
notebook

April 23, 2019

0.1 Introduction

• Tutorial on basics of natural language processing.
• Presenter: Milad Alshomary
• Task: Predicting the importance score of a premise in relation to the conclusion.

0.2 Importance Estimation:

• Inspired by Wang and Ling 2016 .

– Paper: Neural Network-Based Abstract Generation for Opinions and Arguments.
– Input: Set of premises (each premise is a sentence)
– Output: Conclusion statment.

• Importance estimation: is a component of this approach in which each premise gets a score
that reflects its importance in relation to the conclusion.

Example from the dataset:

• Premises:

– Why should governments allow an activity that helps their citizens lose the money they
have worked so hard to earn ?

– Gamblers may win money from time to time , but in the long run , the House always
wins .

– The internet has made gambling so much easier to do and encouraged lots of new
people to place bets so dramatically multiplying the harm .

• Conclusion:

– Gambling is bad for you.

0.2.1 The Task:

Given a set of premises, generate for each an importance score that reflects its importance in rela-
tion to the conclusion.

Steps:

1. Data preparation
2. Feature Representation
3. Model Training
4. Evaluation

1

http://www.ccs.neu.edu/home/luwang/papers/NAACL2016.pdf

0.2.2 Prepare your environment:

Installing Python:

• On Linux, most likely you have it. Otherwise:

xx install python3 # xx is (apt-get, dnf, ...) based on you linux distribution

• On Windows/MacOS, download the installer

• Test if python is working:

python3 --version

• Doesn’t work? Google it or simply ask us for help!

Installing Jupyter:

• For writing code and presenting it along with text in an easy and interactive way!

• Install Jupyter via pip command:

pip install jupyter

• Run Jupyter:

jupyter notebook

• Access the notebook on under localhost:8888

0.2.3 Important Libraries:

• Any library can be downloaded by using the pip tool:

pip install library-name # library-name = matplotlib, numpy, nltk

• In this lecture we will be using the following libraries:

– numpy http://www.numpy.org/
– scikit-learn https://scikit-learn.org
– nltk https://www.nltk.org/
– matplotlib https://matplotlib.org/

0.2.4 The code framework

• The code framework contains:

– A jupyter notebook notebook.ipynb to present the results.
– A Python file importance_estimation.py where you will add your code.
– A json file called idebate.json contains the dataset.

Execute the following cell (shift+enter) to initialize an instance of the ImportanceEstimation-
Model class (the class resides in importance_estimation.py where you will add our code).

In [1]: from importance_estimation import ImportanceEstimationModel

2

https://www.python.org/
https://www.python.org/downloads/release/python-366/
http://jupyter.org/
http://localhost:8888

0.2.5 Data Preparation:

Task: Load data from the json file idebate.json and split it based on the debate_id field into 80%
training and 20% testing. - Implement the load_data function (in the importance_estimation.py
file): - Input: path to the data file - Output: train_dataset and test_dataset where each item is
a tuple of a list of premises and a conclusion. - Steps: 1. Using json library load the data into a
json object. 2. Create a set of all debate ids and use scikit-learn to split this set into train and test.
3. Create the train and test datasets by filtering the data based on the train/test debate ids and
only selecting _argument_sentences and _claim (conclusion) fields.

Initializing the ImportanceEstimation model and loading the data:

In [2]: model = ImportanceEstimationModel()
train_data, test_data = model.load_data('./idebate.json')

print('Number of train arguments:', len(train_data))
print('Number of test arguments:', len(test_data))

Number of train arguments: 1805
Number of test arguments: 454

Print a random sample of the train_data:

In [3]: #we only print the first 5 premises from the instance
model.print_train_sample(train_data)

Conclusion: The Japanese people do not want the bases on their soil.
Premises:
1 . Without reason to be there , and unwanted by the people , the United States should remove its forces from Japan .
2 . This is demonstrated in every opinion poll and is reflected in the fact that current ruling party in the Japanese parliament , the Democratic Party of Japan was elected partly on the basis of its promise to remove the bases .
3 . For all of these reasons , the Japanese people have resoundingly stated their desire for the United States to withdraw its forces and close its bases on their soil .
4 . Most of the soldiers who commit these crimes never see justice since American soldiers stationed in Japan enjoy partial extraterritorial status , granting them a degree of immunity from prosecution by Japanese authorities .
5 . The presence of American military personnel is particularly onerous in light of the multitude of crimes committed by soldiers over the years ; since the 1950s , more than 200,000 accidents and crimes have been committed , and more than 1000 Japanese civilians have been killed , and a number of others have been the victims of assault and rape .

0.2.6 Ground truth scores:

Since we don’t have ground truth scores for the premises to reflect their relevancy to the conclu-
sion, we take the token overlap between an argument’s premise and its conclusion as a measure
to reflect the relevancy.

Task: For each premise compute the token overlap with the conclusion (after excluding stop-
words).

• Implement the instance_scores function:

– Input: A list of premises and the corresponding conclusion.
– Output: A list of scores (score for each premise).
– Steps:

1. Using NLTK library, tokenize each premise as well as the conclusion and remove
stopwords (use NLTK stopwords).

3

2. For each premise compute the token overlap with the conclusion.

Ground truth scores (number of tokens shared between a premise and a conclusion) distribu-
tion:

In [4]: from matplotlib import pyplot as plt

instances_scores = [model.instance_scores(instance[0], instance[1]) for instance in train_data]
all_scores = [score for x in instances_scores for score in x]
plt.hist(all_scores)
plt.xlabel('Score')
plt.ylabel('Number of premises')
plt.show()

0.2.7 Feature Representation:

Task: For each premise construct a features vector containing the following features: - Number of
words: Implement _num_of_words_feature function to return number of words in the claim. You
may use the nltk.word_tokenize for this. - Avg./Max. tf-idf scores: For this 1. First implement
the function _build_tfidf_model that builds a tfidf model (use scikit-learn for this) over a corpus
of texts. Consider each set of claims (you might concatenate the claims as one string) as one
document. 2. Implement the function _tfidf_features that uses the tfidf_model to compute for
each claim the average tf-idf value of its tokens as well as the maximum tf-idf.

4

• Number of positive/negative/neutral words: Implement the function
_sentiment_features that uses sentiwordnet lexicon (you might use the implemen-
tation by NLTK).

Encoding the train_data into features vectors as well as computing the corresponding ground
truth scores:

In [5]: train_X, train_Y = model.feature_representation(train_data)

print('train_X shape :', train_X.shape)
print('train_Y shape :', train_Y.shape)

train_X shape : (13901, 6)
train_Y shape : (13901,)

0.2.8 Model Training:

Task: Train a support vector regression (SVR) model using a grid search (over the cost parameter
C) and cross validation of 5. - Implement the function train_grid_search_svr: - Input: train_X
and train_Y - Output: best_svr the best SVR model and best_score the mean absolute error of
the best SVR model. - Steps: 1. Initialize a support vector regression model using Scikit Learn.
2. Initialize a grid search model using Scikit Learn library over the SVR model with a cv (cross
validation) equal 5 and mean absolute error for scoring. 3. Fit the model on the train_data
and save the best_svr as a property in the ImportanceEstimation model.

In [7]: best_svr, mean_absolute_error = model.train_grid_search_svr(train_X, train_Y)
print('Mean absolute error:', mean_absolute_error)

Mean absolute error: -0.9507702650510839

0.2.9 Evaluation:

Task: Evaluate the best_svr model by computing the mean reciprocal rank (MRR) on the
test_data. - Implement mrr_evaluation function: - Input: test_data - Output: mrr_value -
Steps: 1. For each sample in the test_data, predict the scores for its premises using the best_svr
model and compute the overlap with the conclusion (you may call instance_score). 2. Sort the
premises according to the predicted scores. 3. Compute the rank considering a relevant premise
as the premise that overlap at least with one token with the conclusion.

Computing the MRR value on the test dataset:

In [8]: model.mrr_evaluation(test_data)

Out[8]: 0.8242828543214002

0.2.10 Extra tasks (optional):

• Think of a new feature, that can be useful in predicting the score of a premise and implement
it.

• Perform an ablation study by removing some of the features and check how that affects the
model performance in terms of MRR score.

5

http:www.wikipedia/mrr

	Introduction
	Importance Estimation:
	The Task:
	Prepare your environment:
	Important Libraries:
	The code framework
	Data Preparation:
	Ground truth scores:
	Feature Representation:
	Model Training:
	Evaluation:
	Extra tasks (optional):

