
Computer Networks (WS23/24)
L7: The Transport Layer - Part 1

Prof. Dr. Lin Wang
Computer Networks Group (PBNet)
Department of Computer Science
Paderborn University

Materials inspired by Laurent Vanbever

Learning objectives

2

Application

Transport

Network

Link

Physical

Part 1
- Reliable delivery
- Correctness conditions
- Tradeoffs (timeliness, efficiency, fairness, etc.)
- Example transport mechanisms

How to ensure what received is what sent?

Reliable Delivery

Network layer provides best-effort delivery

4

APP

IP

Ethernet

APP

IP

WiFiet
h0

et
h1

et
h2

et
h0

w
if

i

IP

Switch

Router

Checksuming

CRC CRC

Packet loss/corruption is
still possible

Checksuming

Reliable delivery in the transport layer

5

APP

IP

Ethernet

APP

IP

WiFiet
h0

et
h1

et
h2

et
h0

w
if

i

IP

Switch

Router

Checksuming

CRC CRC

Checksuming

TCP TCPRetransmission Retransmission

Checksuming Checksuming

Reliablity delivery in the transport layer

Goals

- Keep the network simple, dumb: make it relatively easy to build and operate a network

- Keep applications as network agnostic as possible: a developer should focus on the APP,
not the specifics of the network the APP will run on

Design

- Implement reliability in between the network and the APP → the network layer

- Relieve the burden from both the APP and the network

6

The Internet hourglass

7

Applications

...built on...

Reliable end-to-end delivery

...built on...

Best-effort global packet delivery

...built on...

Best effort local packet delivery

...built on...

Physical transfer of bits

Reliabile delivery: example

8

Internet

Packet 1

Packet 2

Packet 3

Packet 1

Packet 2

Packet 3

Packet loss or delay

9

Internet

Packet 1

Packet 2

Packet 3

Packet 2

Packet corruption

10

Internet

Payload: 101

Payload 110

Payload 001

Payload 111

Payload 001

Payload 010

Packet out-of-order

11

Internet

Packet 1

Packet 2

Packet 3

Packet 3

Packet 1

Packet 2

Packet duplication

12

Internet

Packet 1

Packet 2

Packet 3 Packet 3

Packet 1

Packet 2

Packet 1

Reliable transport

13

Correctness

If and only if...

Tradeoffs

Timeliness, efficiency...

Mechanisms

Go-Back-N...

Correctness Conditions

Correctness conditions for routing

15

A global forwarding state is valid if and only if...

...there are no dead ends (no outgoing
port undefined in the table)

...there are no loops (packets will never
go around the same set of nodes)

Necessary and sufficient
conditions

Correctness conditions for reliable transport

16

A reliable transport design is valid if...Attempt 1

...packets are delivered to the receiver

Wrong Consider a network is partitioned

We cannot say a transport design is incorrect if it does not
work in a partitioned network

Correctness conditions for reliable transport

17

A reliable transport design is valid if...Attempt 2

...packets are delivered to the receiver if
and only if it was possible to deliver them

Wrong If the network is only available one instant in time, only an
oracle would know when to send

We cannot say a transport design is incorrect if it does not
know the unknowable

Correctness conditions for reliable transport

18

A reliable transport design is valid if...Attempt 3

...it resends a packet if and only if it detects
the previouse packet was lost or corrupted

Wrong Consider two cases:
- Packet made it to the receiver and all packets from receiver were dropped
- Packet is dropped on the way and all packets from receiver were dropped

In both cases, the sender has no feedback at all
Does it resend or not?

Correctness conditions for reliable transport

19

A reliable transport design is valid if...Attempt 3

...it resends a packet if and only if it detects
the previouse packet was lost or corrupted

Wrong but better It refers to what the design does (which it can control), not
whether it always succeeds (which it cannot control)

Correctness conditions for reliable transport

20

A reliable transport design is valid if...Attempt 4

- a packet is always resent if it detects the
previous packet was lost or corrupted

- a packet maybe resent at other times
Correct

Correctness conditions for reliable transport

21

A reliable transport mechanism is correct if and only if
it resents all dropped or corrupted packets

Sufficient

Necessary

The mechanism will always keep trying to deliver undelivered packets

If it ever lets a packet go undelivered without resending it, it is not reliable

It is okay to give up after a while but the sender
must notify the application about it

Tradeoffs

Design goals of reliable transport

23

Timeliness
 (minimize time until
data is transferred)

Efficiency
 (optimal use of available

bandwidth)

Fairness
 (play well with

concurrent transfers)

Correctness
 (ensure data is delivered in order and untouched)

Example transport mechanism

24

for word in list:

send_packet(word)

set_timer()

// time out, retransmit

upon timer going off:

if no ACK received:

send_packet(word)

reset timer()

// success

upon ACK:

pass

receive_packet(p)

// received and intact

if check(p.payload) == p.checksum:

// confirm to the sender

send_ack()

// deliver to the APP

if p.payload not delivered:

deliver_word(p.payload)

// ignore if corrupted

else:

pass

Sender Receiver

Tradeoff between timeliness and efficiency

25

for word in list:

send_packet(word)

set_timer()

// time out, retransmit

upon timer going off:

if no ACK received:

send_packet(word)

reset timer()

// success

upon ACK:

pass

Sender Receiver

receive_packet(p)

// received and intact

if check(p.payload) == p.checksum:

// confirm to the sender

send_ack()

// deliver to the APP

if p.payload not delivered:

deliver_word(p.payload)

// ignore if corrupted

else:

pass

Tradeoff between timeliness and efficiency

26

Timeliness

Efficiency

Small timers
- Faster retransmission
- Might lead to unnecessary retransmissions

Large timers
- Slow retransmission
- Avoid unnecessary retransmissions

Poor timeliness, nonetheless

27

Sender Receiver

Packet 1

ACK 1

Time

Timeout

Packet 2

ACK 2

Only one packet per round-trip-time (RTT)

Improvement idea: multiple packets simultaneously

28

Add a sequence number inside each packet

Add buffers to the sender and receiver

Sender: store packets sent & not ACKed
Receiver: store out of order packets received

1

2

Improved timeliness

29

Sender Receiver

Time

4 packets sent
without ACKs

Overwhelmed receiver

30

Sender Receiver

Time

Sending at 1000
packets per second

Processing at 10
packets per second

Flow control

31

Sender keeps a list of the sequence numbers it can send
(known as the sending window)

Receiver also keeps a list of the acceptable sequence numbers
(known as the receiving window)

Sender and receiver negotiate the window size
(ensure sending window <= receiving window)

Sending window example

32

0 1 2 3 4 5 6 7 8 9 10

ACKed
packets

UnACKed
packets

Available
to send
packets

Forbidden to
send packets

0 1 2 3 4 5 6 7 8 9 10

ACKed
packets

UnACKed
packets

Available
to send
packets

Forbidden to
send packets

After receiving
ACK4

Window sizing
How big should the window be to maximize timeliness?

33

Sender Receiver

100 Mbps, 5 ms (one way)

What should be the
window size (in bits)?

Window sizing
How big should the window be to maximize timeliness?

34

Sender Receiver

100 Mbps, 5 ms (one way)

2 × BDP + 1

Efficiency

35

Receiver feedback
(How much information does the sender get?)

Behavior upon losses
(How does the sender detect and react to losses?)

Idea: ACKing individual packets
Provides detailed feedback, but triggers unnecessary retransmission upon losses

36

Advantages

- Know fate of each packet
- Simple window algorithm (multiple

instances of the single-packet algorithm)
- Not sensitive to reordering

Disadvantages

- Loss of an ACK packet requires a
retransmission

Causes unnecessary
retransmission

Idea: cumulative ACKs

37

Approach

Advantages

ACK the highest sequence number for which all the
previous packets have been received

Recover from lost ACKs

Disadvantages Confused by reordering
Imcomplete information about which packets have
arrived (which causes unnecessary retransmission)

Idea: cumulative ACKs improved

38

Approach

Advantages

List all packets that have been received
Highest cumulative ACK, plus any additional
packets

Complete information, resilient form of
individual ACKs

Disadvantages High overhead (hence lowering efficiency)
Especially when there are large gaps between
received packets

Loss detection via ACK: individual ACKs

39

1

2

3

4

6

7

...

Assume packet 5 is lost, but no others

ACK stream

Sender can infer that 5 is missing, and
resend 5 after subsequent packetsk

Loss detection via ACK: cumulative ACKs

40

1

2

3

4

4 sent when 6 arrives

4 sent when 7 arrives

...

Assume packet 5 is lost, but no others

ACK stream

Duplicate ACKs

Duplicate ACKs

41

1

2

3

4

4 sent when 6 arrives

4 sent when 7 arrives

...

ACK stream

Lack of ACK progress means that 5 has not made it

Stream of ACKs means that (some) packets are delivered

Sender could trigger resend upon
receiving duplicate ACKsk

Q: What does the sender resend?
Only 5 or 5 and everything after?

Loss detection via ACK: full information

42

up to 1

up to 2

up to 3

up to 4

up to 4, plus 6

up to 4, plus 6-7

...

Assume packet 5 is lost, but no others

ACK stream

Sender learns that 5 is missing, and
retransmits after packetsk

Fairness
Fair allocation of bandwidth among all entities using the transport mechanism

43

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

What is the fair allocation for the 3 flows?

Equal allocation

44

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

500 Mbps

500 Mbps

500 Mbps

An equal allocation is certainly "fair", but the efficiency
is not optimal: total traffic is 1.5 Gbps

Unfair but more efficient allocation

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

1 Gbps

1 Gbps

0 Gbps

An unfair but more efficient
allocation: total traffic is 2 Gbps

What is fairness?

46

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

500 Mbps

500 Mbps

500 Mbps

Equal-per-flow is not really fair as A-C crosses two links: it uses more resources

What is fairness?

47

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

500 Mbps

500 Mbps

500 Mbps

Equal-per-flow is fair as A gets 1 Gbps for 2 flows while B gets 500 Mbps for 1 flow

Max-min fairness

Intuitively, give users with small demands what they want, and evenly distribute the rest

Max-min fair allocation

- Step 1: start with all flows at rate 0

- Step 2: increase the rate of flows until there is a new bottleneck in the network

- Step 3: hold the fixed rate of the flows that are bottlenecked

- Step 4: go to step 2 for the remaining flows

- Done!

48

Max-min fair allocation

49

A CB
1 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

What is the max-min fair allocation?

Max-min fair allocation

50

A CB
2 Gbps 1 Gbps

Flow 1

Flow 2

Flow 3

What is the max-min fair allocation?

Approximating max-min fair allocation

51

Intuition Progressively increase the
sending window size

Whenever a loss is detected,
decrease the window size

max = receiving window

Signal of congestion

Repeat

Different ACK schemes

52

Individual ACKs

Full feedback

Cummulative ACKs

Reordering Long delays Packet duplicates

No problem

No problem

Create duplicate ACKs
(maybe treated as
packet loss)

Useless timeouts

Useless timeouts

Useless timeouts

No problem

No problem

Create duplicate ACKs
(maybe treated as
packet loss)

Unreliable network situation

Some Transport Mechanisms

Transport mechanisms categorization

54

ACK subsequent
packets?

Go-Back-N
Selective Repeat (What

sequence number to put?)

Cumulative ACK Selective ACK (SACK)

No Yes

Last packet in order Sequence # ranges received so far

TCP's default on modern OSes

Go-Back-N (GBN)

55

0 1 2 3 4 2 3 4 5

0 1 E D D 2 3 4 5

RTO

AC
K

0

AC
K

1

6

6

AC
K

2

AC
K

3

AC
K

4

AC
K

5

AC
K

6

Packets discarded
by the receiver

The sender spends time to retransmit data the receiver has already seen

Packet with
error

Selective repeat with cumulative ACK

56

0 1 2 3 4 2 5

0 1 E 2 5

RTO

AC
K

0

AC
K

1

6

6

AC
K

5

AC
K

6

Packets buffered by
the receiver

3 4

AC
K

 1

AC
K

 1

AC
K

 4

The sender only retransmits the first unACKed packet, not all its successors

Packet with
error

Selective repeat with selective ACK

57

0 1 2 3 4 2 5

0 1 E 2 5

RTO

AC
K

0

AC
K

1

6

6

AC
K

5

AC
K

6

Packet with
error

Packets buffered by
the receiver

3 4

A
C

K
 1

S
A

C
K

 0
-1

,3

A
C

K
 1

S
A

C
K

 0
-1

, 3
-4

AC
K

 4

The receiver keeps ACKing the first in-order sequence number, plus the
packets that have been received after the missing packet

SACK in action

58

Summary

Reliable delivery

- Unreliable network situations

Correctness conditions

Tradeoffs

- Timeliness

- Efficiency

- Fairness

59

Some transport mechanisms

- Go-Back-N

- Selective repeat with cumulative ACK

- Selective repeat with selective ACK

Next time: transport layer

60

What are the popular transport protocols?

TCP/UDP

Socket Socket

Further reading material

James F. Kurose, Keith W. Ross. Computer Networking: A Top-Down Approach (5th
edition).

- Section 3.1: Introduction and Transport-Layer Services

- Section 3.4: Principles of Reliable Data Transfer

61

Guest lecture (January 26, 2024, 13:00-15:00)

62

Balakrishnan Chandrasekaran
Assistant Professor
VU Amsterdam

Max-Planck-Institut für Informatik
TU Berlin
Duke University (PhD)

https://balakrishnanc.github.io/

https://balakrishnanc.github.io/

