

Computer Networks (WS23/24) L11: Video Streaming

Prof. Dr. Lin Wang Computer Networks Group Department of Computer Science Paderborn University

Learning objectives

Video Streaming Basics

Video content has been dominating the Internet

Video traffic is dominant nowadays: By 2027, Ericsson expects video content to account for almost 80% of mobile traffic, which is projected to triple once more in the next five years

Pre-streaming era

Download the whole video file (e.g., FTP) and play it when the download is finished

Problem: long waiting time and susceptible to glitches!

Streaming era

Chunk the video into small segments and stream from any segment

Challenges in video streaming

How to address/mitigate this issue?

Video compression

Reduce the data volume to be transmitted while keeping the video quality

Techniques:

- Frame-level compression: resize/encode the image
- Video-level compression: encode the images across time (calculating deltas)

Frame 1

Frame 1

Frame-level compression

Frame 1

Frame 2

Frame-level compression

JPEG compression

- Changes RGB to YC_bC_r
- Y: luminance, CbCr are chrominance
 (blue and red relative to the green color)

Why this change?

- Human eyes are less sensitive to chrominance than to luminance

JPEG reduces sizes of C_b and C_r : quantization by 4

Frame-level compression

JPEG compression

- Changes RGB to YC_bC_r
- Y: luminance, CbCr are chrominance
 (blue and red relative to the green color)

Why this change?

- Human eyes are less sensitive to chrominance than to luminance

JPEG reduces sizes of C_b and C_r : quantization by 4

Video-level compression

Remove temporal redundancy by keeping track of the relative differences (deltas) between frames

Compressibility highly depends on the content

Video-level compression

Remove temporal redundancy by keeping track of the relative differences (deltas) between frames

I (intra-coded) frame: self-contained, e.g., JPEG

P (predictive) frame: looks back to I and P frames for prediction

B (bidirectional) frame: looks forward and backward to other frames

I frames are the largest, **P** frames are mediumsize, and **B** frames are the smallest

Bitrate

Measures the data size per unit time

- Amount of data used to encode video (or audio) per second, e.g., Mbps, Kbps

Bitrate affects both the file size and the quality of the video

- Affect the required bandwidth when streaming the video over the network

Live demo: https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

Variable bitrate (VBR)

Encode video with varying bitrates

- Smooth out the quality

VBR algorithms for encoder and decoder are more complex and typically require support from the hardware

- Higher bitrate for more complex segments, not friendly with streaming over a network

Constant bitrate (CBR)

Compress video with a constant bitrate

- **Constant bitrate** → constant compression ratio → **varying quality**
- In H.264, quality is worse when the motion is higher due to the larger deltas

Video streaming with CBR

For a single user, CBR is sufficient, though not perfect

CBR is not efficient when multiple users with different bandwidth availabilities are present

CBR improvement

streaming server and choose a suitable CBR based on the real-time bandwidth availability

Adaptive bitrate (ABR)

Main idea:

- Chop the video into small segments and encode the segments with different bitrates
- Adaptively select the bitrate for each segment in streaming for each user

Video Streaming Protocols

Video streaming protocols

Majority video streaming protocols are based on UDP in favor of timeliness instead of reliability Modern video streaming protocols are based on HTTP

Real-time Transport Protocol (RTP)

Based on UDP

- Primary standard for audio/video transport in IP networks, widely used for real-time multimedia applications such as voice over IP, audio over IP, WebRTC (uses SRTP), and IP television
- Comes with a **control protocol, RTCP**, for QoS feedback and synchronization between media streams, account for around 5% of total bandwidth usage

RTP packet header

V=2	Ρ	Х	CC	Μ	PT	Sequence number				
Timestamp										
Synchronization source (SSRC) identifier										
Contributing source (CSRC) identifiers										
÷										
Extension header										
RTP payload										

- Sequence number (16 bits): used for packet loss detection or packet reordering, initially randomized
- Timestamp (32 bits): used by the receiver to play back the received samples at appropriate time and interval (e.g., use a clock of 90 kHz for a video stream)
- SSRC (32 bits): uniquely identify the source of a stream
- **CSRC (32 bits):** enumerate contributing sources to a stream which has been generated from multiple sources

No.	Time	Source	Destination	Protocol	Length Info
]	0.00000	10.1.1.1	10.2.2.2	RTP	121 PT=DynamicRTP-Type-111, SSRC=0xC2B13255, Seq=19591, Time=2760404098
2	0.000037	10.2.2.2	10.1.1.1	RTP	121 PT=DynamicRTP-Type-111, SSRC=0xB5770A56, Seq=4305, Time=4131840
3	0.020622	10.1.1.1	10.2.2.2	RTP	131 PT=DynamicRTP-Type-111, SSRC=0xC2B13255, Seq=19592, Time=2760405058
4	0.020653	10.2.2.2	10.1.1.1	RTP	131 PT=DynamicRTP-Type-111, SSRC=0xB5770A56, Seq=4306, Time=4132800
5	0.025986	10.1.1.1	10.2.2.2	RTP	ll90 PT=DynamicRTP-Type-96, SSRC=0x69E8BDC, Seq=24102, Time=3068471093
6	0.026109	10.1.1.1	10.2.2.2	RTP	ll90 PT=DynamicRTP-Type-96, SSRC=0x69E8BDC, Seq=24103, Time=3068471093
7	0.026153	10.1.1.1	10.2.2.2	RTP	ll90 PT=DynamicRTP-Type-96, SSRC=0x69E8BDC, Seq=24104, Time=3068471093
8	0.026290	10.1.1.1	10.2.2.2	RTP	1190 PT=DynamicRTP-Type-96, SSRC=0x69E8BDC, Seq=24105, Time=3068471093

Control in RTP: RTCP

Receiver constantly measure transmission quality

- Delay, jitter, packet loss, RTT

Regular control information exchange between senders and receivers

- Feedback to sender (receiver report)
- Feed forward to recipients (sender report)

Allow applications to adapt to current QoS

- Limiting a flow or using a different codec

Limited overhead: a small fraction, e.g., 5% max. of total bandwidth per RTP session

RTP/RTCP has no support for ABR!

Video streaming protocols based on HTTP

Three major players

- Microsoft Smooth Streaming
- Adobe HTTP Dynamic Streaming (HDS)
- Apple HTTP Live Streaming (HLS)

```
Each has a proprietary format and its own ecosystem
```

Bad for the industry such as CDN providers like Akamai since every functionality has to be implemented three times

Why HTTP?

HTTP 1.1+ supports progressive download

- Prevalent form of web-based media delivery for video share sites
- Progressive = playback begins while download is in progress (byte range request)

Compatible with middleboxes (e.g., firewalls) on the Internet

Playback buffer

Different HTTP-based protocols

"We've spent the past five years delivering a variety of adaptive video formats—SmoothHD, HDNI, HLS and HDS—all of which are 80 percent the same but 100 percent incompatible." - Will Law (Akamai) 2011

Let's try to unify them and make the life of content providers and CDNs easier

Yet another standard: MPEG-DASH

Dynamic adaptive streaming over HTTP (DASH) is an ISO standard for the adaptive delivery of segmented content

- Blending existing formats into a new format

MPEG (moving pictures experts group)

- Standardized MP3, MP4

Standardization work from 2010-2012

Note: DASH is not a protocol (implementation specific decisions are left out)

DASH: data model

MDP (media presentation description) describes accessible segments and corresponding timing, ensuring interoperability

Time

Video file is encoded using the MDP data model described with a manifest file

Bitrate Selection Algorithms

Bitrate selection in ABR

How would you design a bitrate selection algorithm?

Bitrate selection in ABR

Challenge: bandwidth variation can be very high!

Bitrate selection in ABR

Make ABR decisions based on the buffer occupancy at the client

ABR algorithm: buffer-based

Main motivation

- Avoid bandwidth estimation
- Buffer occupancy contains implicit information about the bandwidth

BBA (buffer-based algorithm): pick the bitrate based on a function of buffer occupancy

A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell*, Mark Watson* Stanford University, Netflix* {huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT

Existing ABR algorithms face a significant challenge in estimating future capacity: capacity can vary widely over time, a phenomenon commonly observed in commercial services. In this work, we suggest an alternative approach: rather than presuming that capacity estimation is required, it is perhaps better to begin by using only the buffer, and then ask when capacity estimation is needed. We test the viability of this approach through a series of experiments spanning millions of real users in a commercial service. We start with a simple design which directly chooses the video rate based on the current buffer occupancy. Our own investigation reveals that capacity estimation is unnecessary in steady state; however using simple capacity estimation (based on immediate past throughput) is important during the startup phase, when the buffer itself is growing from empty. This approach allows us to reduce the rebuffer rate by 10-20% compared

Figure 1: Video streaming clients experience highly variable end-to-end throughput.

BBA: system model

C(t)/R(t) > 1: buffer B(t) grows

- Arrival rate is higher than 1 second of video per second
- At a certain point, it is safe to increase R(t) to improve the streaming quality

C(t)/R(t) < 1: buffer B(t) drains

- Arrival rate is smaller than 1 second of video per second
- The chosen rate R(t) is too high
- Buffer will be depleted and "rebuffering" happens

We use the unit of video seconds: representing how many seconds of video we can fetch/buffer

Question: find a good function R(t) = f(B(t))

BBA: theoretical analysis

Assumptions: infinitesimal segment size, continuous bit rate, videos are CBR coded, videos are infinitely long

Goal 1: no unnecessary rebuffering

- As long as $C(t) > R_{min}$ for all t and we adapt $f(B) \to R_{min}$ as $B \to 0$, we will never unnecessarily rebuffer because the buffer will start to grow before it runs dry

Goal 2: average video rate maximization

- As long as f(B) is increasing and eventually reaches R_{max} , the average video rate will match the average capacity when $R_{min} < C(t) < R_{max}$ for all t > 0

BBA in practice

Assumptions do not always hold in practice, we need to be more conservative

ABR algorithm: control theory based

Model the ABR control problem as Markov processes and apply control theory

ABR algorithm: deep reinforcement learning based

Model the ABR control problem as a Markov Decision Process and apply deep reinforcement learning

Replacing video codecs with machine learning

Netflix Video Serving

Netflix video serving

Workloads

- Serve only static media files
- Pre-encoded for all codecs/bitrates

Video serving stack: FreeBSD-current, NGINX web server (HTTP)

- Video served via asynchronous **sendfile()** and encrypted using kTLS (offloaded to NICs)
- Since 2020, 200Gbps of TLS encrypted traffic from a server, aiming for 400+ Gbps now

Sendfile() directs the kernel to send data from a file descriptor to a TCP socket

- Eliminates the need to copy data into or out of the kernel

NETFLIX

Netflix video serving data flow

Memory bandwidth is a bottleneck

Netflix video serving data flow

achieve 400Gbps \rightarrow require 200GB/s memory bandwidth \rightarrow Challenging

Netflix video serving data flow

Video Analytics

Video streaming vs. video stream analytics

Challenges in video stream analytics

Large volume of traffic needs to be sent across the wide area network (WAN)

WAN has scarce, expensive, and variable bandwidth

Applications have quality of service requirements which are complex to optimize

- Unlike video streaming where quality of experience is relatively well-defined
- Video analytics rely on **deep learning** models and the analytics accuracy has a nonlinear relationship with the quality metrics (resolution, frame rate, latency)

Application-specific optimization

Scenario 1: a monitoring application that counts pedestrians on a busy street

t=0s, small target in far-field views

t=1s, small difference

Adapting Frame Rate

Adapting Resolution

Application-specific optimization

Scenario 2: an AR application that detects objects on a mobile phone

t=0s, nearby and large target

t=1s, large difference due to camera movement

Adapting Frame Rate

A general framework: AWStream

Systematic and quantitative adaptation

- New **programming abstractions** to express adaptation
- Automatic data-driven profiling
- Runtime adaptation balancing the different goals

Clownfish: real-time video stream analytics

Combine a local fast processing and a remote accurate processing

Jellyfish: real-time video stream analytics

End-to-end real-time guarantee

Summary

Video streaming

- Video compression
- Bitrate, VBR, CBR
- ABR

Video streaming protocols

- RTP
- HTTP-based
- DASH

Bitrate selection algorithms

- Rate-based
- Buffer-based: BBA
- Others: control theory, learning

Advanced topics

- Netflix video serving
- Video analytics

Next time: Linux networking stack

Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition).

- Section 7.4: Streaming Audio and Video

Junchen Jiang, Vyas Sekar, Hui Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. ACM CoNEXT, 2012.

Marios Kanakis, Ramin Khalili, Lin Wang. Machine Learning for Computer Systems and Networking: A Survey. ACM Computing Surveys, vol. 44(4), pp. 1-36, 2022.

- Section 9: Adaptive Video Streaming