
Computer Networks (WS23/24)
L8: The Transport Layer - Part 2

Prof. Dr. Lin Wang
Computer Networks Group (PBNet)
Department of Computer Science
Paderborn University

Materials inspired by Laurent Vanbever

Learning objectives

2

Application

Transport

Network

Link

Physical

Part 2
- Requirements
- User Datagram Protocol (UDP)
- Transmission Control Protocol (TCP)

Socket Socket

Requirements

What do we need in the transport layer?

Functionality implemented in the network

- Keep minimum (easy to build, broadly applicable)

Functionality implemented in the application

- Keep minimum (easy to write)

- Restricted to application-specific functionality

Functionality implemented in the network stack

- Shared networking code on the host

- Relieves burden from both the application and network

4

IP

TCP/UDP
Kernel
space

Ethernet

App1
User

space
App2

What do we need in the transport layer?

Application layer

- Communication for specific applications

- Example: Hyper Text Transfer Protocol (HTTP), File Transfer Protocol (FTP)

Network layer

- Global communication between hosts

- Hides details of the link technology

- Example: Internet Protocol (IP)

Transport layer: bridging the gap between the two

5

What is the gap?

Data delivering, to the correct application

- IP just points towards next protocol

- Transport needs to demultiplex incoming data

Files or bytestreams abstractions for the application

- Network deals with packets

- Transport needs to translate between the two

Others

- Reliable transfer (if needed), not overloading anyone

6

...01110101011101010001...

?

Transport layer functionality

Demultiplexing: identifier for application process

- From host-to-host (IP) to process-to-process

Bytestream - packet translation

- Segmentation and reassembly

Reliability: checksums, ACKs, timeouts

Not overloading the receiver: flow control

Not overloading the network: congestion control

7

...01110101011101010001...

?

Demultiplexing: sockets and ports

Sockets

- An operating system abstraction

Ports

- A networking abstraction

- Not a physical port on a switch/router (which is
a network interface)

- Think of it as a logical interface on a host

8

sock1
80

sock3
554

sock2
3478

Sockets

A socket is a software abstraction by which an application process exchanges network
messages with the (transport layer in the) OS

- socket_id = socket(..., socket.TYPE)

- socket_id.sendto(message, ...)

- socket_id.recvfrom(...)

Two important types of sockets

- UDP socket: TYPE = SOCK_DGRAM

- TCP socket: TYPE = SOCK_STREAM

9

IP

TCP/UDP

Ethernet

App1 App2 App3

Sockets

Ports

Problem to solve

- Which app (socket) gets which packets?

Solution

- Port as transport layer identifier (16 bits)

- Packets carry source/destination port numbers in the transport layer header

Mapping between ports and sockets

- OS stores the mapping

10

Ports

Seperate 16-bit port address space for UDP, TCP

System or well-known ports (0-1023)

- Agreement on which services run on these ports, e.g., 22 (SSH), 80 (HTTP)

- Client (App) knows appropriate port on server; services can listen on well-known ports

Registered ports (1024-49151)

- Designated for use with a certain protocol or application

Ephemeral (or dynamic, private) ports (49152-65535)

- Given to clients (at random)

11

Multiplexing and demultiplexing in TCP

Host receives IP packets

- Each IP packet has source and
destination IP addresses

- Each TCP segment has source and
destination port number

Host uses IP addresses and port numbers
to direct the segment to appropriate
socket: a socket is identified by a 4-tuple
(SrcIP, SrcPort, DstIP, DstPort)

12

TCP socket example

13

1 2 3 4 5

Your IP: 131.234.250.184 Google's IP: 142.250.181.206

Five tabs to google.de

TCP socket example

14

Client OS Source IP Source port Destination IP Destination port

Server OS Source IP Source port Destination IP Destination port

131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184

142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206

142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206

131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184

54001
56320
63584
55003
65076

443
443
443
443
443

443
443
443
443
443

54001
56320
63584
55003
65076

1
2
3
4
5

1
2
3
4
5

Socket

Socket

Multiplexing and demultiplxing in UDP

Host receives IP packets

- Each IP packet has the destination port

Host uses the destination port to direct the
segment to appropriate socket

Application process distinguishes the UDP
datagram with the source IP and/or port

15https://book.systemsapproach.org/e2e/udp.html

https://book.systemsapproach.org/e2e/udp.html

User Datagram Protocol (UDP)

UDP

Lightweight communication between processes

- Avoid overhead and delays of ordered, reliable delivery

- Send messages to and receive them from a socket

UDP described in RFC 768 (1980!)

- IP plus port numbers to support (de)multiplexing

- Optional error checking on the packet contents
(checksum field = 0 means do not verify checksum)

17

Src. port Dst. port

Checksum Length

Data

Why would anyone use UDP?

Finer control over what data is sent and when

- As soon as data is written into the socket, UDP will package it and send the packet

No delay for connection establishment

- No formal preliminaries, avoids introducing any unnecessary delays

No connection state

- No allocation of buffers, sequence numbers, timers, etc., easy to handle many clients

Small packet header overhead

- UDP header is only 8 bytes

18

Popular applications that use UDP

Interactive streaming applications

- Retransmitting lost/corrupted packets often pointless

- By the time the packet is retransmitted, it is too late

- Examples: telephone calls, video conferencing, gaming

- However, modern video streaming protocols use TCP (and HTTP)

Simple query protocols like Domain Name System (DNS)

- Connection establishment overhead would double cost

- Easier to have application retransmit if needed

19

IP for google.com?

142.250.181.206

Transmission Control Protocl
(TCP)

TCP

Reliable, in-order delivery

- Ensure byte stream (eventually) arrives intact

- In the presence of corruption and loss

Connection oriented: explicit set-up and tear-down of TCP session

Fully duplex stream of bytes service: stream of bytes instead of messages

Flow control: ensures that sender does not overwhelm receiver

Congestion control: dynamic adaptation to network path's capacity (next time)

21

Reliability recap

ACKs: cannot be reliable without knowing whether the data has arrived

- TCP uses byte sequence numbers to identify payloads

Checksums: cannot be reliable without knowing whether data is corrupted

- TCP does checksum over TCP and parts of IP header

Timeouts/retransmission: cannot be reliable without retransmitting lost/corrupted data

- TCP retransmits based on timeouts and duplicate ACKs

- Timeout is set based on estimate of RTTs

22

Other TCP design decisions

Sliding-window flow control

- Allows contiguous bytes to be in flight

Cumulative ACKs

- Selective ACKs (full information) also supported

Single timer set after each payload is ACKed

- Timer is effectively for the "next expected payload"

- When timer goes off, resend that payload and wait (and double timeout period)

Various tricks for "fast retransmit": using duplicate ACKs to trigger retransmission

W

23

TCP header

24

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdr. length 0 Flags

Checksum Urgent pointer

Options (variable)

Data

80

TCP "stream of bytes" service

25

0 1 2 3 81......

800 1 2 3 81......

Bytes

Bytes

Application at host A

Application at host B

TCP segmentation

26

800 1 2 3 81......

800 1 2 3 81......

Bytes

Bytes

Application at host A

Application at host B

TCP data

TCP data

Segment sent out when (1) segment is full (Maximum
Segment Size, MSS), and (2) not full but times out

TCP segment

IP packet

- No bigger than Maximum Transmission Unit (MTU)

- Example: up to 1500 bytes with Ethernet

TCP packet

- IP packet with a TCP header (>= 20 bytes long) and data inside

TCP segment

- No more than Maximum Segment Size (MSS) = MTU - IPHdr - TCPHdr

- Example: up to 1460 consecutive bytes from the stream

27

IP header IP Data TCP header TCP Data

Sequence number

28

800 1 2 3 81......Bytes

 bytesk

ISN (initial
sequence number)

Sequence number = 1st
byte in segment = ISN + k

Acknowledgement number

29

800 1 2 3 81......Bytes

TCP data

TCP data

800 1 2 3 81......Bytes

TCP header

TCP header
ACK sequence number = next

expected byte = seqno + len(data)

Sequence and ACK numbers

Sender sends packet

- Data starts with sequence number

- Packet contains bytes:

Upon receipt of packet, receiver sends an ACK

- If all data prior to already received: ACK (next expected byte)

- If highest contiguous byte received is a smaller value : ACK even if it has been
ACKed before

X

B X, X + 1,...,X + B − 1

X X + B

Y Y + 1

30

Normal pattern

Segment #1

- Sender: seqno = , length =

- Receiver: ACK =

Segment #2

- Sender: seqno = , length =

- Receiver: ACK =

Segment #3

- Sender: seqno = , length =

X B

X + B

X + B B

X + 2B

X + 2B B

31

Seqno of next packet is the
same as last ACK number

Sliding window flow control

Advertised window

- Can send bytes beyond the next
expected byte

Receiver uses to prevent sender from
overflowing its buffer

Limites the number of bytes sender can
have in flight

W

W

W

32

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Rate limiting with advertised window

Sender can send no faster than
bytes per second

Receiver only advertises more space
when it has consumed old arriving data

- Advertises 0 when buffer is full

In original TCP design, that was the sole
protocol mechanism controlling sender's
rate

What is missing?

W/RTT

33

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Implementing sliding window

Both sender and receiver maintain a window

- Sender: not yet ACKed

- Receiver: not yet delivered to application

Left edge of window

- Sender: beginning of unACKed data

- Receiver: beginning of undelivered data

Window size

- Maximum amount of data in flight (sender) and of undelivered data (receiver)

34

0 1 2 3 4 5 6 7 8 9 10

ACKed
data

UnACKed
data

Available to
send data

Forbidden to
send data

0 1 2 3 4 5 6 7 8 9 10

Delivered
data

Received but
undelivered data

Not received
data

Forbidden to
receive data

Sender

Forbidden to
send packets

Receiver

Sliding window summary

Sender

- Window advances when new data ACKed

Receiver

- Window advances as receiving process consumes data

Receiver advertises to sender where the receiver window currently ends (righthand edge)

- Sender agrees not to exceed this amount

- It makes sure by setting its own window size to a value that cannot send beyond the
receiver's righthand edge

35

Other TCP header fields

36

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Number of 4-byte
words in TCP header:
5 means no option

6 bits reserved:
must be zero

Other TCP header fields

37

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Used with URG flag to
indicate urgent data

Initial sequence number

Sequence number for the very first byte

- Why not just use ISN = 0?

Practical issues

- IP addresses and ports uniquely identify a connection

- Eventually, though, these port numbers do get used again and there is a small chance
that a packet from an old connection is still in flight

TCP therefore requires changing ISN

- Initially set from 32-bit clock that ticks every 4 microseconds, now draw from a pseudo
random number generator (security)

38

TCP connection establishment

3-way handshake to establish connection

- Host A sends a SYN (open; sychronize seqno)

- Host B returns a SYN acknowledgement (SYN-ACK)

- Host A sends an ACK to acknowledge the SYN-ACK

Each host also tells its ISN to the other host

39

A B

SYN

SYN-ACK

ACK

Data

TCP flags

40

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN, ACK, FIN,
RST, PSH, URG

TCP connection establishment: SYN

41

A's port B's port

A's ISN

(Irrelevant since ACK not set)

Advertised window5 0 10000

Checksum Urgent pointer

Options (variable)

Data

A B

SYN

SYN-ACK

ACK

Data

SYN, ACK, FIN, RST, PSH, URG

TCP connection establishment: SYN-ACK

42

B's port A's port

B's ISN

ACK = A's ISN + 1

Advertised window5 0 11000

Checksum Urgent pointer

Options (variable)

Data

SYN, ACK, FIN, RST, PSH, URG

A B

SYN

SYN-ACK

ACK

Data

B tells A it accepts, and is ready to hear the next byte; upon
receiving this packet, A can start sending data

TCP connection establishment: ACK

43

A's port B's port

A's ISN

ACK = B's ISN + 1

Advertised window5 0 11000

Checksum Urgent pointer

Options (variable)

Data

SYN, ACK, FIN, RST, PSH, URG

A B

SYN

SYN-ACK

ACK

Data

3-way handshake

44

A
(Client)

B
(Server)

SYN (seqno=x)

SYN-ACK (seqno=y, ack=x+1)

ACK (ack=y+1)

Data

Active open Passive open

listen()connect()

accept()
send()

receive()

What if SYN gets lost?

Suppose the SYN packet gets lost

- Packet is lost inside the network or server discarded the packet (queue is full)

Eventually, no SYN-ACK arrives

- Sender sets a timer and waits for the SYN-ACK and retransmits the SYN if needed

How should the TCP sender set the timer?

- Sender has no idea how far away the receiver is, thus hard to guess the time to wait

- SHOULD use default of 3 seconds (RFCs 1122 & 2988)

- Other implementations instead use 6 seconds

45

SYN loss in web browsing

User clicks on a hypertext link

- Browser creates a socket and calls a "connect"

- The "connect" triggers the OS to transmit a SYN

If the SYN is lost

- 3-6 seconds of delay: too long for impatient users

- User may click the hyperlink again, or click "reload"

User triggers an "abort" of the "connect"

- Browser creates a new socket and another "connect" → a new SYN, and faster!

46

TCP connection termination: one side at a time

Finish (FIN) to close and receive
remaining bytes

- FIN occupies one octet in the
sequence space

Other host ACK's the octet to confirm

Closes A's side of connection, but not
B's side

- Until B likewise sends a FIN

- A ACKs B's FIN

47

A B

ACK

Data

FIN

FIN

ACK

Half-
closed

Timeout: avoid reincarnation;
B will retransmit FIN if ACK is lostClosed

TCP connection termination: both together

48

A B

FIN + ACK

Data

FIN

ACK

Timeout: avoid reincarnation;
B will retransmit FIN if ACK is lostClosed

B sets FIN with their ACK of A's FIN

TCP connection termination: abruption

A sends a RESET (RST) to B

- Example: because application
process on A crashed

That is it!

- B does not ACK the RST (so RST is
not relivered reliably)

- Any data in flight is lost

- If B sends anything more, A will
elicit another RST

49

A B

Data

Data

RST

RST

TCP state machine

50

send() and receive(): exchange of
data and ACK

TCP timeouts and retransmission

Reliability requires retransmitting lost data

Involves setting timer and retransmitting on timeout

TCP resets timer whenever new data is ACKed

- Retransmission of packet containing "next byte" when timer goes off

51

1 2 3 4 5 6 7 8 9 10

ACK=1 ACK=3 ACK=6

Timer goes off, resend 3

Setting TCP timeout

52

Sender Receiver

Packet 1

RTT

Sender Receiver

Packet 1

Time

Packet 1
Timeout

RTT
Timeout Packet 1

Timeout too long → inefficient Timeout too short → duplicate packets

RTT estimation
Exponential averaging of RTT samples

53

SampleRTT = ACKRcvTime − SendPktTime

EstimatedRTT = α × EstimatedRTT + (1 − α) × SampleRTT
RT

T

Time

SampleRTT

EstimatedRTT

Problem: ambiguous measurements
How to differentiate between the real ACK and ACK of the retransmitted packet?

54

Sender Receiver

Original

SampleRTT Retransmission

Sender Receiver

Original

SampleRTT Retransmission

Karn/Patridge algorithm

Measure only for original transmissions

- Once a segment has been retransmitted, do not use it for any further measurements

- Computes using

Timeout value () =

Use exponential backoff for repeated retransmissions

- Every time timer expires, set (up to max. 60 seconds)

- Every time new measurement comes in (i.e., successful original transmission), collapse
 back to

SampleRTT

EstimatedRTT α = 0.875

RTO 2 × EstimatedRTT

RTO RTO ← 2 ⋅ RTO

RTO 2 × EstimatedRTT

55

However, in practice...

Implementations often use a coarse-grained timer

- 500 milliseconds is quite typical

So what?

- Above algorithms are largely irrelevant

- Incurring a timeout is expensive

So we rely on duplicate ACKs to detect loss/corruption early on

56

Loss detection with cumulative ACKs

57

0 1 2 3 4 25

0 1 E 25

RTO
AC

K
1

AC
K

2

3 4
AC

K
 2

AC
K

 2

AC
K

 6

Packet with
error

AC
K

 2

6

3 duplicate ACKs trigger the retransmission
of the next expected data

Reset RTO

Stream Control Transmission Protocol (SCTP)

58https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol

Chunks

Message

SCTP association
IP packets

Supports
multi-streaming and

multi-homing

Message
oriented

Reliable ordered/
unordereddata

streams

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol

QUIC

History

- Experimental protocol deployed
at Google since 2013

- Between Google services and
Chrome

- Akamai deployment in 2016,
Facebook deployment in 2020

- HTTP/3 standardization based on
QUIC (RFC 9114) in 2022

59
Langley et al. The QUIC Transport Protocol: Design and Internet-Scale Deployment. ACM SIGCOMM, 2017.
https://www.rfc-editor.org/rfc/rfc9114.html

https://www.rfc-editor.org/rfc/rfc9114.html

MPTCP

Multi-homed devices become popular

- Mobile devices (with cellular and WiFi at the same
time)

- High-end servers (multiple NICs)

- Data centers (rich connectivity with many paths)

Benefits of multi-path

- Higher throughput, failover from one path to
another

- Seamless mobility

60https://www.multipath-tcp.org/

Application

Socket

Multi-path TCP

TCP1 TCP2 TCPn

OS
kernel

User space

https://www.multipath-tcp.org/

Summary

Requirements

- Demultiplexing (sockets and ports)

- Byte stream / message

- Reliability

- Flow control

- Congestion control

UDP

- Light-weight, low-overhead

61

TCP

- TCP segmentation

- Sequence and ACK number

- Sliding window flow control

- Connection establishment

- Connection termination

- Timeouts and retransmission

- TCP alternatives: SCTP, QUIC, MPTCP

Next time: transport layer

62

How fast should the data be sent out?

TCP/UDP

Socket Socket

Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition).

- Section 6.4: The Internet Transport Protocols: UDP

- Section 6.5: The Internet Transport Protocols: TCP

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach.

- Section 5.1: Simple Demultiplexor (UDP)

- Section 5.2: Reliable Byte Stream (TCP)

63

