ack number)
Header length: 44 bytes
P Flags: 0x10 (ACK)
Window size: 40704 (scaled)
P Checksum: 0x34b6 [validation disabled]
v Options: (24 bytes)
NOP
NOP
Timestamps: TSval 1545583, TSecr 2375917095
NOP

AOD

SACK: 18825-20273
left edge = 18825 (relative)
right edge = 20273 (relative)

— b Lorosack amalusas]
(] 1T | [>)
0030 01 3e 34 b6 00 00 01 01 08 Oa 00 17 95 6f 8d 9d .>4..... ..
(olo%: oM -"Nry o) MOIMOS O3 a3 c4 ca 28 a3 c4 cf do . . .(.Ei
=
(<] 11 [[>)

58

Summary

Reliable delivery

- Unreliable network situations
Correctness conditions

Tradeoffs
- Timeliness
- Efficiency

- Fairness

Some transport mechanisms

- Go-Back-N

- Selective repeat with cumulative ACK

- Selective repeat with selective ACK

59

Next time: transport layer

Socket

mmr —
@—%u—-«%@
TCP/UDP

What are the popular transport protocols?

60

Further reading material

James F. Kurose, Keith W. Ross. Computer Networking: A Top-Down Approach (5th
edition).

- Section 3.1: Introduction and Transport-Layer Services

- Section 3.4: Principles of Reliable Data Transfer

61

Guest lecture (January 26, 2024, 13:00-15:00)

Balakrishnan Chandrasekaran
Assistant Professor
VU Amsterdam

Max-Planck-Institut fur Informatik
TU Berlin
Duke University (PhD)

https://balakrishnanc.github.io/

62

https://balakrishnanc.github.io/

