
Seminar: Programmable Networks (WS24/25)
How to Read a Paper and Write a Report

Prof. Dr. Lin Wang
Computer Networks Group
Department of Computer Science
Paderborn University

This lecture is on the key ingredients
to succeed as a computer scientist.

Good coffee Good sleep

Papers
A piece of writing to share original research work wirh other scientists and (maybe also)
non-scientists

4

A Network in a Laptop: Rapid Prototyping for
Software-Defined Networks

Bob Lantz
Network Innovations Lab

DOCOMO USA Labs
Palo Alto, CA, USA

rlantz@cs.stanford.edu

Brandon Heller
Dept. of Computer Science,

Stanford University
Stanford, CA, USA

brandonh@stanford.edu

Nick McKeown
Dept. of Electrical Engineering

and Computer Science,
Stanford University
Stanford, CA, USA

nickm@stanford.edu

ABSTRACT
Mininet is a system for rapidly prototyping large networks

on the constrained resources of a single laptop. The

lightweight approach of using OS-level virtualization fea-

tures, including processes and network namespaces, allows

it to scale to hundreds of nodes. Experiences with our ini-

tial implementation suggest that the ability to run, poke, and

debug in real time represents a qualitative change in work-

flow. We share supporting case studies culled from over

100 users, at 18 institutions, who have developed Software-

Defined Networks (SDN). Ultimately, we think the great-

est value of Mininet will be supporting collaborative net-

work research, by enabling self-contained SDN prototypes

which anyone with a PC can download, run, evaluate, ex-

plore, tweak, and build upon.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]:
Computer-Communication Networks—Network com-
munications ; B.4.4 [Performance Analysis and
Design Aids]: Simulation

General Terms
Design, Experimentation, Verification

Keywords
Rapid prototyping, software defined networking, Open-
Flow, emulation, virtualization

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.

Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

1. INTRODUCTION
Inspiration hits late one night and you arrive at a

world-changing idea: a new network architecture, ad-
dress scheme, mobility protocol, or a feature to add to
a router. With a paper deadline approaching, you have
a laptop and three months. What prototyping environ-
ment should you use to evaluate your idea? With this
question in mind, we set out to create a prototyping
workflow with the following attributes:

Flexible: new topologies and new functionality
should be defined in software, using familiar lan-
guages and operating systems.

Deployable: deploying a functionally correct pro-
totype on hardware-based networks and testbeds
should require no changes to code or configuration.

Interactive: managing and running the network
should occur in real time, as if interacting with
a real network.

Scalable: the prototyping environment should scale
to networks with hundreds or thousands of
switches on only a laptop.

Realistic: prototype behavior should represent real
behavior with a high degree of confidence; for ex-
ample, applications and protocol stacks should be
usable without modification.

Share-able: self-contained prototypes should be eas-
ily shared with collaborators, who can then run
and modify our experiments.

The currently available prototyping environments
have their pros and cons. Special-purpose testbeds are
expensive and beyond the reach of most researchers.
Simulators, such as ns-2 [14] or Opnet [19], are appeal-
ing because they can run on a laptop, but they lack
realism: the code created in the simulator is not the
same code that would be deployed in the real network,
and they are not interactive. At first glance, a network
of virtual machines (VMs) is appealing. With a VM

1

USENIX Association 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12) 251

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,

Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,

Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

1 Introduction

Spanner is a scalable, globally-distributed database de-
signed, built, and deployed at Google. At the high-
est level of abstraction, it is a database that shards data
across many sets of Paxos [21] state machines in data-
centers spread all over the world. Replication is used for
global availability and geographic locality; clients auto-
matically failover between replicas. Spanner automati-
cally reshards data across machines as the amount of data
or the number of servers changes, and it automatically
migrates data across machines (even across datacenters)
to balance load and in response to failures. Spanner is
designed to scale up to millions of machines across hun-
dreds of datacenters and trillions of database rows.

Applications can use Spanner for high availability,
even in the face of wide-area natural disasters, by repli-
cating their data within or even across continents. Our
initial customer was F1 [35], a rewrite of Google’s ad-
vertising backend. F1 uses five replicas spread across
the United States. Most other applications will probably
replicate their data across 3 to 5 datacenters in one ge-
ographic region, but with relatively independent failure
modes. That is, most applications will choose lower la-

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made
by other authors [37].) Many applications at Google
have chosen to use Megastore [5] because of its semi-
relational data model and support for synchronous repli-
cation, despite its relatively poor write throughput. As a
consequence, Spanner has evolved from a Bigtable-like
versioned key-value store into a temporal multi-version
database. Data is stored in schematized semi-relational
tables; data is versioned, and each version is automati-
cally timestamped with its commit time; old versions of
data are subject to configurable garbage-collection poli-
cies; and applications can read data at old timestamps.
Spanner supports general-purpose transactions, and pro-
vides a SQL-based query language.

As a globally-distributed database, Spanner provides
several interesting features. First, the replication con-
figurations for data can be dynamically controlled at a
fine grain by applications. Applications can specify con-
straints to control which datacenters contain which data,
how far data is from its users (to control read latency),
how far replicas are from each other (to control write la-
tency), and how many replicas are maintained (to con-
trol durability, availability, and read performance). Data
can also be dynamically and transparently moved be-
tween datacenters by the system to balance resource us-
age across datacenters. Second, Spanner has two features
that are difficult to implement in a distributed database: it

365 Electronic version recreated by Eric A. Brewer
University of California at Berkeley

Communications July 1974
of Volume 17
the ACM Number 7

The UNIX Time-
Sharing System
Dennis M. Ritchie and Ken Thompson
Bell Laboratories

UNIX is a general-purpose, multi-user, interactive
operating system for the Digital Equipment Corpora-
tion PDP-11/40 and 11/45 computers. It offers a number
of features seldom found even in larger operating sys-
tems, including: (1) a hierarchical file system incorpo-
rating demountable volumes; (2) compatible file, device,
and inter-process I/O; (3) the ability to initiate asynchro-
nous processes; (4) system command language select-
able on a per-user basis; and (5) over 100 subsystems
including a dozen languages. This paper discusses the
nature and implementation of the file system and of the
user command interface.

Key Words and Phrases: time-sharing, operating
system, file system, command language, PDP-11

CR Categories: 4.30, 4.32

Copyright © 1974, Association for Computing Machinery,
Inc. General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights. New York, Octo-
ber 15–17, 1973. Authors’ address: Bell Laboratories, Murray
Hill, NJ 07974.

The electronic version was recreated by Eric A. Brewer, Uni-
versity of California at Berkeley, brewer@cs.berkeley.edu. Please
notify me of any deviations from the original; I have left errors in
the original unchanged.

1. Introduction

There have been three versions of UNIX. The earliest
version (circa 1969–70) ran on the Digital Equipment Cor-
poration PDP-7 and -9 computers. The second version ran
on the unprotected PDP-11/20 computer. This paper
describes only the PDP-11/40 and /45 [l] system since it is
more modern and many of the differences between it and
older UNIX systems result from redesign of features found
to be deficient or lacking.

Since PDP-11 UNIX became operational in February
1971, about 40 installations have been put into service; they
are generally smaller than the system described here. Most
of them are engaged in applications such as the preparation
and formatting of patent applications and other textual
material, the collection and processing of trouble data from
various switching machines within the Bell System, and
recording and checking telephone service orders. Our own
installation is used mainly for research in operating sys-
tems, languages, computer networks, and other topics in
computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to
demonstrate that a powerful operating system for interac-
tive use need not be expensive either in equipment or in
human effort: UNIX can run on hardware costing as little as
$40,000, and less than two man years were spent on the
main system software. Yet UNIX contains a number of fea-
tures seldom offered even in much larger systems. It is
hoped, however, the users of UNIX will find that the most
important characteristics of the system are its simplicity,
elegance, and ease of use.

Besides the system proper, the major programs avail-
able under UNIX are: assembler, text editor based on QED
[2], linking loader, symbolic debugger, compiler for a lan-
guage resembling BCPL [3] with types and structures (C),
interpreter for a dialect of BASIC, text formatting program,
Fortran compiler, Snobol interpreter, top-down compiler-
compiler (TMG) [4], bottom-up compiler-compiler (YACC),
form letter generator, macro processor (M6) [5], and per-
muted index program.

There is also a host of maintenance, utility, recreation,
and novelty programs. All of these programs were written
locally. It is worth noting that the system is totally self-sup-
porting. All UNIX software is maintained under UNIX; like-
wise, UNIX documents are generated and formatted by the
UNIX editor and text formatting program.

2. Hardware and Software Environment

The PDP-11/45 on which our UNIX installation is imple-
mented is a 16-bit word (8-bit byte) computer with 144K
bytes of core memory; UNIX occupies 42K bytes. This sys-
tem, however, includes a very large number of device driv-
ers and enjoys a generous allotment of space for I/O buffers
and system tables; a minimal system capable of running the

Reading and
understanding is hard

Stages of reading a scientific paper

6

Optimism

Fear

Regret

Concerned

Contradiction

Panic

Determination

Rage

Genuine contemplation
of career choices

Stages of reading a scientific paper

7

Optimism

Fear

Regret

Concerned

Contradiction

Panic

Determination

Rage

Genuine contemplation
of career choices

Do not worry, we have all been through these stages

Papers can be fun

8

Only 365 Days Left Until The Sigcomm Deadline

Jon Crowcroft, Christian Kreibich
University of Cambridge Computer Laboratory
{firstname.lastname}@cl.cam.ac.uk

ABSTRACT
Only three hundred sixty four days left until the Sigcomm

deadline. Only three hundred sixty three days left until the

Sigcomm deadline. Only three hundred sixty two days left

until the Sigcomm deadline. Only three hundred sixty one

days left until the Sigcomm deadline. Only three hundred

sixty days left until the Sigcomm deadline. Only three hun-

dred fifty nine days left until the Sigcomm deadline. Only

three hundred fifty eight days left until the Sigcomm dead-

line. Only three hundred fifty seven days left until the Sig-

comm deadline. Only three hundred fifty six days left until

the Sigcomm deadline. Only three hundred fifty five days

left until the Sigcomm deadline.

Keywords
“Only,” 1 - 365, “days”, “left”, “until”, “the”, “Sigcomm”,

“deadline”.

1. ONLY 354 DAYS LEFT UNTIL THE
SIGCOMM DEADLINE

Only three hundred fifty three days left until the Sig-

comm deadline. Only three hundred fifty two days left until

the Sigcomm deadline. Only three hundred fifty one days

left until the Sigcomm deadline. Only three hundred fifty

days left until the Sigcomm deadline. Only three hundred

fourty nine days left until the Sigcomm deadline. Only three

hundred fourty eight days left until the Sigcomm deadline.

Only three hundred fourty seven days left until the Sig-

comm deadline. Only three hundred fourty six days left

until the Sigcomm deadline. Only three hundred fourty five

days left until the Sigcomm deadline. Only three hundred

fourty four days left until the Sigcomm deadline. Only three

hundred fourty three days left until the Sigcomm deadline.

Only three hundred fourty two days left until the Sigcomm

deadline. Only three hundred fourty one days left until the

Sigcomm deadline. Only three hundred fourty days left un-

til the Sigcomm deadline. Only three hundred thirty nine

days left until the Sigcomm deadline. Only three hundred

thirty eight days left until the Sigcomm deadline. Only three

hundred thirty seven days left until the Sigcomm deadline.

Only three hundred thirty six days left until the Sigcomm

deadline. Only three hundred thirty five days left until the

Sigcomm deadline. Only three hundred thirty four days left

until the Sigcomm deadline. Only three hundred thirty days

left until the Sigcomm deadline. Only three hundred thirty

two days left until the Sigcomm deadline. Only three hun-

dred thirty one days left until the Sigcomm deadline. Only

three hundred thirty days left until the Sigcomm deadline.

Only three hundred Twenty 9, days left until the Sigcomm

deadline. Only three hundred Twenty 8, days left — until

the Sigcomm deadline — only three hundred Twenty 7 days

left until the Sigcomm deadline only three hundred Twenty

6 days left until the Sigcomm deadline. Only three hundred

Twenty 5 days left until the Sigcomm deadline.

2. ONLY 324 DAYS LEFT UNTIL THE
SIGCOMM DEADLINE

Only three hundred twenty three days left until the Sig-

comm deadline. Only three hundred twenty two days left

until the Sigcomm deadline. Only three hundred twenty

one days left until the Sigcomm deadline.

2.1 Only 320 days left until the Sigcomm
deadline

Only three hundred nineteen days left until the Sigcomm

deadline. Only three hundred eighteen days left until the

Sigcomm deadline. Only three hundred seventeen days left

until the Sigcomm deadline. Only three hundred sixteen

days left until the Sigcomm deadline. Only three hundred

fifteen days left until the Sigcomm deadline. Only three

hundred fourteen days left until the Sigcomm deadline. Only

three hundred thirteen days left until the Sigcomm deadline.

2.2 Only 312 days left until the Sigcomm
deadline

Only three hundred eleven days left until the Sigcomm

deadline. Only three hundred ten days left until the Sig-

comm deadline. Only three hundred nine days left until the

Sigcomm deadline. Only three hundred eight days left until

the Sigcomm deadline.

3. ONLY 307 DAYS LEFT UNTIL THE
SIGCOMM DEADLINE

Only three hundred six days left until the Sigcomm dead-

line. Only three hundred five days left until the Sigcomm

deadline. Only three hundred four days left until the Sig-

comm deadline. Only three hundred three days left until

the Sigcomm deadline. Only three hundred two days left

until the Sigcomm deadline. Only three hundred one days

left until the Sigcomm deadline. Only three hundred days

left until the Sigcomm deadline.

Only two hundred ninety nine days left until the Sigcomm

deadline. Only two hundred ninety eight days left until the

Sigcomm deadline. Only two hundred ninety seven days left

ACM SIGCOMM Computer Communication Review 57 Volume 36, Number 5, October 2006

For big fans of reading short papers

9http://tinytocs.org/

http://tinytocs.org/

A Network in a Laptop: Rapid Prototyping for

Software-Defined Networks

Bob Lantz

Network Innovations Lab

DOCOMO USA Labs

Palo Alto, CA, USA

rlantz@cs.stanford.edu

Brandon Heller

Dept. of Computer Science,

Stanford University

Stanford, CA, USA

brandonh@stanford.edu

Nick McKeown

Dept. of Electrical Engineering

and Computer Science,

Stanford University

Stanford, CA, USA

nickm@stanford.edu

ABSTRACT

Mininet is a system for rapidly prototyping large networks

on the constrained resources of a single laptop. The

lightweight approach of using OS-level virtualization fea-

tures, including processes and network namespaces, allows

it to scale to hundreds of nodes. Experiences with our ini-

tial implementation suggest that the ability to run, poke, and

debug in real time represents a qualitative change in work-

flow. We share supporting case studies culled from over

100 users, at 18 institutions, who have developed Software-

Defined Networks (SDN). Ultimately, we think the great-

est value of Mininet will be supporting collaborative net-

work research, by enabling self-contained SDN prototypes

which anyone with a PC can download, run, evaluate, ex-

plore, tweak, and build upon.

Categories and Subject Descriptors

C.2.1
[Computer

System
s Organiz

ation]:

Computer-C
ommunicatio

n Networ
ks—Networ

k com-

municatio
ns ; B.4.4 [Perfor

mance
Analysis

and

Design Aids]: Si
mulation

General Terms

Design, E
xperim

entation
, Verific

ation

Keywords

Rapid prototy
ping, so

ftware d
efined network

ing, Open-

Flow, e
mulation,

virtuali
zation

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Hotnets ’10, October 20–21, 2010, Monterey, CA, USA.

Copyright 2010 ACM 978-1-4503-0409-2/10/10 ...$10.00.

1. INTRODUCTION

Inspirat
ion hits late one night and you arrive at a

world-c
hanging

idea: a new network
architec

ture, ad
-

dress sc
heme, mobility

protoco
l, or a feature

to add to

a router.
With a paper d

eadline
approac

hing, yo
u have

a laptop
and three m

onths.
What pro

totypin
g environ

-

ment sho
uld you use to evaluat

e your id
ea? With this

questio
n in mind, we set out to create

a prototyp
ing

workflo
w with the followin

g attribu
tes:

Flexib
le: new topolog

ies and new function
ality

should
be defined

in softwar
e, using

familiar lan-

guages
and operati

ng systems.

Deploya
ble: deployi

ng a function
ally correct

pro-

totype
on hardwa

re-base
d network

s and testbed
s

should
require

no chan
ges to c

ode or c
onfigur

ation.

Interac
tive:

managing
and running

the network

should
occur in real tim

e, as if interact
ing with

a real net
work.

Scalab
le: the prototy

ping environ
ment should

scale

to network
s with hundred

s or thousan
ds of

switche
s on only a laptop.

Realistic
: prototy

pe behavio
r should

represe
nt real

behavio
r with a high degree

of confi
dence;

for ex-

ample, app
lication

s and protoco
l stacks

should
be

usable
without

modificat
ion.

Share-
able: self-con

tained
prototy

pes sho
uld be eas-

ily shared
with collabo

rators,
who can then run

and modify our exp
eriments.

The current
ly availabl

e prototy
ping environ

ments

have their pr
os and

cons. Special
-purpos

e testbed
s are

expensi
ve and beyond

the reach of most research
ers.

Simulators,
such as ns-2

[14] or
Opnet [19

], are appeal-

ing because
they can run on a laptop,

but they lack

realism
: the code created

in the simulator
is not the

same code that wo
uld be deploye

d in the real net
work,

and they are not inte
ractive.

At first
glance,

a network

of virtu
al machines

(VMs) is appeali
ng. With a VM

1

Papers are fun

Written with a specific audience in mind

Context or background is key

- Richard Feynman answering a question on magnetism:
https://www.youtube.com/watch?v=MO0r930Sn_8

Strengthen your background

- Read voraciously

- No shortcuts!

10

365

Electronic version recreated by Eric A. Brewer

University of California at Berkeley Communications

July 1974

of

Volume 17

the ACM

Number 7

The UNIX Time-
Sharing System

Dennis M. Ritchie and Ken Thompson

Bell Laboratories

UNIX is a general-purpose, multi-user, interactive

operating system for the Digital Equipment Corpora-

tion PDP-11/40 and 11/45 computers. It offers a number

of features seldom found even in larger operating sys-

tems, including: (1) a hierarchical file system incorpo-

rating demountable volumes; (2) compatible file, device,

and inter-process I/O; (3) the ability to initiate asynchro-

nous processes; (4) system command language select-

able on a per-user basis; and (5) over 100 subsystems

including a dozen languages. This paper discusses the

nature and implementation of the file system and of the

user command interface.

Key Words and Phrases: time-sharing, operating

system, file system, command language, PDP-11

CR Categories: 4.30, 4.32

Copyright © 1974, Association for Computing Machinery,

Inc. General permission to republish, but not for profit, all or part

of this material is granted provided that ACM’s copyright notice is

given and that reference is made to the publication, to its date of

issue, and to the fact that reprinting privileges were granted by

permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth

ACM Symposium on Operating Systems Principles, IBM Thomas

J. Watson Research Center, Yorktown Heights. New York, Octo-

ber 15–17, 1973. Authors’ address: Bell Laboratories, Murray

Hill, NJ 07974.The electronic version was recreated by Eric A. Brewer, Uni-

versity of California at Berkeley, brewer@cs.berkeley.edu. Please

notify me of any deviations from the original; I have left errors in

the original unchanged.

1. IntroductionThere have been three versions of UNIX. The earliest

version (circa 1969–70) ran on the Digital Equipment Cor-

poration PDP-7 and -9 computers. The second version ran

on the unprotected PDP-11/20 computer. This paper

describes only the PDP-11/40 and /45 [l] system since it is

more modern and many of the differences between it and

older UNIX systems result from redesign of features found

to be deficient or lacking.

Since PDP-11 UNIX became operational in February

1971, about 40 installations have been put into service; they

are generally smaller than the system described here. Most

of them are engaged in applications such as the preparation

and formatting of patent applications and other textual

material, the collection and processing of trouble data from

various switching machines within the Bell System, and

recording and checking telephone service orders. Our own

installation is used mainly for research in operating sys-

tems, languages, computer networks, and other topics in

computer science, and also for document preparation.

Perhaps the most important achievement of UNIX is to

demonstrate that a powerful operating system for interac-

tive use need not be expensive either in equipment or in

human effort: UNIX can run on hardware costing as little as

$40,000, and less than two man years were spent on the

main system software. Yet UNIX contains a number of fea-

tures seldom offered even in much larger systems. It is

hoped, however, the users of UNIX will find that the most

important characteristics of the system are its simplicity,

elegance, and ease of use.

Besides the system proper, the major programs avail-

able under UNIX are: assembler, text editor based on QED

[2], linking loader, symbolic debugger, compiler for a lan-

guage resembling BCPL [3] with types and structures (C),

interpreter for a dialect of BASIC, text formatting program,

Fortran compiler, Snobol interpreter, top-down compiler-

compiler (TMG) [4], bottom-up compiler-compiler (YACC),

form letter generator, macro processor (M6) [5], and per-

muted index program.
There is also a host of maintenance, utility, recreation,

and novelty programs. All of these programs were written

locally. It is worth noting that the system is totally self-sup-

porting. All UNIX software is maintained under UNIX; like-

wise, UNIX documents are generated and formatted by the

UNIX editor and text formatting program.

2. Hardware and Software Environment

The PDP-11/45 on which our UNIX installation is imple-

mented is a 16-bit word (8-bit byte) computer with 144K

bytes of core memory; UNIX occupies 42K bytes. This sys-

tem, however, includes a very large number of device driv-

ers and enjoys a generous allotment of space for I/O buffers

and system tables; a minimal system capable of running the

“Reading papers become a fun and
enriching experience over time”

— Unknown source

https://www.youtube.com/watch?v=MO0r930Sn_8

Prepare

Environment

- Place: cafe, library, ...

- Ambience: music, quiet, ...

- Medium: printout, tablet, laptop, ...

Set expectations

- Presentation?

- Critique?

- Leisurely read?

11

Start by reading a paper

12http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007

http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

First pass
Obtain a bird's eye view of the paper

13

First pass

14

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007

The second pass should take up to an hour. After this
pass, you should be able to grasp the content of the paper.
You should be able to summarize the main thrust of the pa-
per, with supporting evidence, to someone else. This level of
detail is appropriate for a paper in which you are interested,
but does not lie in your research speciality.

Sometimes you won’t understand a paper even at the end
of the second pass. This may be because the subject matter
is new to you, with unfamiliar terminology and acronyms.
Or the authors may use a proof or experimental technique
that you don’t understand, so that the bulk of the pa-
per is incomprehensible. The paper may be poorly written
with unsubstantiated assertions and numerous forward ref-
erences. Or it could just be that it’s late at night and you’re
tired. You can now choose to: (a) set the paper aside, hoping
you don’t need to understand the material to be successful
in your career, (b) return to the paper later, perhaps after
reading background material or (c) persevere and go on to
the third pass.

2.3 The third pass
To fully understand a paper, particularly if you are re-

viewer, requires a third pass. The key to the third pass
is to attempt to virtually re-implement the paper: that is,
making the same assumptions as the authors, re-create the
work. By comparing this re-creation with the actual paper,
you can easily identify not only a paper’s innovations, but
also its hidden failings and assumptions.

This pass requires great attention to detail. You should
identify and challenge every assumption in every statement.
Moreover, you should think about how you yourself would
present a particular idea. This comparison of the actual
with the virtual lends a sharp insight into the proof and
presentation techniques in the paper and you can very likely
add this to your repertoire of tools. During this pass, you
should also jot down ideas for future work.

This pass can take about four or five hours for beginners,
and about an hour for an experienced reader. At the end
of this pass, you should be able to reconstruct the entire
structure of the paper from memory, as well as be able to
identify its strong and weak points. In particular, you should
be able to pinpoint implicit assumptions, missing citations
to relevant work, and potential issues with experimental or
analytical techniques.

3. DOING A LITERATURE SURVEY
Paper reading skills are put to the test in doing a literature

survey. This will require you to read tens of papers, perhaps
in an unfamiliar field. What papers should you read? Here
is how you can use the three-pass approach to help.

First, use an academic search engine such as Google Scholar
or CiteSeer and some well-chosen keywords to find three to
five recent papers in the area. Do one pass on each pa-
per to get a sense of the work, then read their related work
sections. You will find a thumbnail summary of the recent
work, and perhaps, if you are lucky, a pointer to a recent
survey paper. If you can find such a survey, you are done.
Read the survey, congratulating yourself on your good luck.

Otherwise, in the second step, find shared citations and
repeated author names in the bibliography. These are the
key papers and researchers in that area. Download the key
papers and set them aside. Then go to the websites of the
key researchers and see where they’ve published recently.

That will help you identify the top conferences in that field
because the best researchers usually publish in the top con-
ferences.

The third step is to go to the website for these top con-
ferences and look through their recent proceedings. A quick
scan will usually identify recent high-quality related work.
These papers, along with the ones you set aside earlier, con-
stitute the first version of your survey. Make two passes
through these papers. If they all cite a key paper that you
did not find earlier, obtain and read it, iterating as neces-
sary.

4. EXPERIENCE
I’ve used this approach for the last 15 years to read con-

ference proceedings, write reviews, do background research,
and to quickly review papers before a discussion. This dis-
ciplined approach prevents me from drowning in the details
before getting a bird’s-eye-view. It allows me to estimate the
amount of time required to review a set of papers. More-
over, I can adjust the depth of paper evaluation depending
on my needs and how much time I have.

5. RELATED WORK
If you are reading a paper to do a review, you should also

read Timothy Roscoe’s paper on “Writing reviews for sys-
tems conferences” [1]. If you’re planning to write a technical
paper, you should refer both to Henning Schulzrinne’s com-
prehensive web site [2] and George Whitesides’s excellent
overview of the process [3].

6. A REQUEST
I would like to make this a living document, updating it

as I receive comments. Please take a moment to email me
any comments or suggestions for improvement. You can also
add comments at CCRo, the online edition of CCR [4].

7. ACKNOWLEDGMENTS
The first version of this document was drafted by my stu-

dents: Hossein Falaki, Earl Oliver, and Sumair Ur Rahman.
My thanks to them. I also benefited from Christophe Diot’s
perceptive comments and Nicole Keshav’s eagle-eyed copy-
editing.

This work was supported by grants from the National
Science and Engineering Council of Canada, the Canada
Research Chair Program, Nortel Networks, Microsoft, Intel
Corporation, and Sprint Corporation.

8. REFERENCES
[1] T. Roscoe, “Writing Reviews for Systems

Conferences,”
http://people.inf.ethz.ch/troscoe/pubs/review-
writing.pdf.

[2] H. Schulzrinne, “Writing Technical Articles,”
http://www.cs.columbia.edu/ hgs/etc/writing-
style.html.

[3] G.M. Whitesides, “Whitesides’ Group: Writing a
Paper,”
http://www.che.iitm.ac.in/misc/dd/writepaper.pdf.

[4] ACM SIGCOMM Computer Communication Review
Online, http://www.sigcomm.org/ccr/drupal/.

ACM SIGCOMM Computer Communication Review 84 Volume 37, Number 3, July 2007

Carefully read the title,
abstract, and introduction

Read headings and
conclusions

Glance over references

Second pass
Read with greater care, but ignore details

15

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007Good to know!

Important!
Take notes or jot down points;

up to an hour

Third pass

Virtually re-implement the paper

- Appreciate innovations

- Identify shortcomings

- Can take 4-5 hours for beginners

- Up to an hour for experienced readers

16

How to Read a Paper

S. Keshav
David R. Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, Canada
keshav@uwaterloo.ca

ABSTRACT
Researchers spend a great deal of time reading research pa-
pers. However, this skill is rarely taught, leading to much
wasted effort. This article outlines a practical and efficient
three-pass method for reading research papers. I also de-
scribe how to use this method to do a literature survey.

Categories and Subject Descriptors: A.1 [Introductory
and Survey]

General Terms: Documentation.

Keywords: Paper, Reading, Hints.

1. INTRODUCTION
Researchers must read papers for several reasons: to re-

view them for a conference or a class, to keep current in
their field, or for a literature survey of a new field. A typi-
cal researcher will likely spend hundreds of hours every year
reading papers.

Learning to efficiently read a paper is a critical but rarely
taught skill. Beginning graduate students, therefore, must
learn on their own using trial and error. Students waste
much effort in the process and are frequently driven to frus-
tration.

For many years I have used a simple approach to efficiently
read papers. This paper describes the ‘three-pass’ approach
and its use in doing a literature survey.

2. THE THREE-PASS APPROACH
The key idea is that you should read the paper in up to

three passes, instead of starting at the beginning and plow-
ing your way to the end. Each pass accomplishes specific
goals and builds upon the previous pass: The first pass
gives you a general idea about the paper. The second pass
lets you grasp the paper’s content, but not its details. The
third pass helps you understand the paper in depth.

2.1 The first pass
The first pass is a quick scan to get a bird’s-eye view of

the paper. You can also decide whether you need to do any
more passes. This pass should take about five to ten minutes
and consists of the following steps:

1. Carefully read the title, abstract, and introduction

2. Read the section and sub-section headings, but ignore
everything else

3. Read the conclusions

4. Glance over the references, mentally ticking off the
ones you’ve already read

At the end of the first pass, you should be able to answer
the five Cs:

1. Category: What type of paper is this? A measure-
ment paper? An analysis of an existing system? A
description of a research prototype?

2. Context: Which other papers is it related to? Which
theoretical bases were used to analyze the problem?

3. Correctness: Do the assumptions appear to be valid?

4. Contributions: What are the paper’s main contribu-
tions?

5. Clarity: Is the paper well written?

Using this information, you may choose not to read fur-
ther. This could be because the paper doesn’t interest you,
or you don’t know enough about the area to understand the
paper, or that the authors make invalid assumptions. The
first pass is adequate for papers that aren’t in your research
area, but may someday prove relevant.

Incidentally, when you write a paper, you can expect most
reviewers (and readers) to make only one pass over it. Take
care to choose coherent section and sub-section titles and
to write concise and comprehensive abstracts. If a reviewer
cannot understand the gist after one pass, the paper will
likely be rejected; if a reader cannot understand the high-
lights of the paper after five minutes, the paper will likely
never be read.

2.2 The second pass
In the second pass, read the paper with greater care, but

ignore details such as proofs. It helps to jot down the key
points, or to make comments in the margins, as you read.

1. Look carefully at the figures, diagrams and other illus-
trations in the paper. Pay special attention to graphs.
Are the axes properly labeled? Are results shown with
error bars, so that conclusions are statistically sig-
nificant? Common mistakes like these will separate
rushed, shoddy work from the truly excellent.

2. Remember to mark relevant unread references for fur-
ther reading (this is a good way to learn more about
the background of the paper).

ACM SIGCOMM Computer Communication Review 83 Volume 37, Number 3, July 2007

Taking notes
The cornell note-taking system

17https://lsc.cornell.edu/how-to-study/taking-notes/cornell-note-taking-system/

Title

Cues
Questions

Trigger phrases

Abbreviated remarks
Key takeaways

Summary

https://lsc.cornell.edu/how-to-study/taking-notes/cornell-note-taking-system/

The shampoo algorithm
Lather, rinse, and repeat

18https://charap.co/how-to-read-computer-science-systems-papers-using-shampoo-algorithm/

Rings of comprehension

Writing as a reading tool: our brain is too fast when we read; slow it down

https://charap.co/how-to-read-computer-science-systems-papers-using-shampoo-algorithm/

How to find (good) papers to
read

Where to download a paper?

20

UPB provides subscriptions so you can download papers
without a paywall if you use the campus network or VPN

How to find relevant papers?

21

Paper you are reading

How to find relevant papers?

22

Paper you are readingPapers cited by the paper
you are reading

Papers citing the paper
you are reading

Papers cited by the paper you are reading

23

ICS ’23, June 21–23, 2023, Orlando, FL, USA P. Haghi, et al.

REFERENCES
[1] O. Arap and M. Swany. 2016. O�oading Collective Operations to Programmable

Logic on a Zynq Cluster. In 2016 IEEE 24th Annual Symposium on High-
Performance Interconnects (HOTI). 76–83.

[2] Arista. 2023. 7130 FPGA-enabled Network Switches - Quick Look. www.arista.
com/en/products/7130-fpga-enabled-network-switches-quick-look.

[3] AWS. 2019. Deliver high performance ML inference with AWS Inferen-
tia. https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_
performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf.

[4] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi, and D. K. Panda.
2021. BluesMPI: E�cient MPI Non-blocking Alltoall O�oading Designs on
Modern BlueField Smart NICs. In High Performance Computing: 36th International
Conference, ISC High Performance 2021. Springer, 18–37.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[6] Y. Chen, J. Emer, and V. Sze. 2017. Using Data�ow to Optimize Energy E�ciency
of Deep Neural Network Accelerators. IEEE Micro 37, 3 (2017), 12–21. https:
//doi.org/10.1109/MM.2017.54

[7] D. De Sensi, S. Di Girolamo, S. Ashkboos, S. Li, and T. Hoe�er. 2021. Flare: Flexible
In-Network Allreduce. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–16.

[8] A. Faraj, S. Kumar, B. Smith, A. Mamidala, and J. Gunnels. 2009. MPI Collective
Communications on the Blue Gene/P Supercomputer: Algorithms and Optimiza-
tions. 2009 17th IEEE Symposium on High Performance Interconnects (2009), 63–72.

[9] J. Gasteiger, C. Qian, and S. Günnemann. 2022. In�uence-Based Mini-Batching
for Graph Neural Networks. arXiv preprint arXiv:2212.09083 (2022).

[10] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che, S.
Reinhardt, andM.C. Herbordt. 2020. AWB-GCN: A Graph Convolutional Network
Accelerator with RuntimeWorkload Rebalancing. In 53rd IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[11] T. Geng, C. Wu, Y. Zhang, C. Tan, C. Xie, H. You, M.C. Herbordt, Y. Lin, and A.
Li. 2021. I-GCN: A Graph Convolutional Network Accelerator with Runtime
Locality Enhancement Through Islandization. In 54th IEEE/ACM International
Symposium on Microarchitecture (MICRO). doi:10.1145/3466752.3480113.

[12] R. L. Graham et al. 2010. Overlapping Computation and Communication: Barrier
Algorithms and ConnectX-2 CORE-Direct Capabilities. In 2010 IEEE International
Symposium on Parallel Distributed Processing,Workshops and Phd Forum (IPDPSW).
1–8.

[13] R. L. Graham et al. 2016. Scalable Hierarchical Aggregation Protocol (SHArP): A
Hardware Architecture for E�cient Data Reduction. In 2016 First International
Workshop on Communication Optimizations in HPC (COMHPC). 1–10.

[14] Richard L. Graham, Lion Levi, Devendar Burredy, Gil Bloch, Gilad Shainer, David
Cho, George Elias, Daniel Klein, Joshua Ladd, Ophir Maor, Ami Marelli, Valentin
Petrov, Evyatar Romlet, Yong Qin, and Ido Zemah. 2020. Scalable Hierarchi-
cal Aggregation and Reduction Protocol (SHARP)TM Streaming-Aggregation
Hardware Design and Evaluation. In High Performance Computing, Ponnuswamy
Sadayappan, Bradford L. Chamberlain, Guido Juckeland, and Hatem Ltaief (Eds.).
Springer International Publishing, Cham, 41–59.

[15] A. Guo, T. Geng, Y. Zhang, P. Haghi, C.Wu, C. Tan, Y. Lin, A. Li, andM.C. Herbordt.
2022. A Framework for Neural Network Inference on FPGA-Centric SmartNICs.
In International Conference on Field-Programmable Logic and Applications (FPL).

[16] A. Guo, Y. Hao, C. Wu, P. Haghi, Z. Pan, M. Si, D. Tao, A. Li, M.C. Herbordt, and T.
Geng. 2023. Software-Hardware Co-design of Heterogeneous SmartNIC System
for Recommendation Models Inference and Training. In ICS 2023: International
Conference on Supercomputing.

[17] P. Haghi, A. Guo, T. Geng, A. Skjellum, and M.C. Herbordt. 2021. Work-
load Imbalance in HPC Applications: E�ect on Performance of In-Network
Processing. In IEEE High Performance Extreme Computing Conference. doi:
10.1109/HPEC49654.2021.9622847.

[18] P. Haghi, A. Guo, Q. Xiong, R. Patel, C. Yang, T. Geng, J.T. Broaddus, R. Marshall,
A. Skjellum, and M.C. Herbordt. 2020. FPGAs in the Network and Novel Commu-
nicator Support Accelerate MPI Collectives. In IEEE High Performance Extreme
Computing Conference.

[19] P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J.T. Broaddus, R. Marshall, D.
Schafer, A. Skjellum, and M.C. Herbordt. 2022. Recon�gurable switches for high
performance and �exible MPI collectives. Concurrency and Computation: Practice
and Experience 34, 2 (2022). doi: 10.1002/cpe.6769.

[20] S. Handagala, M.C. Herbordt, and M. Leeser. 2021. OCT: The Open Cloud FPGA
Testbed. In 31st International Conference on Field Programmable Logic and Appli-
cations (FPL).

[21] S. Handagala, M. Leeser, K. Patle, and M. Zink. 2022. Network Attached FPGAs
in the Open Cloud Testbed (OCT). In IEEE INFOCOM 2022 - IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). 1–6.

[22] F. Hauser et al. 2021. A Survey on Data Plane Programming with P4: Fundamen-
tals, Advances, and Applied Research. arXiv preprint arXiv:2101.10632 (2021).

[23] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[24] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. 2020. Improving the Accuracy,
Scalability, and Performance of Graph Neural Networks with Roc. In Proceedings
of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-
4, 2020, I.S. Dhillon, D.S. Papailiopoulos, and V. Sze (Eds.). mlsys.org. https:
//proceedings.mlsys.org/book/300.pdf

[25] M. Karunaratne, A. K. Mohite, T. Mitra, and L. Peh. 2017. HyCUBE: A
CGRA with Recon�gurable Single-Cycle Multi-hop Interconnect. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https://doi.org/10.
1145/3061639.3062262

[26] E. F. Kfoury, J. Crichigno, and E. Bou-Harb. 2021. An Exhaustive Survey on P4
Programmable Data Plane Switches: Taxonomy, Applications, Challenges, and
Future Trends. IEEE Access 9 (2021), 87094–87155.

[27] V. Krishnan, O. Serres, and M. Blocksome. 2020. COn�gurable Network Protocol
Accelerator (COPA): An Integrated Networking/Accelerator Hardware/Software
Framework. In 2020 IEEE Symposium on High-Performance Interconnects (HOTI).
17–24. https://doi.org/10.1109/HOTI51249.2020.00018

[28] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation. In International Symposium on Code
Generation and Optimization, CGO. 75–86. https://doi.org/10.1109/CGO.2004.
1281665

[29] A. Li, T. Geng, T. Wang, M.C. Herbordt, S. Song, and K. Barker. 2019. BSTC: A
Novel Binarized-Soft-Tensor-Core Design for Accelerating Bit-Based Approxi-
mated Neural Nets. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC). doi: 10.1145/ 3295500.3356169.

[30] Youjie Li and et al. 2019. Accelerating Distributed Reinforcement learning with
In-Switch Computing. In 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). 279–291.

[31] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins. 2003. ADRES:
An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Recon�gurable Matrix. In Field Programmable Logic and Application (FPL). 61–70.

[32] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. 2008. NetFPGA: Reusable Router
Architecture for Experimental Research. In Association for Computing Machinery
PRESTO (Seattle, WA, USA). New York, NY, USA, 1–7. https://doi.org/10.1145/
1397718.1397720

[33] New Wave DV. 2023. 32-Port Programmable Switch. https://newwavedv.com/
products/appliances/32-port-programmable-switch/.

[34] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey. 2015. High-
performance algebraic multigrid solver optimized for multi-core based distributed
parallel systems. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–12.

[35] R. Prabhakar et al. 2017. Plasticine: A Recon�gurable Architecture for Parallel
Patterns. In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 389–402. https://doi.org/10.1145/3079856.3080256

[36] S. Qiao, C. Hu, G. Brebner, J. Zou, and X. Guan. 2020. Adaptable Switch: A Hetero-
geneous Switch Architecture for Network-Centric Computing. IEEE Communica-
tions Magazine 58, 12 (2020), 64–69. https://doi.org/10.1109/MCOM.001.2000399

[37] A. L. G. Rios, K. Bekshentayeva, M. Singh, S. Haeri, and L. Trajkovic. 2021.
Virtual Network Embedding for Switch-Centric Data Center Networks. In 2021
IEEE International Symposium on Circuits and Systems (ISCAS). 1–5. https:
//doi.org/10.1109/ISCAS51556.2021.9401784

[38] RISC-V. 2023. RISC-V Speci�cations. https://riscv.org/technical/speci�cations/.
[39] RISC-V. 2023. RISC-V ’V’ Vector Speci�cations. https://github.com/riscv/riscv-v-

spec/blob/master/v-spec.adoc.
[40] G. Sankaran, J. Chung, and R. Kettimuthu. 2021. Leveraging In-Network Com-

puting and Programmable Switches for Streaming Analysis of Scienti�c Data.
In 2021 IEEE 7th International Conference on Network Softwarization (NetSoft).
293–297. https://doi.org/10.1109/NetSoft51509.2021.9492726

[41] A. Sapio et al. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In 18th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 21). 785–808. https://www.usenix.org/conference/nsdi21/
presentation/sapio

[42] J. Sheng, Q. Xiong, C. Yang, and M.C. Herbordt. 2017. Collective Communication
on FPGA Clusters with Static Scheduling. ACM SIGARCH Computer Architecture
News 44, 4 (2017). doi: 10.1145/ 3039902.3039904.

[43] G. Siracusano and R. Bifulco. 2018. In-Network Neural Networks. arXiv preprint
arXiv:1801.05731 (2018).

[44] D. Stanzione et al. 2017. Stampede 2: The Evolution of an XSEDE Supercomputer.
In Proceedings of the Practice and Experience in Advanced Research Computing
on Sustainability, Success and Impact (PEARC17). Article 15, 8 pages. https:
//doi.org/10.1145/3093338.3093385

[45] J. Stern, Q. Xiong, J. Sheng, A. Skjellum, and M.C. Herbordt. 2017. Accelerating
MPI_Reduce with FPGAs in the Network. InWorkshop on Exascale MPI.

461

FLASH: FPGA-Accelerated Smart Switches
with GCN Case Study ICS ’23, June 21–23, 2023, Orlando, FL, USA

milliseconds for PPI, Citeseer, Pubmed, Ogbn-products, and Ogbn-
mag, respectively. These overheads are negligible compared to total
execution time (Figure 7) for most datasets Ogbn-products. The
overhead is similar to that of setting up non-FLASH versions in
distributed computing systems (since data is not always available
in the corresponding nodes).

5.9 Comparison with Prior Work
To demonstrate the applicability of the approach to other applica-
tions, and compare it with other in-switch computing approaches,
we consider DNN training on FLASH and Mellanox SHArP [14].
We compare the time it takes to update the (last-layer) weights of
the AlexNet model during DNN training using FLASH to that of
doing so on the same Stampede2 cluster using Mellanox switches.
Our simulation results show that FLASH achieves 1.7⇥ speedup on
64 nodes for the last layer update. Since we do not have access to
switch internals in HPC clusters, we superimpose the result from a
Mellanox paper [14] on the Stampede2 cluster for the Allreduce col-
lective based on the message size. We only accelerate the last layer
as we �nd that this could lead to better coupling of the computation
part (other layers) with the communication part (last layer).

Our approach improves communication time by restructuring
the application as follows: each node processes forward propagation
for all layers except the last; the switches perform matrix/vector
multiplications for the last layer (the last-layer weights are stored in
switches); then the new weights stored in switches are updated by
aggregating the local weights from each node. This happens for each
iteration. Weight updates for all layers except the last are performed
in the same way as in the baseline (synchronous Allreduce-based
training [29]). Instead of communicating and transferring weights
back and forth to the nodes (Allreduce for the current iteration),
performing computation on them (forward propagation for the
next iteration), and then another communication (Allreduce for the
next iteration), weights are processed in the switches, resulting in
reduced communication time. We note that it is not possible to take
advantage of Mellanox o�oad support for GCN inference as these
switches do not support Allgather collectives.

6 RELATEDWORK
In-switch collective processing: Previous work has shown signif-
icant bene�ts of optimizing collectives and o�oading them to the
switch. Mellanox [13] has o�oaded MPI collectives to ASIC-based
switches using reduction trees. Their approach supports �xed func-
tions and data types with no extensibility; also, few design details
are provided. The authors in [30] propose an FPGA-based in-switch
acceleration scheme for distributed reinforcement learning to move
gradient aggregation from server nodes to the network switches. In
[18, 19, 46] a new method for supporting MPI communicators and
accelerating collectives in the recon�gurable switches is presented.
Finally, the authors in [7] design a �exible programmable switch
architecture for in-network data reduction. Although it is possible
to process custom operations through packet handlers, their evalu-
ation is only limited to dense/sparse MPI_Allreduce. These are all
inline acceleration methods. We note that while the latter work is
based on RISC-V cores the largest memory footprint is 4 MBytes.

In-switch application processing: Taurus [47] adds a custom
MapReduce block to programmable switch devices to enable per-
packet ML inference. N2Net [43] demonstrates implementations of
binary neural networks within network devices. IIsy [55] introduces
a software and hardware-based prototype for mapping trained
non-neural network ML models to switch match action pipelines.
However, they are only applicable to traditional neural network
algorithms with small memory models due to their limited on-chip
memory.

CGRA:Many CGRA architectures have been proposed. Some
prior art utilized a CGRA closely coupled with a CPU. For instance,
ADRES [31] proposed a novel compiler-friendly architecture that is
tightly coupled with a very long instruction word (VLIW) processor
with reduced communication overhead. [25] introduces a CGRA
architecture with recon�gurable interconnect with single cycle
communication with distant PEs. Prabhakar et al. [35] proposed
a new architecture as a collection of compute and memory units
to e�ciently execute applications composed of parallel patterns.
The distinction of all the above work from ours is that our CGRA
accelerator itself is composed of multiple RISC-V compatible cores
pipelined together.

7 DISCUSSION ANDWORK IN PROGRESS
We anticipate that scaling GCN applications to a larger number
of nodes will bring increasing performance advantages (for large
datasets) due to the FLASH bene�ts (reducing the number of trans-
ferred elements and hops, overlap, etc). We also expect FLASH to
improve the performance and scalability of other communication-
intensive applications as it is generic enough to support di�erent
workloads and it directly improves the communication time through
in-switch computing. Some extensions are in progress. Vector PEs
are pipelined together and are independent from each other except
that incoming streaming packets are the same. Other types of de-
pendencies and more complex types are not yet supported. Finally,
certain parallel patterns (e.g., breadth �rst search) may not map
e�ciently to the current FLASH architecture; in future work we
seek to make FLASH more general purpose.

8 CONCLUSION
In this work, we designed, implemented, and evaluated a pro-
grammable look-aside accelerator that can be embedded into, or
attached to, existing communication switches. To facilitate usabil-
ity, we developed a software toolchain to compile user-provided
code for con�guring the switch. While our approach is generic and
supports a variety of workloads, we consider graph convolutional
network (GCN) inference as a case study. Experimental results show
that this approach improves both performance and scalability. The
performance advantage is on average 3.4⇥ (across �ve real-world
datasets) on 24 nodes. As part of future work, we will demonstrate
our approach for GCN training and other workloads with a larger
number of nodes.

ACKNOWLEDGMENTS
This work was supported, in part, by the NSF through awards CCF-
1919130, CNS-1925504, and CCF-2151021; by a grant from Red Hat;
and by AMD and Intel both through donated FPGAs, tools, and IP.

460

References section provides the list, while the related
work section provides the context!

Papers citing the paper you are reading
Usually this means more recent papers...

24

How to find all papers from a particular author?

25https://dblp.org/pid/t/AlanMTuring.html

https://dblp.org/pid/t/AlanMTuring.html

How to discuss a paper

Discussing a paper: peel the onion

Top level

- What is the cool idea?

- Why does it matter?

- How, when, where, and why does it work?

What questions do we have about the paper?

27

Discussing a paper: peel the onion

Mid level

- What are the assumptions? How is the work scoped?

- What is the evaluation?

- Setup, workload, choice of experiments

- Does the evaluation support the claims?

- Does the paper do a good job with related work
(including existing systems)?

- Did you enjoy reading the paper? Are you excited about
the ideas?

28

Discussing a paper: peel the onion

The heart of the discussion

- How does the work advance the state-of-the-art?

- What are the paper's strengths and limitations?

- Will it have a big impact? If so, how?

- For older papers, does it stand the test of time?

- How does this paper stack up against reality?

- Is the work applicable in the real world?

- Do other systems solve the same problem differently?

29

Basic structure of your report

30

Title

Abstract

Introduction

Problem statement and
taxonomy

Paper 1 Paper 2 Paper 3

Qualitative analysis and
comparison

Conclusions

Background

Your comments on the
papers

...

31

Title of the Document in One Line
Author of the Document

1 Section Heading

1.1 Subsection Heading

1.1.1 Subsubsection Heading (Avoid Using It If Possible)

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsumhas been the industry’s
standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to
make a type specimen book. It has survived not only �ve centuries, but also the leap into electronic typesetting,
remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing
Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including
versions of Lorem Ipsum.

The above shows a normal paragraph for this document. By default, the paragraph is not indented. If you want
to cite a reference, you can use the \cite command. Here is an example: HIRE is a novel resource scheduler
for in-network computing [1]. The list of references is shown at the end of the document in the “References”
section. We use biblatex to manage references and the source of bib items is speci�ed at the beginning with
the command \addbibresource{...} . It is recommended that you collect the bib entries of papers from DBLP.

You can also create unnumbered and numbered lists as in the following examples. Note that the list should not
go deeper than two levels; otherwise, it becomes ugly.

• First item
• Second item
• Third item
• Last item

- First subitem
- Second subitem

1. First entry
2. Second entry
3. Third entry

a. First subentry
b. Second subentry

If you have some text you want to put in monospace (e.g., cite something in verbatim), you can use the \verb

command to do that. Alternatively, you can use \mintinline{...}{...} . The di�erence is that the latter is high-
lighted with a light gray background and we can also turn on syntax highlighting for many programming or
scripting languages. Here is an example to compare these two: exit 0 and exit 0 . For this reason, the latter is
always preferred when it comes to code.

If you want to write a code block, you can use the minted environment, where you can turn on the syntax
highlighting if you want. Here is an example for a shell script.

echo "Hello world!"

The following is an example for a C code snippet.

int main(int argc, char** argv) {

return 0;

}

1/2

A template will be provided: 10-20 pages.

Questions?

