Computer Networks (WS23/24)
L11: Video Streaming

Prof. Dr. Lin Wang
Computer Networks Group

Department of Computer Science
Paderborn University

>
)

Learning objectives

Part 2
- Video streaming

Application - Video streaming protocols

- Bitrate adaptation algorithms

Transport - Advanced topics: Netflix video serving, video analytics
Network
Link) 3 YouTube

Physical

Video Streaming Basics

l

<

g < "».“)

22N o> 4’&‘

‘i

Video content has been dominating the Internet

Global IP traffic -
By 2020, video on the internet will eat %

up a bigger share of increased web traffic.

16%

Gaming —— 1%
File sharing 8%
Web/data 18%

IPVOD 22%
2016 2021

Source: Cisco

Total traffic: 96 exabytes 278 exabytes

Video Drives Surge in
Mobile Data Traffic

Estimated global mobile data traffic by application category
(in exabytes per month)’

M Video Social media M Audio ™ Web browsing
W Software updates M File sharing ™ Other

per smartphone
10.9 EB

Monthly traffic
2017 I

26G8 152GB 397GB
, o [J

2017 2022 2027
. 90.4 EB N -
. 282.8EB

0 50 100 150 200 250 300

* one exabyte equals one million terabytes
Source: Ericsson Mobility Report

©@O®06 statista%a

2022

2027

Video traffic is dominant nowadays: By 2027, Ericsson expects video content to account for
almost 80% of mobile traffic, which is projected to triple once more in the next five years

Pre-streaming era

Network

Download the whole video file (e.g., FTP) and play it when the download is finished

Problem: long waiting time and susceptible to glitches!

Streaming era

Network

> 10 0—

Chunk the video into small segments and stream from any segment

Challenges in video streaming

c Network condition is dynamic: best effort!
g
; \/\/\
<
Buffering 3 Packet loss
L , >
® Time
O

Internet

000 g NI

How to address/mitigate this issue?

Video compression

Reduce the data volume to be transmitted while keeping the video quality

Techniques:
- Frame-level compression: resize/encode the image

- Video-level compression: encode the images across time (calculating deltas)

IR b RV BV

Frame 1 Frame 1 Frame 1 Frame 2 Frame 3

Frame-level compression Video-level compression

Frame-level compression

JPEG compression

- Changes RGB to YCuwCr

- Y:luminance, CpC; are chrominance
(blue and red relative to the green color) [102, 56,163]

#6638a3
Why this change? -
Compression
- Human eyes are less sensitive to ' 4 2
chrominance than to luminance E E
. RGB
JPEG reduces sizes of Cp, and C;: Y | Cb Cr |

quantization by 4
What is the compression ratio?

Frame-level compression

JPEG compression
- Changes RGB to YCyxCr
- Y:luminance, CpCr are chrominance
(blue and red relative to the green color)
Why this change?
- Human eyes are less sensitive to

chrominance than to luminance

JPEG reduces sizes of C, and C;:
quantization by 4

[76,141,248]
#4C8DF8

RGB

.

Cb

Cr

.= Compression
nd BE

J

Compression ratio calculation:
- Size before compression: 16 X 3 = 48 bytes

- Size after compression: 16 + 4 + 4 = 24 bytes

- Compression ratio: 48/24 = 2

10

Video-level compression

Remove temporal redundancy by keeping track of the relative differences (deltas)
between frames

Macro
blocks

Y

Compressibility highly depends on the content

https://en.wikipedia.org/wiki/Macroblock

https://en.wikipedia.org/wiki/Macroblock

Video-level compression

Remove temporal redundancy by keeping track of the relative differences (deltas)
between frames

- | (intra-coded) frame: self-contained, e.g., JPEG

Group of

Pictures (GOP) P (predictive) frame: looks back to | and P
frames for prediction

B (bidirectional) frame: looks forward and
backward to other frames

| frames are the largest, P frames are medium-
size. and B frames are the smallest

12

Bitrate

Measures the data size per unit time

- Amount of data used to encode video (or audio) per second, e.g., Mbps, Kbps
Bitrate affects both the file size and the quality of the video

- Affect the required bandwidth when streaming the video over the network

8Mbps

g -

>

Live demo: https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.ntml

13

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

Variable bitrate (VBR)

VBR algorithms for encoder and decoder are more complex

Encode video with varying bitrates) _
and typically require support from the hardware

- Smooth out the quality

- Higher bitrate for more complex segments, not friendly with streaming over a network

()
)
@©
= Quality is smoothed Utilize the space more flexibly
m L
4 with varying bitrates A for the entire video
max TN 2 l
©
>
Y o : :
target | Variable bitrate
M Time

14

Constant bitrate (CBR)

Compress video with a constant bitrate

- Constant bitrate = constant compression ratio = varying quality

- In H.264, quality is worse when the motion is higher due to the larger deltas

Poor quality due

A Quallty is A
o bad for complex Stuffing, wasted space to lack of space
>
© segments =
i) -
m @)
4 Constant bitrate

Time

15

Video streaming with CBR

>

e
-
©
2
©
C
@©
(a8}

For a single user, CBR is
sufficient, though not perfect

CBR is not efficient when multiple users with
different bandwidth availabilities are present

16

CBR improvement

Encode the video with different CBRs at the
streaming server and choose a suitable CBR based
on the real-time bandwidth availability

17

Adaptive bitrate (ABR)

Main idea:
- Chop the video into small segments and encode the segments with different bitrates

- Adaptively select the bitrate for each segment in streaming for each user

. : , Video segments in
Video segments Varying bandwidth

10Mbps I
Bitrates 5Mbps l
TMbps .

Time

varying bitrates

1. Video streaming protocols

2. Bitrate selection algorithms

18

Video Streaming Protocols

>4
&
. S !"'.“

PP (e < ("M

4“‘?4
W

<
» S

Video streaming protocols

Video streaming
CP UDP
IP Layer

Link Layer

Physical Layer

Majority video streaming protocols are based on
UDP in favor of timeliness instead of reliability

Video streaming
HTTP
CP UDP
IP Layer

Link Layer

Physical Layer

Modern video streaming
protocols are based on HTTP

20

RFC 1889 gRFC 3550

Real-time Transport Protocol (RTP)

Based on UDP

- Primary standard for audio/video transport in IP networks, widely used for real-time
multimedia applications such as voice over IP, audio over IP, WebRTC (uses SRTP), and
IP television

- Comes with a control protocol, RTCP, for QoS feedback and synchronization between
media streams, account for around 5% of total bandwidth usage

RTP RTCP
Media streams (RTP)

P Lay er Control Flows (RTCP)

Link Layer

Physical Layer

21

RTP packet header

V=2| P | X | CCI M ‘ PT] Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

Extension header

RTP payload
No. Time Source Destination

1 6.000000 1

2 0.000037 10.2.2.2 10.1.1.1

3 0.020622 10.1.1.1 10.2.2.2

4 0.020653 10.2.2.2 16.1.1.1

5 0.025986 10.1.1.1 10.2.2.2

6 0.026109 10.1.1.1 10.2.2.2

7 0.026153 10.1.1.1 10.2.2.2

8 0.026290 10.1.1.1 10.2.2.2

Sequence number (16 bits): used for packet loss
detection or packet reordering, initially randomized
Timestamp (32 bits): used by the receiver to play back
the received samples at appropriate time and interval

(e.g., use a clock of 90 kHz for a video stream)

SSRC (32 bits): uniquely identify the source of a stream
CSRC (32 bits): enumerate contributing sources to a

stream which has been generated from multiple sources

Protocol Length Info

RTP
RTP
RTP
RTP
RTP
RTP
RTP

121 PT=DynamicRTP-Type-111,
121 PT=DynamicRTP-Type-111,
131 PT=DynamicRTP-Type-111,
131 PT=DynamicRTP-Type-111,

1190 PT=DynamicRTP-Type-96,
1190 PT=DynamicRTP-Type-96,
1190 PT=DynamicRTP-Type-96,
1190 PT=DynamicRTP-Type-96,

SSRC=0xC2B13255,
SSRC=0xB5770A56,
SSRC=0xC2B13255,
SSRC=0xB5770A56,
SSRC=0x69E8BDC,
SSRC=0x69E8BDC,
SSRC=0x69E8BDC,
SSRC=0x69E8BDC,

Seq=24102,
Seq=24103,
Seq=24104,
Seq=24105,

Seq=19591, Time=2760404098
Seq=4305, Time=4131840
Seq=19592, Time=2760405058
Seq=4306, Time=4132800

Time=3068471093
Time=3068471093
Time=3068471093
Time=3068471093

22

Control in RTP: RTCP

RTP/RTCP has no support for ABR!

Receiver constantly measure transmission quality

- Delay, jitter, packet loss, RTT

Regular control information exchange between senders and receivers

- Feedback to sender (receiver report) _
Media streams (RTP)

- Feed forward to recipients (sender report)
Control Flows (RTCP)

Allow applications to adapt to current QoS

- Limiting a flow or using a different codec

Limited overhead: a small fraction, e.g., 5% max. of total bandwidth per RTP session

23

Video streaming protocols based on HTTP

Three major players
- Microsoft Smooth Streaming
- Adobe HTTP Dynamic Streaming (HDS)

- Apple HTTP Live Streaming (HLS)

Each has a proprietary format and its own
ecosystem

Bad for the industry such as CDN providers like
Akamai since every functionality has to be
implemented three times

AL

SS/HDS/HLS

HTTP
TCP
IP Layer

Link Layer

Physical Layer

24

Why HTTP?

HTTP 1.1+ supports progressive download
- Prevalent form of web-based media delivery for video share sites

- Progressive = playback begins while download is in progress (byte range request)

Compatible with middleboxes (e.g., firewalls) on the Internet

Playback buffer

HTTP GET(byte range)

Video file ERNRRENREERR

l l Progressive file download

A

o]

Playback

Browser cache

25

Different HTTP-based protocols

“We've spent the past five years delivering a variety of adaptive video formats—SmoothHD, HDNI, HLS
and HDS—all of which are 80 percent the same but 100 percent incompatible.” - Will Law (Akamai) 2011

s T\ @&

Microsoft Smooth Adobe HTTP Dynamic Apple HTTP Live
Streaming Streaming (HDS) Streaming (HLS)

Let’s try to unify them and make the life of content providers and CDNs easier

26

http://www.smoothhd.com/

HOW STANDARDS PROUFERATE:
(6682 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

11?7 RiDICULOLS! SOON:
WE NEED To DEVELOP
, ONE UNIVERSAL STANDARD
fj ITUATION: THAT COVERS EVERYONES SITUATION:
IHERE ARE USE CASES. \ep THERE ARE

|4 COMPETING |5 COMPETING

STANDPRDS. O o STANDPRDS.
AR

Yet another standard: MPEG-DASH

Dynamic adaptive streaming over HTTP (DASH) is an ISO standard for the adaptive
delivery of segmented content

- Blending existing formats into a new format

MPEG (moving pictures experts group) E

- Standardized MP3, MP4 » mpeg-DASH

Standardization work from 2010-2012

Note: DASH is not a protocol (implementation specific decisions are left out)

28

DASH: data model

MDP (media presentation description) describes accessible segments and
corresponding timing, ensuring interoperability

Media Presentation

Period, start=0s Period
Ads baseURL = http://a.com
Representation 1 Segment
Period, start=100s Adaptation Set 1 P » start=0s
video 500kbps. 640x480
Ads Segment 2
Adaptation Set 2 Representation 2 start=10s
Period, start=290s audio 1Mbps. 800x600

29

http://youtube.com

DAS H WO I‘kflOW DASH server DASH client

Representations Segments w
Representation 1 Segment | e %
start=0s Manifest
500kbps. 640x480 Keep requesting

) Segment 2 REQ SEG1 (REP1
Representation 2 start=10s REQ SEG2 (REP2 improve quality

1Mbps. 800x600
REQ SEG3 (REP3

REQ SEG6 (REP2) Loss/congestion
Video file is encoded using the MDP data 4

model described with a manifest file w

Revamp

Time 30

Bitrate Selection Algorithms

>4
&
. S !"'.“

PP (e < ("M

4“‘?4
W

Pl ¢
» S

Bitrate selection in ABR

Bitrates

: : , Video segments in
Video segments Varying bandwidth

10Mbps I
5Mbps l

Mbps]

n
>

varying bitrates

Time

2. Bitrate selection algorithms

How would you design a bitrate selection algorithm?

32

Bitrate selection in ABR

: : , Video segments in
Video segments Varying bandwidth

10Mbps I S\~ HENE o
Bitrates 5Mbps l ” e \

Mbps] V

n
>

varying bitrates

Time -

16000

14000

\!
5 .l | i

2. Bitrate selection algorithms

(kbis)

The most straightforward approach is
to perform bandwidth estimation

Average Throughput over a Chunk Download
g

\yl{

0 500 1000 1500 2000 2500
Time (s)

Challenge: bandwidth variation can be very high!

33

Bitrate selection in ABR

: : : Video segments in
Video segments Varying bandwidth , _
varying bitrates 40%

10Mbps

Bitrat
itrates 5Mbps l
TMbps .

v

Time Video ID / sCPN 3WNxZNhdxJI / YXN7 1FK3 GJKT
Viewport / Frames 1280x720*2.00 / 1 dropped of 458
Current / Optimal Res 3840x2160@30 / 3840x2160@30
Volume / Normalized 100% / 100%
Codecs vp09.00.51.08.01.01.01.01.00 (313) / mp4a.40.2 (140)
Connection Speed [N DD 13550 Kbps
Network Activity [N DI WODUEMDURNRY 0N NEDUNRD0N | DAV S| Nowpooy I Bm 502 KB
Buffer Health B s | . ~ 091s
Live Latency D () (00s
Live Mode Manifestless, Optimized for Normal Latency, seq 2217
Mystery Text s:81:11085.46 b:11066.236-11086.231 L pl_i:504 pbs:2603
Date Wed Dec 07 2022 16:09:56 GMT+0100 (Central European Standard Time)

Make ABR decisions based on the buffer occupancy at the client

ABR algorithm: buffer-based

Main motivation

- Avoid bandwidth estimation A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service
- Buffer occupancy contains implicit

Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell-, Mark Watson*
Stanford University, Netflix*

i N fo rma t| on a b outt h e b an d W| d t h {huangty,rjohari,nickm}@stanford.edu, {mtrunnell,watsonm}@netflix.com

ABSTRACT 16000

Existing ABR algorithms facc a significant challenge in esti-

. * mating future capacity: capacity can vary widely over time,

B BA (b u ffe r- b a Sed a Igo rl t h m): p I c k t h e a phenomenon commonly observed in commercial services.
In this work, we suggest an alternative approach: rather

than presuming that capacity estimation is required, it is

b itra te based o n a fu ncti 0 n of b u ffe r perhaps better to begin by using only the buffer, and then

ask when capacity estimation is needed. We test the viabil-

(kbvs)

Averags Throughput cver a Churk Download
2
2

ity of this approach through a series of experiments spanning b

millions of real users in a commercial service. We start with 4000

o c c u p a n cy a simple design which dircctly chooses the video rate based 20
on the current buffer occupancy. Our own investigation re- h
veals that capacity estimation is unnecessary in steady state; % 560 7000 1500 2000 2500
however using simple capacity estimation (based on immedi- Time (=)
ate past throughput) is important during the startup phase,

40 % when the buffer itself is growing from empty. This approach Figure 1: Video streaming clients experience highly

variable end-to-end throughput.

allows us to reduce the rebuffer rate by 10-20% compared

bitrate = f(i)

35

BBA: system model

C(®)/R(t) > 1: buffer B(t) grows

Input rate l C()/R(1)
- Arrival rate is higher than 1 second of video per second

_ B ff
At a certain point, it is safe to increase R(f) to improve uffer BUffer size
the streaming quality occupancy (seconds)
(seconds)

C(t)/R(t) < 1: buffer B(¢) drains Output rate

- Arrival rate is smaller than 1 second of video per

second We use the unit of video seconds:
representing how many seconds of

- The chosen rate R(?) is too high video we can fetch/buffer

- Buffer will be depleted and “rebuffering” happens

Question: find a good function R(?) = f(B(t))

36

BBA: theoretical analysis

x

min

Next Chunk’s Video Rate

RmaxT

B Safefrom
......................... Unnecessary

................... rebuffering

Playout Buffer Occupancy

Assumptions: infinitesimal segment
size, continuous bit rate, videos are
CBR coded, videos are infinitely long

Goal 1: no unnecessary rebuffering

- Aslongas C(¢) > R,;, forall t and we adapt
f(B) = R, ; as B = 0, we will never
unnecessarily rebuffer because the buffer will
start to grow before it runs dry

Goal 2: average video rate maximization

- Aslong as f(B) is increasing and eventually

reaches R, ., the average video rate will match
the average capacitywhenR, . < C(f) <R,
forallz > 0

37

BBA in practice

Assumptions do not always hold in practice, we need to be more conservative

o o
A
ST
> <
Rmax \
Rm-1 I
U O — —
S I
RNz
minl\
r—— = &+ i 1 i iysber:
reservoirr i icushion : §Upper;B
PP : reservoirBpay
B, B, By B B Buffer
Occupancy

38

ABR algorithm: control theory based

1
1
1
1

——
1
1
1
1
L

y

Throughput
Prediction

Buffer
Occupancy

I

I

|

I

I

I Bitrate
|

! A
I

|

I

I

End User

Internet

Control Signal

\ 4

Process

Actual

Future
Reference Future error
—{) » Optimizer
A

T. T Cost

——_— Constraints Function

Predicted

Output <
Model

Output

Model the ABR control problem as Markov processes and apply control theory

https://dl.acm.org/doi/pdf/10.1145/2785956.2787486

39

https://dl.acm.org/doi/pdf/10.1145/2785956.2787486

ABR algorithm: deep reinforcement learning based

QoE metric

Reward

Video Player bandwidth
Throughput Estimate server /\ﬂ/\ ABR agent Neural Network bitrates
Throughput] NN
Predictor bit rate \ \X \ S
Rendered ABR RS

Chunk
:: Info

_I__I_ _ state
buffer f i
W

I Client-side network and video player measurements

Controller

video chunks

[=]

Playback
Buffer

Buffer Occupancy

Model the ABR control problem as a Markov Decision Process and apply deep reinforcement learning

https://people.csail.mit.edu/alizadeh/papers/pensieve-sigcommi7.pdf 40

https://people.csail.mit.edu/alizadeh/papers/pensieve-sigcomm17.pdf

Replacing video codecs with machine learning

m) Neural
Key frame Key frame | network

—p

i
Sender i
> Receiver

Key points Key points

https://www.youtube.com/watch?v=NgmMn|J6GEg 41

https://www.youtube.com/watch?v=NqmMnjJ6GEg

Netflix Video Serving

l

<

q ‘4 "».“ “‘» 2

22N o> 4’&‘

‘«i

Netflix video serving

Workloads N ETFLIX
- Serve only static media files

- Pre-encoded for all codecs/bitrates

Video serving stack: FreeBSD-current, NGINX web server (HTTP)
- Video served via asynchronous sendfile() and encrypted using kTLS (offloaded to NICs)

- Since 2020, 200Gbps of TLS encrypted traffic from a server, aiming for 400+ Gbps now

Sendfile() directs the kernel to send data from a file descriptor to a TCP socket

- Eliminates the need to copy data into or out of the kernel

Based on the content of a recent talk from Drew Gallatin (Netflix) 43

Netflix video serving data flow

Disks

CPU
Copy from kernel to userspace

Read data to encrypt
Write encrypted data to memory
Copy from userspace to kernel

Bulk data
NIC

Memory bandwidth is a bottleneck

44

Netflix video serving data flow

Encryption by the host CPU in the kernel

_’
space — No need to copy the data CPU

between userspace and kernel space

50GB/s
SOGB/s Metgdata
- 50GB/s 50GB/s
i‘
Disks Bulk data Memory NIC

achieve 400Gbps — require 200GB/s memory bandwidth = Challenging

45

Netflix video serving data flow

Metgdata

1 %

Disks

https://www.youtube.com/watch?v=_o-HcG8QxPc

50GB/s

Bulk data

Encryption done
on the NIC

46

https://www.youtube.com/watch?v=_o-HcG8QxPc

Video Analytics

l

<

< ‘&”
?‘n’

q < "».“ “‘» <

22N o> 4’&‘

‘i

N

Video streaming vs. video stream analytics

Streaming server Client Cloud server Client

Video streaming Video stream analytics

48

Challenges in video stream analytics

Large volume of traffic needs to be sent across the wide area network (WAN)

WAN has scarce, expensive, and variable bandwidth

Less than 25%

.C

= 100 T oooe " .y

Eg 75 - A . STn seemet oter ath

28 501 ¢ T A Y

c E 25- v

© — ‘

om 01 T T T T
06:00 12:00 18:00 00:00 06:00

Time

Applications have quality of service requirements which are complex to optimize
- Unlike video streaming where quality of experience is relatively well-defined

- Video analytics rely on deep learning models and the analytics accuracy has a nonlinear
relationship with the quality metrics (resolution, frame rate, latency)

49

Application-specific optimization

Scenario 1: a monitoring application that counts pedestrians on a busy street

t=1s, small difference

Adapting Frame Rate

M Bandwidth (normalized) ™ Acccuracy
100100

100 o 0 87 84
- 40
] =
0 || [
30 10 5 3 2

Adapting Resolution

M Bandwidth ™ Acccuracy
100100

87 8
100 79 71
50 29
0 . | .

1080p 900p 720p 540p 360p

S0

Application-specific optimization

Scenario 2: an AR application that detects objects on a mobile phone

t=0s, nearby and large target

t=1s, large difference due to
camera movement

100

50

0

100

5

o

o

Adapting Frame Rate

B Bandwidth (normalized) ™ Acccuracy

100100
65 64
2 34
18 27
] -
— -
30 10 5 3 2

Adapting Resolution

M Bandwidth (normalized) ™ Acccuracy
100100 97

87 93 87
69 4
49
4d B =

1080p 900p 720p 540p 360p

51

A general framework: AWStream

Systematic and quantitative adaptation

- New programming abstractions to RETE proer | T [punime
Prog & 6 | (amg] | 2| [| s
express adaptation l 85 1520 001| |
Accuracy
. . os e maybe API Function Online Resource
- Automatic data-driven profiling p—
N— ;t_J Data _}_z

- Runtime adaptation balancing the

client | | .

_— client

@ U (edge)
— e client
~ (edge)

server

different goals U """ "/

Clownfish: real-time video stream analytics

Combine a local fast processing and a remote accurate processing

Video

Video

source

* -
J_|7 frames
A4

\

Window Manager

v v

Local Filter

(i
=N

Optimized v

DNN Fusion

Selected
windows

J’W

Complete
DNN

Remote

\Edge e

J

A4

Analytics results

WAN

Cloud

Clownfish: Edge and Cloud Symbiosis for Video
Stream Analytics

Vinod Nigade, Lin Wang, Henri Bal
VU Amsterdam

Abstract—Deep leammg (DL) has shown promumg resnl!.s Jmcr that are ommprcscnl in WAN and wireless and cellular

on complex computer visjgg
recently. However, DL-basq
computation, which impo
infrastructure. In parti
maintain stable real-time p
the best-effort Internet, wi 0 D
model to be optimized (e.g., prnned or quunl.u»d) urel‘ullv to fit
on resource-constrained devices, affecting the analytics quality.
In this paper, we propose Clownfish, a framework for efficient
video stream analytics that achieves symbiosis of the edge and
the cloud. Clownfish deploys a lightweight optimized DL model
at the edge for fast response and a complete DL model at the
cloud for high By the I correlation
in video content, Clownfish sends only a subset of video frames
intermittently to the cloud and enhances the anmalytics quality
by fusing the results from the cloud model with these from the
edge model. Our evaluation based on a system prototype shows
that Clownfish always runs in real time and is able to achieve
analytics quality comparable to that of cloud-only solutions, even

ork performance drops,
accordingly.
propose to deploy com-
d carry out video stream
x " Since the computation
is now pclformcd in close proximity of the video source,
the network-related issues can be avoided. However, embed-
ded edge devices (e.g., microcontrollers or NVIDIA Jetson
boards), due to their limitations of physical space or energy
efficiency, are typically resource-constrained [23], [24]. Thus,
DL models have to be optimized or compressed to fit on
these devices. The popular model optimization techniques
include input resizing, network pruning, data quantization,
and model distillation [23]-[27]. However, applying these
techniques without affecting the analytics accuracy is chal-
lenging, which depends on various factors such as the choice

Jellyfish: real-time video stream analytics

Compute

Network
+ time

time

Inference
requests

4. DNN
i 2. Client-DNN adaptation
. mapping N

S

3. Batching server

1. Data R
adaptation

oo
Clients Edge DL inference serving

End-to-end real-time guarantee

Edge Networks

Vinod Nigade, Pablo Bauszat, Henri Bal, Lin Wang
Vrije Universiteit Amsterdam

Abstract—While high accuracy is of paramount importance for
deep learning (DL) inference, serving inference requests on time
is equally critical but has not been carefully studied especially
when the request has to be served over a dynamic wireless
network at the edge. In this paper, we propose Jellyfish—a novel
edge DL inference serving system that achieves soft guarantees
on end-to-end inference latency oﬂm speclﬁed asa semee-level
objective (SLO). To hapdle
exploits both data and
to conduct tradeoffs b
features a new design (
where the decisions for
and coordinated among
conditions. We propose
DNNs and map users,
maximizing the overall
based on a prototype infp m 0
LTE network traces show thu .lell)ﬁsh can mnl lalency QLOn
at around the 99th percentile while maintaining high accuracy.

I. INTRODUCTION

In the past decade, modern applications such as augmented
reality, intelligent personal assistants, and autonomous driv-
ing [1]-[4] have proliferated. A considerable number of
these applications are based on deep learning (DL) inference,
e.g., analyzing continuous video streams to understand the
environment with pre-trained deep neural networks (DNNs) [5].
Employing sophnsucated learning lechmques [6], [7], these
DNN s typically d d intensive P making them
hard to deploy on mobile and IoT devices due to the limited
capability of these devices. Therefore, DL inference for mobile
and IoT applications is often offloaded to a more powerful
nearbv comnutine nlatform such as edee servers eaninned with

Network Compute -
time + time = so
Inference

requests

M~

RTSS 2022 (Outstanding
Paper Awa rd)

nference serving
edge DL inference serving.
ircless) network before
they arrive at the edge server. Such a network typically shows
high performance vanablhty [13], [14], causing variable delays
in network i for infi q Hence, SLOs
for mobile and ToT appli should be specified end-to-end,
covering both the network and compute parts. Being agnostic
to the network time, edge DL inference serving systems risk
ending up with insufficient time to process the request (e.g.,
under poor network conditions), leading to SLO violations.
Therefore, considering network time and end-to-end SLOs
poses new challenges and calls for new designs for timely
edge DL inference serving for mobile and IoT applications.
In this paper, we propose Jellyfish—a novel framework for
timely inference serving at the edge, aiming to guarantee
the end-to-end SLO while achieving high inference accuracy.
Jellyfish relies on two adaptation strategies to achieve tradeoff
between accuracy and latencv: data adaptation to adiust

Summary

Video streaming
- Video compression
- Bitrate, VBR, CBR

- ABR

Video streaming protocols
- RTP
- HTTP-based

- DASH

Bitrate selection algorithms

- Rate-based

- Buffer-based: BBA

- Others: control theory, learning
Advanced topics

- Netflix video serving

- Video analytics

55

Next time: Linux networking stack

Application

t— i

| got so much to do!

v
|§| E‘ Datagrams

o

Byte stream IEI

IP processing

| 4
v

Network Interface Card (NIC)

56

Further reading material

Andrew S. Tanenbaum, David J. Wetherall. Computer Networks (5th edition).

- Section 7.4: Streaming Audio and Video

Junchen Jiang, Vyas Sekar, Hui Zhang. Improving Fairness, Efficiency, and Stability in
HTTP-based Adaptive Video Streaming with FESTIVE. ACM CoNEXT, 2012.

Marios Kanakis, Ramin Khalili, Lin Wang. Machine Learning for Computer Systems and
Networking: A Survey. ACM Computing Surveys, vol. 44(4), pp. 1-36, 2022.

- Section 9: Adaptive Video Streaming

57

