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What do we need in the transport layer?

Functionality implemented in the network 

- Keep minimum (easy to build, broadly applicable) 

Functionality implemented in the application 

- Keep minimum (easy to write) 

- Restricted to application-specific functionality 

Functionality implemented in the network stack 

- Shared networking code on the host 

- Relieves burden from both the application and network
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What do we need in the transport layer?

Application layer 

- Communication for specific applications 

- Example: Hyper Text Transfer Protocol (HTTP), File Transfer Protocol (FTP) 

Network layer 

- Global communication between hosts 

- Hides details of the link technology 

- Example: Internet Protocol (IP) 

Transport layer: bridging the gap between the two
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What is the gap?

Data delivering, to the correct application 

- IP just points towards next protocol 

- Transport needs to demultiplex incoming data 

Files or bytestreams abstractions for the application 

- Network deals with packets 

- Transport needs to translate between the two 

Others 

- Reliable transfer (if needed), not overloading anyone
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Transport layer functionality

Demultiplexing: identifier for application process 

- From host-to-host (IP) to process-to-process 

Bytestream - packet translation 

- Segmentation and reassembly 

Reliability: checksums, ACKs, timeouts 

Not overloading the receiver: flow control 

Not overloading the network: congestion control
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Demultiplexing: sockets and ports

Sockets 

- An operating system abstraction 

Ports 

- A networking abstraction 

- Not a physical port on a switch/router (which is 
a network interface) 

- Think of it as a logical interface on a host
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Sockets

A socket is a software abstraction by which an application process exchanges network 
messages with the (transport layer in the) OS 

- socket_id = socket(..., socket.TYPE) 

- socket_id.sendto(message, ...) 

- socket_id.recvfrom(...) 

Two important types of sockets 

- UDP socket: TYPE = SOCK_DGRAM 

- TCP socket: TYPE = SOCK_STREAM
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Ports

Problem to solve 

- Which app (socket) gets which packets? 

Solution 

- Port as transport layer identifier (16 bits) 

- Packets carry source/destination port numbers in the transport layer header 

Mapping between ports and sockets 

- OS stores the mapping
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Ports

Seperate 16-bit port address space for UDP, TCP 

System or well-known ports (0-1023) 

- Agreement on which services run on these ports, e.g., 22 (SSH), 80 (HTTP) 

- Client (App) knows appropriate port on server; services can listen on well-known ports 

Registered ports (1024-49151) 

- Designated for use with a certain protocol or application 

Ephemeral (or dynamic, private) ports (49152-65535) 

- Given to clients (at random)
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Multiplexing and demultiplexing in TCP

Host receives IP packets 

- Each IP packet has source and 
destination IP addresses 

- Each TCP segment has source and 
destination port number 

Host uses IP addresses and port numbers 
to direct the segment to appropriate 
socket: a socket is identified by a 4-tuple 
(SrcIP, SrcPort, DstIP, DstPort)
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TCP socket example
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TCP socket example
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Client OS Source IP Source port Destination IP Destination port

Server OS Source IP Source port Destination IP Destination port

131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184

142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206

142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206
142.250.181.206

131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184
131.234.250.184

54001
56320
63584
55003
65076

443
443
443
443
443

443
443
443
443
443

54001
56320
63584
55003
65076

1
2
3
4
5

1
2
3
4
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Multiplexing and demultiplxing in UDP

Host receives IP packets 

- Each IP packet has the destination port 

Host uses the destination port to direct the 
segment to appropriate socket 

Application process distinguishes the UDP 
datagram with the source IP and/or port

15https://book.systemsapproach.org/e2e/udp.html 
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User Datagram Protocol (UDP)



UDP

Lightweight communication between processes 

- Avoid overhead and delays of ordered, reliable delivery 

- Send messages to and receive them from a socket 

UDP described in RFC 768 (1980!) 

- IP plus port numbers to support (de)multiplexing 

- Optional error checking on the packet contents 
(checksum field = 0 means do not verify checksum)
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Why would anyone use UDP?

Finer control over what data is sent and when 

- As soon as data is written into the socket, UDP will package it and send the packet 

No delay for connection establishment 

- No formal preliminaries, avoids introducing any unnecessary delays 

No connection state 

- No allocation of buffers, sequence numbers, timers, etc., easy to handle many clients 

Small packet header overhead 

- UDP header is only 8 bytes
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Popular applications that use UDP

Interactive streaming applications 

- Retransmitting lost/corrupted packets often pointless 

- By the time the packet is retransmitted, it is too late 

- Examples: telephone calls, video conferencing, gaming 

- However, modern video streaming protocols use TCP (and HTTP) 

Simple query protocols like Domain Name System (DNS) 

- Connection establishment overhead would double cost 

- Easier to have application retransmit if needed
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Transmission Control Protocl 
(TCP)



TCP

Reliable, in-order delivery 

- Ensure byte stream (eventually) arrives intact 

- In the presence of corruption and loss 

Connection oriented: explicit set-up and tear-down of TCP session 

Fully duplex stream of bytes service: stream of bytes instead of messages 

Flow control: ensures that sender does not overwhelm receiver 

Congestion control: dynamic adaptation to network path's capacity (next time)
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Reliability recap

ACKs: cannot be reliable without knowing whether the data has arrived 

- TCP uses byte sequence numbers to identify payloads 

Checksums: cannot be reliable without knowing whether data is corrupted 

- TCP does checksum over TCP and parts of IP header 

Timeouts/retransmission: cannot be reliable without retransmitting lost/corrupted data 

- TCP retransmits based on timeouts and duplicate ACKs 

- Timeout is set based on estimate of RTTs
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Other TCP design decisions

Sliding-window flow control 

- Allows  contiguous bytes to be in flight 

Cumulative ACKs 

- Selective ACKs (full information) also supported 

Single timer set after each payload is ACKed 

- Timer is effectively for the "next expected payload" 

- When timer goes off, resend that payload and wait (and double timeout period) 

Various tricks for "fast retransmit": using duplicate ACKs to trigger retransmission

W
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TCP header
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdr. length 0 Flags

Checksum Urgent pointer

Options (variable)

Data



80

TCP "stream of bytes" service
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TCP segmentation
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800 1 2 3 81...... ...... ......

800 1 2 3 81...... ...... ......

Bytes

Bytes

Application at host A

Application at host B

TCP data

TCP data

Segment sent out when (1) segment is full (Maximum 
Segment Size, MSS), and (2) not full but times out



TCP segment

IP packet 

- No bigger than Maximum Transmission Unit (MTU) 

- Example: up to 1500 bytes with Ethernet 

TCP packet 

- IP packet with a TCP header (>= 20 bytes long) and data inside 

TCP segment 

- No more than Maximum Segment Size (MSS) = MTU - IPHdr - TCPHdr 

- Example: up to 1460 consecutive bytes from the stream
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Sequence number
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800 1 2 3 81...... ...... ......Bytes

 bytesk

ISN (initial 
sequence number)

Sequence number = 1st 
byte in segment = ISN + k



Acknowledgement number
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TCP data

TCP data
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TCP header

TCP header
ACK sequence number = next 

expected byte = seqno + len(data)



Sequence and ACK numbers

Sender sends packet 

- Data starts with sequence number  

- Packet contains  bytes:  

Upon receipt of packet, receiver sends an ACK 

- If all data prior to  already received: ACK  (next expected byte) 

- If highest contiguous byte received is a smaller value : ACK  even if it has been 
ACKed before

X

B X, X + 1,...,X + B − 1

X X + B

Y Y + 1
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Normal pattern

Segment #1 

- Sender: seqno = , length =  

- Receiver: ACK =  

Segment #2 

- Sender: seqno = , length =  

- Receiver: ACK =  

Segment #3 

- Sender: seqno = , length = 

X B

X + B

X + B B

X + 2B

X + 2B B
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Seqno of next packet is the 
same as last ACK number



Sliding window flow control

Advertised window  

- Can send  bytes beyond the next 
expected byte 

Receiver uses  to prevent sender from 
overflowing its buffer 

Limites the number of bytes sender can 
have in flight

W

W

W
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data



Rate limiting with advertised window

Sender can send no faster than  
bytes per second 

Receiver only advertises more space 
when it has consumed old arriving data 

- Advertises 0 when buffer is full 

In original TCP design, that was the sole 
protocol mechanism controlling sender's 
rate 

What is missing?

W/RTT
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data



Implementing sliding window

Both sender and receiver maintain a window 

- Sender: not yet ACKed 

- Receiver: not yet delivered to application 

Left edge of window 

- Sender: beginning of unACKed data 

- Receiver: beginning of undelivered data 

Window size  

- Maximum amount of data in flight (sender) and of undelivered data (receiver)
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Sliding window summary

Sender 

- Window advances when new data ACKed 

Receiver 

- Window advances as receiving process consumes data 

Receiver advertises to sender where the receiver window currently ends (righthand edge) 

- Sender agrees not to exceed this amount 

- It makes sure by setting its own window size to a value that cannot send beyond the 
receiver's righthand edge 
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Other TCP header fields
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Number of 4-byte 
words in TCP header: 
5 means no option

6 bits reserved: 
must be zero



Other TCP header fields
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Used with URG flag to 
indicate urgent data



Initial sequence number

Sequence number for the very first byte 

- Why not just use ISN = 0? 

Practical issues 

- IP addresses and ports uniquely identify a connection 

- Eventually, though, these port numbers do get used again and there is a small chance 
that a packet from an old connection is still in flight 

TCP therefore requires changing ISN 

- Initially set from 32-bit clock that ticks every 4 microseconds, now draw from a pseudo 
random number generator (security)
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TCP connection establishment

3-way handshake to establish connection 

- Host A sends a SYN (open; sychronize seqno) 

- Host B returns a SYN acknowledgement (SYN-ACK) 

- Host A sends an ACK to acknowledge the SYN-ACK 

Each host also tells its ISN to the other host
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TCP flags
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Source port Destination port

Sequence number

Acknowledgement

Advertised windowHL 0 Flags

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN, ACK, FIN, 
RST, PSH, URG



TCP connection establishment: SYN
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A's port B's port

A's ISN

(Irrelevant since ACK not set)

Advertised window5 0 10000

Checksum Urgent pointer

Options (variable)

Data

A B

SYN

SYN-ACK

ACK

Data

SYN, ACK, FIN, RST, PSH, URG



TCP connection establishment: SYN-ACK
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B's port A's port

B's ISN

ACK = A's ISN + 1

Advertised window5 0 11000

Checksum Urgent pointer

Options (variable)

Data

SYN, ACK, FIN, RST, PSH, URG

A B

SYN

SYN-ACK

ACK

Data

B tells A it accepts, and is ready to hear the next byte; upon 
receiving this packet, A can start sending data



TCP connection establishment: ACK
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A's port B's port

A's ISN

ACK = B's ISN + 1

Advertised window5 0 11000

Checksum Urgent pointer

Options (variable)

Data

SYN, ACK, FIN, RST, PSH, URG

A B

SYN

SYN-ACK

ACK

Data



3-way handshake
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A 
(Client)

B 
(Server)

SYN (seqno=x)

SYN-ACK (seqno=y, ack=x+1)

ACK (ack=y+1)

Data

Active open Passive open

listen()connect()

accept()
send()

receive()



What if SYN gets lost?

Suppose the SYN packet gets lost 

- Packet is lost inside the network or server discarded the packet (queue is full) 

Eventually, no SYN-ACK arrives 

- Sender sets a timer and waits for the SYN-ACK and retransmits the SYN if needed 

How should the TCP sender set the timer? 

- Sender has no idea how far away the receiver is, thus hard to guess the time to wait 

- SHOULD use default of 3 seconds (RFCs 1122 & 2988) 

- Other implementations instead use 6 seconds
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SYN loss in web browsing

User clicks on a hypertext link 

- Browser creates a socket and calls a "connect" 

- The "connect" triggers the OS to transmit a SYN 

If the SYN is lost 

- 3-6 seconds of delay: too long for impatient users 

- User may click the hyperlink again, or click "reload" 

User triggers an "abort" of the "connect" 

- Browser creates a new socket and another "connect" → a new SYN, and faster!
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TCP connection termination: one side at a time

Finish (FIN) to close and receive 
remaining bytes 

- FIN occupies one octet in the 
sequence space 

Other host ACK's the octet to confirm 

Closes A's side of connection, but not 
B's side 

- Until B likewise sends a FIN 

- A ACKs B's FIN
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A B

ACK

Data

FIN

FIN

ACK

Half-
closed

Timeout: avoid reincarnation;  
B will retransmit FIN if ACK is lostClosed



TCP connection termination: both together
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A B

FIN + ACK

Data

FIN

ACK

Timeout: avoid reincarnation;  
B will retransmit FIN if ACK is lostClosed

B sets FIN with their ACK of A's FIN



TCP connection termination: abruption

A sends a RESET (RST) to B 

- Example: because application 
process on A crashed 

That is it! 

- B does not ACK the RST (so RST is 
not relivered reliably) 

- Any data in flight is lost 

- If B sends anything more, A will 
elicit another RST
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A B

Data

Data

RST

RST



TCP state machine
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send() and receive(): exchange of 
data and ACK



TCP timeouts and retransmission

Reliability requires retransmitting lost data 

Involves setting timer and retransmitting on timeout 

TCP resets timer whenever new data is ACKed 

- Retransmission of packet containing "next byte" when timer goes off
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1 2 3 4 5 6 7 8 9 10

ACK=1 ACK=3 ACK=6

Timer goes off, resend 3



Setting TCP timeout
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Sender Receiver

Packet 1

RTT

Sender Receiver

Packet 1

Time

Packet 1
Timeout

RTT
Timeout Packet 1

Timeout too long → inefficient Timeout too short → duplicate packets



RTT estimation
Exponential averaging of RTT samples
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SampleRTT = ACKRcvTime − SendPktTime

EstimatedRTT = α × EstimatedRTT + (1 − α) × SampleRTT
RT

T

Time

SampleRTT

EstimatedRTT



Problem: ambiguous measurements
How to differentiate between the real ACK and ACK of the retransmitted packet?
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Sender Receiver

Original

SampleRTT Retransmission

Sender Receiver

Original

SampleRTT Retransmission



Karn/Patridge algorithm

Measure  only for original transmissions 

- Once a segment has been retransmitted, do not use it for any further measurements 

- Computes  using  

Timeout value ( ) =  

Use exponential backoff for repeated retransmissions 

- Every time  timer expires, set  (up to max. 60 seconds) 

- Every time new measurement comes in (i.e., successful original transmission), collapse 
 back to 

SampleRTT

EstimatedRTT α = 0.875

RTO 2 × EstimatedRTT

RTO RTO ← 2 ⋅ RTO

RTO 2 × EstimatedRTT
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However, in practice...

Implementations often use a coarse-grained timer 

- 500 milliseconds is quite typical 

So what? 

- Above algorithms are largely irrelevant 

- Incurring a timeout is expensive 

So we rely on duplicate ACKs to detect loss/corruption early on
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Loss detection with cumulative ACKs
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Stream Control Transmission Protocol (SCTP)

58https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol 

Chunks

Message

SCTP association
IP packets

Supports 
multi-streaming and 

multi-homing

Message 
oriented

Reliable ordered/
unordereddata 

streams

https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol


QUIC

History 

- Experimental protocol deployed 
at Google since 2013 

- Between Google services and 
Chrome 

- Akamai deployment in 2016, 
Facebook deployment in 2020 

- HTTP/3 standardization based on 
QUIC (RFC 9114) in 2022
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Langley et al. The QUIC Transport Protocol: Design and Internet-Scale Deployment. ACM SIGCOMM, 2017.  
https://www.rfc-editor.org/rfc/rfc9114.html 

https://www.rfc-editor.org/rfc/rfc9114.html


MPTCP

Multi-homed devices become popular 

- Mobile devices (with cellular and WiFi at the same 
time) 

- High-end servers (multiple NICs) 

- Data centers (rich connectivity with many paths) 

Benefits of multi-path 

- Higher throughput, failover from one path to 
another 

- Seamless mobility

60https://www.multipath-tcp.org/ 
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Summary

Requirements 

- Demultiplexing (sockets and ports) 

- Byte stream / message 

- Reliability 

- Flow control 

- Congestion control 

UDP 

- Light-weight, low-overhead

61

TCP 

- TCP segmentation 

- Sequence and ACK number 

- Sliding window flow control 

- Connection establishment 

- Connection termination 

- Timeouts and retransmission 

- TCP alternatives: SCTP, QUIC, MPTCP



Next time: transport layer
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How fast should the data be sent out?

TCP/UDP

Socket Socket



Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition). 

- Section 6.4: The Internet Transport Protocols: UDP 

- Section 6.5: The Internet Transport Protocols: TCP 

Larry Peterson, Bruce Davie. Computer Networks: A Systems Approach. 

- Section 5.1: Simple Demultiplexor (UDP) 

- Section 5.2: Reliable Byte Stream (TCP)
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