Computational Argumentation - Part II

Basics of Natural Language Processing

Henning Wachsmuth

- Concepts
 - Basics from linguistics, statistics, and machine learning
- Methods
 - How to develop and evaluate data-driven algorithms
 - Standard techniques used in machine learning
 - Types of analyses used in natural language processing
- Associated research fields
 - Natural language processing
- Within this course
 - Concepts and methods this course builds upon
- Disclaimer
 - The basics selected here are all but complete and only revisited high-level For a more comprehensive overview, see e.g. the slides of my bachelor's course "Introduction to Text Mining".

Outline

- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

a) Introduction

- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

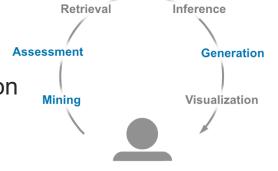
Natural language processing (recap)

- Natural language processing (NLP) (Tsujii, 2011)
 - Algorithms for understanding and generating speech and human-readable text

Analysis Synthesis

- From natural language to structured information, and vice versa
- Computational linguistics (see http://www.aclweb.org)
 - Intersection of computer science and linguistics
 - Technologies for natural language processing
 - Models to explain linguistic phenomena, based on knowledge and statistics

- Mining arguments and their relations from text
- Assessing properties of arguments and argumentation
- Generating arguments and argumentative text In most applications, not all stages/tasks are needed.



Evolution of natural language processing (NLP)

- Selected milestones from industry
 - February 2011. IBM's Watson wins Jeopardy
 <u>https://www.youtube.com/watch?v=P18EdAKuC1U</u>
 - October 2011. Apple's Siri starts on the iPhone
 <u>https://www.youtube.com/watch?v=gUdVie_bRQo</u>
 - August 2014. Microsoft Skype translates conversations in real time
 https://www.youtube.com/watch?v=RuAp92wW9bg
 - May 2018. Google Assistant does phone call appointments https://www.youtube.com/watch?v=pKVppdt_-B4
 - February 2019. IBM's Project Debater competes in debates with humans
 <u>https://www.youtube.com/watch?v=nJXcFtY9cWY</u>

Observations

- All applications need to "understand" language \rightarrow linguistics needed
- None of these applications works perfectly \rightarrow empirical methods needed

Next section: Linguistics

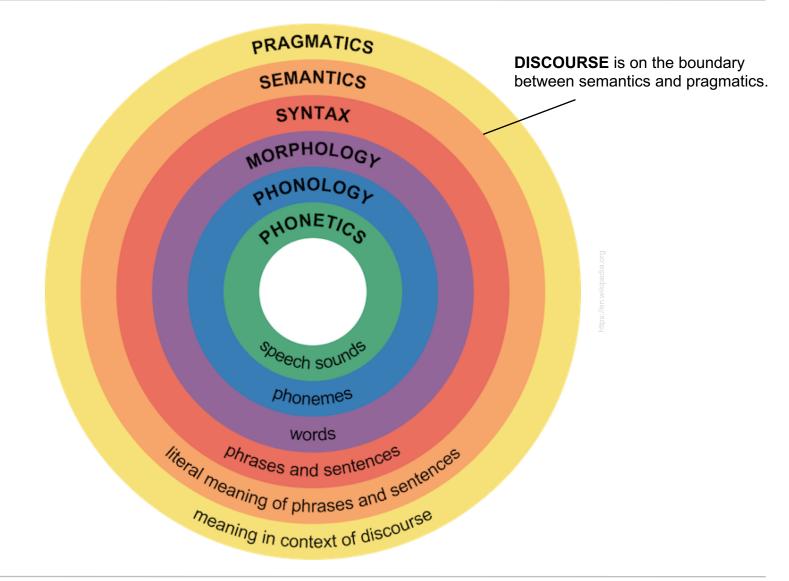
- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

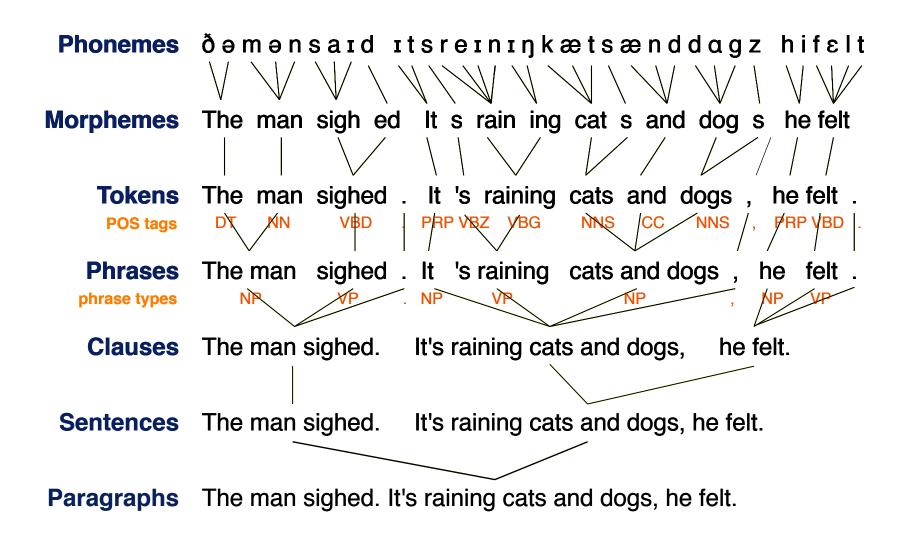
What is linguistics?

- Linguistics
 - The study of spoken and written natural language in terms of the analysis of form, meaning, and context
- Levels of spoken language only
 - Phonetics. The physical aspects of speech sounds
 - Phonology. The linguistic sounds of a particular language
- Levels of spoken and written language
 - Morphology. The senseful components of words and wordforms
 - Syntax. The structural relationships between words, usually within a sentence (or a similar utterance)
 - Semantics. The meaning of single words and compositions of words
 - Discourse. Linguistic units larger than a single sentence, such as paragraphs or complete documents
 - **Pragmatics**. How language is used to accomplish goals

Levels of language analysis



Linguistic text units



Main morphological concepts

- Word
 - The smallest unit of language that is to be uttered in isolation Example: "cats" and "ran" in "cats ran."
- Lemma
 - The dictionary form of a word Example: "cat" for "cats", "run" for "ran"
- Wordform
 - The fully inflected surface form of a lemma as it appears in a text Example: "cats" for "cats", "ran" for "ran"
- Stem
 - The part of a word(form) that never changes
 - Example: "cat" for "cats", "ran" for "ran"
- Token
 - The smallest text unit in NLP: A wordform, number, symbol, or similar Example: "cats", "ran", and "." in "cats ran." (whitespaces are usually not considered as tokens)

Main syntactic concepts

Part-of-speech (POS)

- The lexical category (or word class) of a word
- Abstract classes. Nouns, verbs, adjectives, adverbs, prepositions, ...
- POS tags. NN (single nouns), NNS (plural nouns), NNP (proper nouns), ...

Phrases

- A contiguous sequence of related words, functioning as a single meaning unit
- Phrases often contain nested phrases.
- Types. Noun phrase (NP), verb phrase (VP), prepositional phrase (PP) Sometimes also adjectival phrase (AP) and adverbial phrase (AdvP).

Clause

- The smallest grammatical unit that can express a complete proposition
- Types. Main clause and subordinate clause

Sentence

• A grammatically independent linguistic unit consisting of one or more words

Main semantic concepts

Lexical semantics

• The meaning of words and multi-word expressions Different senses of a word, the roles of predicate arguments, ...

Compositional semantics

• The meaning of the composition of words in phrases, sentences, and similar Relations, scopes of operators, and much more

Entities

- An object from the real world
- Named entities. Persons, locations, organizations, products, ... For example, "Jun.-Prof. Dr. Henning Wachsmuth", "Paderborn", "Paderborn University"
- Numeric entities. Values, quantities, ranges, periods, dates, ... For example, "in this year", "2018-10-18", "\$ 100 000", "60-68 44"

Relations

- Semantic. Relations between entities, e.g., organization *founded in* period
- Temporal. Relations describing courses of events, e.g., as in news reports

Main discourse and pragmatics concepts

Discourse (structure)

- Linguistic utterances larger than a sentence, e.g., paragraphs or entire texts Usually monological; dialogical discourse is rather referred to as *dialogue*.
- Discourse segments. Building block of a discourse in terms of linguistic units
- Coherence relations. Semantic or pragmatic relations between segments

Coreference

- Two or more expressions in a text that refer to the same thing
- Types. Pronouns in anaphora and cataphora, coreferring noun phrases, ... Examples: "Apple is based in Cupertino. The company is actually called Apple Inc., and they make hardware."

Speech acts

- Linguistic utterances with a performative function.
- Communicative goals
 - Specific functions of passages within a discourse.
 - Specific effects intended to be achieved by an utterance.

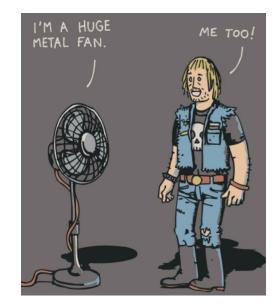
more details in the lecture on basics of argumentation

What makes language understanding hard?

- Ambiguity
 - The fundamental challenge of NLP is that language is ambiguous

Ambiguity is pervasive

- Phonetic. "wreck a nice beach"
- Word sense. "I went to the bank."
- Part of speech. "I made her duck."
- Attachment. "I saw a kid with a telescope."
- Coordination. "If you love money problems show up."
- Scope of quantifiers. "I didn't buy a car."
- Speech act. "Have you emptied the dishwasher?"
- Other challenges
 - World knowledge. "Putin must rethink his view of Ukraine"
 - Domain dependency. "Read the book!"
 - Language dependency. "Bad"
 - ... and many more



Is written language enough?

What's the purpose of this sentence?

"I never said she stole my money."

Possible interpretations

- I never said she stole my money. Someone else said it, but I didn't.
- I never said she stole my money.
- I never said she stole my money.

I might have implied it in some way. But I never explicitly said it.

• I never said she stole my money.

I said someone took it. But I didn't say it was her.

• I never said she stole my money.

I just said she probably borrowed it.

• I never said she stole my money.

I said she stole someone else's money.

• I never said she stole my money.

But not my money.

Next section: Empirical methods

- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

Development and evaluation in NLP

Development and evaluation

- NLP algorithms are developed based on *text corpora*.
- Their output is rarely free of errors, which is why it is usually evaluated empirically in comparison to ground-truth annotations.

Evaluation criteria

- Effectiveness. The extent to which the output of an algorithm is correct
- Efficiency. The consumption of time (or space) of an algorithm on an input
- Robustness. The extent to which an algorithm remains effective (or efficient) across different inputs, often in terms of textual domains

Evaluation measures

- Quantify the quality of an algorithm on a specific task and text corpus
- Algorithms can be ranked with respect to an evaluation measure.
- Different measures are useful depending on the task.

Annotated text corpora

- Text corpus (and datasets)
 - A collection of real-world texts with known properties, compiled to study a language problem
 - The texts are often annotated with meta-information.
 - Corpora are usually split into datasets for developing (training) and/or evaluating (testing) an algorithm.

Annotations

- Marks a text or span of text as representing meta-information of a specific type
- Also used to specify relations between different annotations

Types of annotations

- Ground-truth. Manual annotations, often created by experts
- Automatic. NLP algorithms add annotations to texts.

	Time entity	Organizati	on entity
	" 2014 ad rever	2014 ad revenues of Google are going to reach	
	Re	eference	Time entity
\$20B. The search company was for		as founded in '98.	
ReferenceTime entityFounded relationItsIPO followedin 2004[] "		Founded relation	
	Topic: "Goog	gle revenues" Ger	re: "News article"

more details in the part on acquisition

Evaluation of effectiveness in classification tasks

- Instances in classification tasks
 - Positives. The output instances (annotations) an algorithm has created.
 - Negatives. All other possible instances.

Accuracy

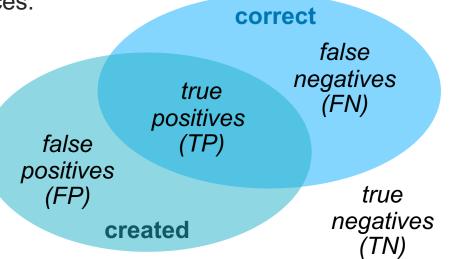
• Used if positives and negatives are similarly important.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- Precision, recall, and F₁-score
 - Used if positives are in the focus.

Precision (P) =
$$\frac{TP}{TP + FP}$$
 Recall (R) = $\frac{TP}{TP + FN}$ F_1 -score = $\frac{2 \cdot P \cdot R}{P + R}$

• In multi-class tasks, *micro-* and *macro-averaged* values can be computed.



Evaluation of effectiveness in regression tasks

- Instances in regression tasks
 - In regression tasks, algorithms predict values y_i from a real-valued scale.
 - The numeric difference to the ground-truth values y_i^* is usually in the focus.
- Mean absolute error (MAE)
 - Used if outliers require no special treatment.

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - y_i^*|$$

- Mean squared error (MSE)
 - Used if outliers are considered particularly problematic.

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - y_i^*)^2$$

- Root mean squared error (RMSE)
 - Just a different way of quantifying the squared error, $RMSE = \sqrt{MSE}$

Dataset preparation

Dataset preparation

- Text corpora usually contain annotations for the task to be studied.
- Not always, these annotations match with the task instances required for development and evaluation.

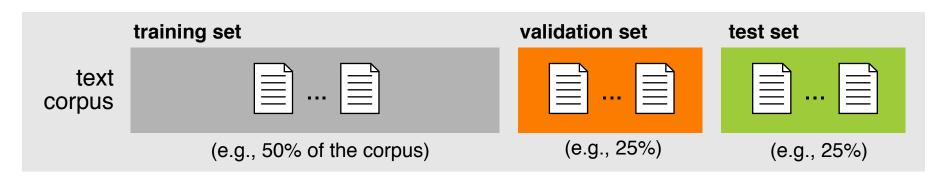
Creation of task instances

- Particularly, "negative" instances often need to be created for learning. Example: "[Jaguar]_{ORG} is named after the animal *jaguar*."
- Also, annotations may have to be mapped to other task instances. Example: Ratings 1–2 → "negative", 3 → ignore, 4–5 → "positive"

Balancing of datasets

- A balanced distribution of target classes in the training set is often preferable.
- Undersampling. Removal of instances from majority classes
- Oversampling. Addition of instances from minority classes
- In machine learning, an alternative is to weight classes inverse to their size.

Training, validation, and test set



Training set

- Known instances used to develop or statistically learn an algorithm
- The training set may be analyzed manually and automatically.

Validation set (aka development set)

- Unknown test instances used to iteratively evaluate an algorithm
- The algorithm is optimized towards and adapts to the validation set.
- Test set (aka held-out set)
 - Unknown test instances used for the final evaluation of an algorithm
 - The test set represents unseen data.

- (Stratified) *n*-fold cross-validation
 - Randomly split a corpus into *n* datasets of equal size, usually n = 10
 - The development and evaluation consist of *n* runs. The evaluation results are averaged over all *n* runs.
 - In the *i*-th run, the *i*-th fold is used for evaluation (testing). All other folds are used for development (training).
- Pros and cons of cross-validation
 - Often preferred when data is small, as more data is given for training
 - Cross-validation avoids potential bias in a corpus split.
 - Random splitting often makes the task easier, due to corpus bias.

Comparison

Need for comparison

- It is unclear how good a measured effectiveness result in a given task is.
- Comparison against lower (and upper) bounds is needed.
- Baseline (lower bound)
 - An alternative approach proposed before or can be developed easily.
 - A new algorithm aims to be better than all relevant baselines.

Types of baselines

- Trivial. An approach that can easily be derived from a given task or dataset
- Standard. An approach that is often used for related tasks
- Sub-approach. A sub-part of a new approach
- State of the art. The best published approach for the addressed task

Gold standard (upper bound)

- The best possible result in a given task; often, what humans would achieve
- Often equated with the ground-truth annotations in a corpus

Empirical research and variables

Empirical methods

- Quantitative methods based on numbers and statistics
- Study questions on behaviors and phenomena by analyzing data
- Asks about the relationships between variables

Variable

- An entity that can take on different numeric or non-numeric values
- Independent. A variable *X* that is expected to affect another variable
- Dependent. A variable Y that is expected to be effected by others
- Other. Confounders, mediators, moderators, ...

Scales of variables

- Nominal. Values that represent discrete, separate categories
- Ordinal. Values that can be ordered/ranked by what is better
- Interval. Values whose difference can be measured
- Ratio. Interval values that have an absolute zero

Descriptive statistics

Descriptive statistics

- Measures for summarizing and comprehending distributions of values
- Used to describe phenomena

Measures of central tendency

- Mean. The arithmetic average of a sample from a distribution of values For (rather) symmetrical distributions of interval/ratio values.
- Median. The middle value of the ordered values in a sample For ordinal values and skewed interval/ratio distributions.
- Mode. The value with the greatest frequency in a sample For nominal values.

Measures of dispersion

- Range. The distance between minimum and maximum in a sample
- Variance. The mean squared difference between each value and the mean
- Standard deviation. The square root of the variance

Inferential statistics

Inferential statistics

- Procedures that study hypotheses based on values
- Used to make inferences about a distribution beyond a given sample
- Two competing hypothesis
 - Research hypothesis (*H*). Prediction about how some inpedendent variables will affect a dependent variable
 - Null hypothesis (H_0) . Antithesis to H

Hypothesis test (aka statistical significance test)

- A statistical procedure which determines the probability (*p*-value) that results supporting *H* are due to chance (or sampling error)
- Significance given, if p is \leq a significance level α (usually 0.05 or 0.01)
- Steps in a hypothesis test
 - State *H* and H_0 , choose α .
 - Compute *p*-value with an adequate test. Decide whether H_0 can be rejected.

"The accuracy of our approach is not higher with POS tags than without."

Hypothesis tests

How to choose an adequate test?

- All tests require a random sample and independent values of variables.
- Parametric vs. non-parametric. Parametric tests make it easier to find significance but do not always apply.

Parametric test	Non-parametric correspondent
Independent t-test	Mann-Whitney Test
Dependent and one-sample t-test	Wilcoxon Signed-Rank Test
One way, between group ANOVA	Kruskal-Wallis
One way, repeated measures ANOVA	Friedman Test
Pearson	Spearman, Kendall's τ , χ^2

Prerequisites of parametric tests

- The dependent variable needs to have an interval or ratio scale.
- The distributions needs to be normal.
- The compared distributions need to have the same variances. Besides, different tests have different specific prerequisites.

Next section: Tasks and techniques

- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

Common text analyses

Lexical and syntactic

- Tokenization
- Sentence splitting
- Paragraph detection
- Stemming
- Lemmatization
- Part-of-speech tagging
- Similarity computation
- Spelling correction
- Phrase chunking
- Dependency parsing
- Constituency parsing ... and some more

• Semantic and pragmatic

- Attribute extraction
- Numeric entity recognition
- Named entity recognition
- Reference resolution
- Entity relation extraction
- Temporal relation extraction
- Topic detection
- Authorship attribution
- Sentiment analysis
- Discourse parsing
- Spam detection ... and many many more

Example task: Information extraction

Information extraction

- The mining of entities, their attributes, relations between entities, and events the entities participate in from natural language text
- The output is structured information that can, e.g., be stored in databases.

Example task Extraction of the founding dates of companies Time entity Organization entity 2014 ad revenues of Google are going to reach Reference Time entity \$20B. The search company was founded in '98. Reference Time entity Founded relation Its IPO followed in 2004. [...] " Output: Founded("Google", 1998)

Typical text analysis steps

- 1. Lexical and syntactic preprocessing
- 2. Named and numeric entity recognition
- 3. Reference resolution
- 4. Entity relation extraction

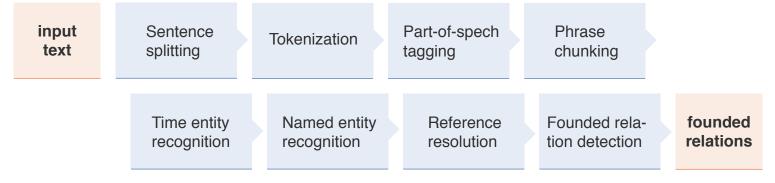
Text analysis pipelines and alternatives

Text analysis pipeline

- The standard way to tackle an NLP task is with a pipeline that sequentially applies a set of algorithms to the input texts.
- The output of one algorithm is the input to the next.

Example pipeline

• Extraction of the founding dates of companies



Alternatives

- Joint model. Realizes multiple analysis steps at the same time
- Neural network. Often works on the raw input text

Dimensions of NLP tasks

Types of tasks

- Classification. Each input instance is assigned a predefined class label.
- Regression. Each input instance is assigned a numeric value.
- Clustering. A set of input instances is grouped into not-predefined classes.

Types of approaches

- Supervised. Training instances with known output used in development
- Unsupervised. No output labels/values used in development ... and some others

Types of techniques

- Rule-based. Analysis based on manually encoded expert knowledge Knowledge includes rules, lexicons, grammars, ...
- Feature-based. Analysis based on statistical patterns in text features The text features used are encoded manually or semi-automatically.
- Neural. Analysis based on statistical patterns in self-learned functions Neural networks automatically learn and represent complex functions (often called *deep learning*).

Overview of rule-based and statistical techniques

Rule-based techniques

- (Hand-crafted) decision trees. Analyze text in a series of if-then-else rules.
- Lexicon matching. Match text spans with terms from a lexicon.
- Regular expressions. Extract text spans that follow sequential patterns.
- Probabilistic context-free grammars. Parse hierarchical structures of spans. ... among others

Statistical (machine learning) techniques

- Categorization. Assign a label to a text or span of text.
- Sequence labeling. Assign a label to each span in a sequence of spans.
- Scoring. Predict a score (or other numeric value) for a text or span of text.
- Clustering. Find possibly overlapping groups of similar texts.

Rules vs. statistics

- Rule-based techniques are often easier to control and explain.
- Statistical techniques are often more effective.

Next section: Rule-based NLP

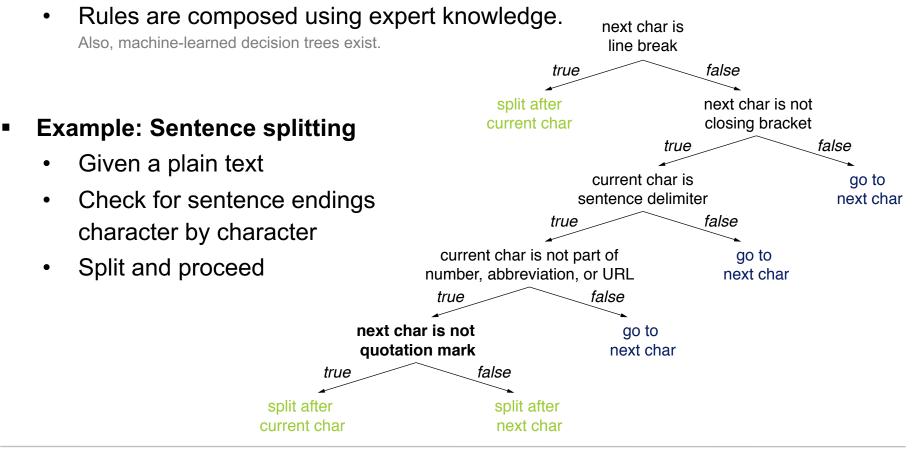
- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

NLP using decision trees

(Hand-crafted) Decision trees

- The representation of a series of if-then-else decision rules
- Inner nodes are decision criteria, leafs the final outcomes in a task.



NLP using lexicons

Several types of lexicons

- Terms. Term lists, language lexicons, vocabularies
- + Definitions. Dictionaries, glossaries, thesauri
- + Structured information. Gazetters, frequency lists, confidence lexicons

Use cases of lexicons

- A given lexicon can be used to find all term occurrences in a text.
- The existence of a given term in a lexicon can be checked.
- The density or distribution of a vocabulary in a text can be measured.

Example: Attribute extraction Given a training set where attribute

- Given a training set where attributes are annotated
- Compute confidence of each term, i.e., how often it is annotated as attribute
- Consider terms with confidence above a certain threshold
 as attributes

Attribute	Confidence
minibar	1.00
towels	0.97
wi-fi	0.83
front desk	0.74
alcohol	0.5
waiter	0.4
buffet	0.21
people	0.01

NLP using regular expressions

Regular expression (regex)

- A representation of a regular grammar
- Combines characters and meta-characters to generalize over language structures
- Used in NLP mainly to match text spans that follow clear sequential patterns

Types of patterns in regexes

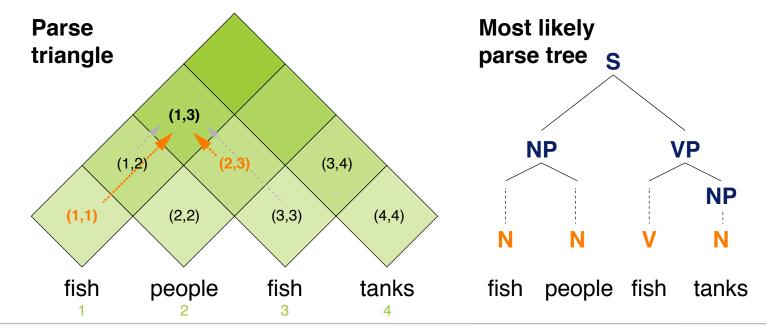
- Disjunctions. Alternative options, such as ([Ww]oodchuck|[Gg]roundhog)
- Negation+choice. Restrictions and arbitrary parts, such as [^A-Z] or 19...
- Repetitions. Parts that are optional and/or may appear multiple times, such as woo(oo)?dchuck, woo(oo)*dchuck, or woo(oo)+dchuck

Example

(0?[1-9] | [10-31]) \. (0?[1-9] | [10-12]) \. (19 | 20) [0-9][0-9]
 matches German dates, such as 8.5.1945 or 30.04.2020

NLP using probabilistic context-free grammars

- Probabilistic context-free grammar (PCFG)
 - A CFG where each rule is assigned a probability
 - Used in NLP mainly to parse sentence structure
 - The goal is to find the most likely parse tree
- Example: Constituency parsing
 - Use dynamic programming to iteratively compute the most likely parse tree



Basics of Natural Language Processing, Henning Wachsmuth

Rule	Probability
$S \rightarrow NP VP$	1.0
$VP \rightarrow V NP$	0.6
$VP \rightarrow V NP PP$	0.4
$V \rightarrow fish$	0.6
V → tanks	0.3

Next section: Statistical NLP

- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

Machine learning

- The ability of an algorithm to learn without being explicitly programmed
- An algorithm learns from experience wrt. a task and a performance measure, if its performance on the task increases with the experience.
- Aims at tasks where a target function γ that maps input to output is unknown
- A model y is learned that approximates γ

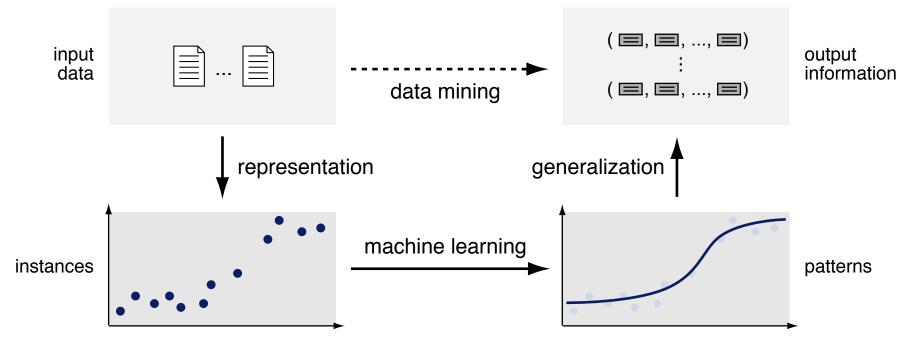
Typical output in NLP

- Text labels, such as topic, genre, and sentiment
- Span annotations, such as tokens and entities
- Span classifications, such as part-of-speech tags and entity types
- Relations between annotations, such as entity relations
- Two-way relationship
 - The output information of NLP serves as the input to machine learning
 - Many NLP algorithms rely on machine learning to produce output information

Data mining

Data mining vs. machine learning

• Data mining puts the output into the view, machine learning the method



- Text mining: NLP for data mining purposes
 - Input data. A text corpus, i.e., a collection of texts to be processed
 - Output information. Annotations of the texts

Feature

• A feature *x* denotes any measurable property of an input. Example: The relative frequency of a particular word in a text

Feature value

• The value of a feature of a given input, usually real-valued and normalized Example: The feature representing "is" would have the value 0.5 for the sentence "is is a word".

Feature type

• A set of features that conceptually belong together Example: The relative frequency of each known word in a text (this is often called "bag-of-words")

Feature vector

• A vector $\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_m^{(i)})$ where each $x_j^{(i)}$ is the value of one feature x_j Example: For two feature types with k and I features respectively, $\mathbf{x}^{(i)}$ would contain m = k+l values.

Feature-based vs. neural representations

- In feature-based learning, each instance is represented as a feature vector.
- In neural learning, features are not represented explicitly anymore.

Feature determination and computation

- How to determine the set of features in a vector
 - 1. Specify (using expert knowledge) what feature types to consider

(a) token 1-grams ("bag-of-words")

- (b) text length in # tokens and # sentences
- Where needed, process training set to get counts of candidate features

 (a) "the" → 4242, "a" → 2424, ..., "engineeeering" → 1
 - (b) not needed
- 3. Keep only features whose counts lie within some defined thresholds (a) "the", "a", ..., "engineeeering"
- How to compute the values for each feature
 - Compute value of each feature in a vector for a given input text

 (a) "the" → 6, "a" → 7, ...
 (b) # tokens → 50, # sentences → 10

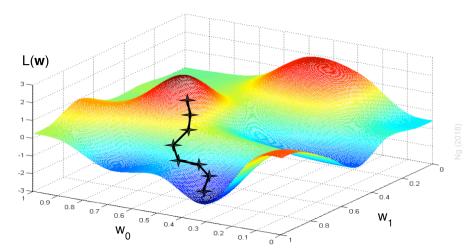
2. Normalize feature values

(a) "the" → 0.12, "a" → 0.14, ...
(b) # tokens → 0.42, # sentences → 0.5

Machine learning

Machine learning process

- A learning algorithm explores several candidate models *y*.
- Each *y* assigns one weight *w_j* to each feature *x_j*.
- *y* is evaluated on training data against a cost function *L*.

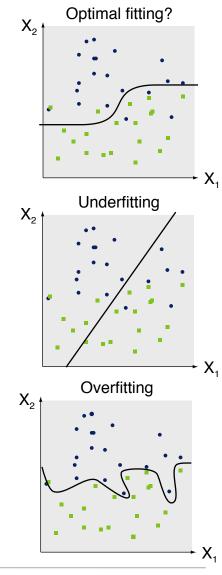


- Based on the result, the weights are adapted to obtain the next model.
- The adaptation relies on an optimization procedure.

Common optimization procedures

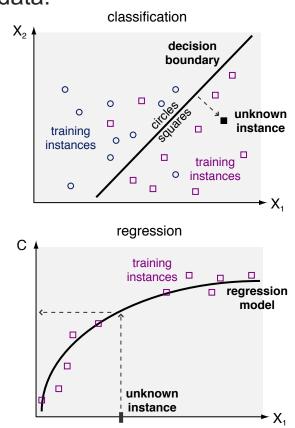
- Batch gradient descent. In each step, *y* is adapted to all training instances
- Stochastic gradient descent. Adapts *y* iteratively to each single instance
- Hyperparameters
 - Many learning algorithms have parameters that are not optimized in training.
 - These hyperparameters need to be optimized against a validation set.

- Fitting
 - To generalize well, y should approximate the complexity of the unknown function γ based on the training data.
- Underfitting (too high bias)
 - The model generalizes too much, not capturing certain relevant properties.
- Overfitting (too high variance)
 - The model captures too many irrelevant properties of the input data.
- Regularization
 - To avoid overfitting, the use of complex functions can be penalized.
 - A term is added to the cost function that forces feature weights to be small.



Supervised learning

- Supervised (machine) learning
 - A learning algorithm derives a model y from known training data, i.e., pairs of instances x⁽ⁱ⁾ and the associated output information y⁽ⁱ⁾.
 - *y* can then predict output information for unknown data.
- Classification
 - Assign an instance to the most likely class of a set of predefined classes
 - A decision boundary *y* is learned that decides the class of unknown instances.
- Regression
 - Assign an instance to the most likely value of a continuous target variable
 - A regression function *y* is learned that decides the value of unknown instances.



Classification and regression algorithms

Selected classification algorithms

- Naïve Bayes. Predicts classes based on conditional probabilities
- Support vector machine. Maximizes the margin between classes
- Decision tree. Sequentially compares instances on single features
- Random forest. Majority voting based on several decision trees
- Neural network. Learns complex functions on feature combinations ... among many others

Selected regression algorithms

- Linear regression. Predict output values using a learned linear function
- Support vector regression. Maximize the flatness of a regression model
- Neural network. As above

... among many others

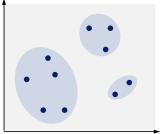
Ensemble methods

• Meta-algorithms that combine multiple classifiers/regressors

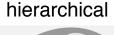
Unsupervised learning

- Unsupervised (machine) learning
 - A model *y* is derived from instances without output information.
 - The model reveals the organization and association of data.
- Clustering
 - The grouping of a set of instances into a possibly but not necessarily predefined number of classes
 - The meaning of a class is usually unknown in advance.
- Hard vs. soft clusters
 - Hard. Each instance belongs to a single cluster.
 - Soft. Instances belong to each cluster with a certain weight.
- Flat vs. hierarchical clustering
 - Flat. Group instances into a set of independent clusters.
 - Hierarchical. Create a binary clustering tree over all instances.

flat hard



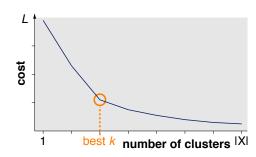
flat soft



Clustering algorithms

Selected flat hard clustering algorithms

- k-means. Iteratively create k instance clusters based on distance to centroids.
- DBSCAN. Cluster instances into regions of similar density.
- Selected flat soft clustering algorithms
 - Fuzzy k-means. Variation of *k*-means where clusters may overlap
 - LDA (topic modeling). Represent clusters by their most common features.
- Selected hierarchical clustering algorithms
 - Agglomerative. Incrementally merge closest clusters, starting from instances.
 - MinCut. Split clusters based on their minimum cut, starting from one cluster.
- Methods to find the best number of clusters
 - Elbow criterion. Find *k* that maximizes cost reduction.
 - Silhouette analysis. Find *k* that maximizes distances between clusters (and balances their size).



Similarity measure

- A real-valued function that quantifies how similar two instances of the same concept are (between 0 and 1).
- Distance measures can be used as (inverse) similarity measures.

Selected use cases in NLP

- Clustering
- Spelling correction
- Retrieval of relevant web pages or related documents
- Paraphrase, (near-) duplicate, or plagiarism detection
- Text similarity measures
 - Vector-based measures. Mainly, for similarities between feature vectors
 - Edit distance. For spelling similarities
 - Thesaurus methods. For synonymy-related similarities
 - Distributional similarity. For similarities in the contextual usage

Vector-based similarity and distance measures

Cosine similarity

$$cosine(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \frac{\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)}}{||\mathbf{x}^{(1)}|| \cdot ||\mathbf{x}^{(2)}||} = \frac{\sum_{i=1}^{m} x_i^{(1)} \cdot x_i^{(2)}}{\sqrt{\sum_{i=1}^{m} x_i^{(1)^2}} \cdot \sqrt{\sum_{i=1}^{m} x_i^{(2)^2}}}$$

Jaccard similarity coefficient

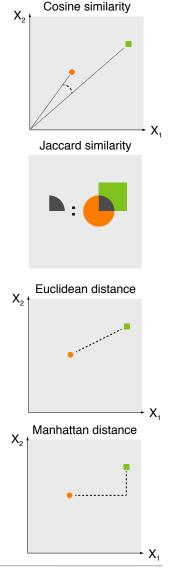
$$jaccard(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \frac{|\mathbf{x}^{(1)} \cap \mathbf{x}^{(2)}|}{|\mathbf{x}^{(1)} \cup \mathbf{x}^{(2)}|} = \frac{|\mathbf{x}^{(1)} \cap \mathbf{x}^{(2)}|}{|\mathbf{x}^{(1)}| + |\mathbf{x}^{(2)}| - |\mathbf{x}^{(1)} \cap \mathbf{x}^{(2)}|}$$

Euclidean distance

$$euclidean(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \sqrt{\sum_{i=1}^{m} |x_i^{(1)} - x_i^{(2)}|^2}$$

Manhattan distance

manhattan(
$$\mathbf{x}^{(1)}, \mathbf{x}^{(2)}$$
) = $\sum_{i=1}^{m} |x_i^{(1)} - x_i^{(2)}|$



Other learning types and variations

Sequence labeling

• Classifies each instance in a sequence of instances, exploiting information about dependencies between instances.

Semi-supervised learning

• Derive patterns from little training data, then find similar patterns in unannotated data to get more training data.

Reinforcement learning

• Learn, adapt, or optimize a behavior in order to maximize some benefit, based on feedback provided by the environment.

Recommender systems

- Predict missing values of entities based on values of similar entities.
- One-class classification and outlier detection
 - Learn to classify, having only a representative sample of one class.

Development and evaluation of a learning approach

Machine learning in NLP

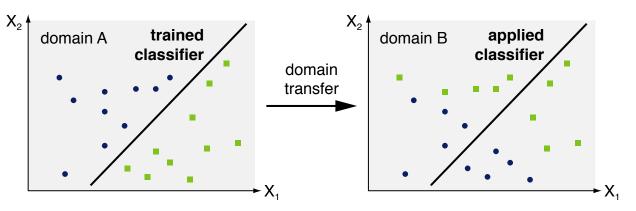
- Machine learning serves as a technique to approach a given task.
- A suitable learning algorithm from a library is chosen and applied.

Process steps

- Corpus acquisition. Acquire a corpus (and datasets) suitable to study the task.
- Text analysis. Preprocess all instances with existing NLP algorithms, in order to obtain information that can be used in features.
- Feature engineering. Identify helpful features on training set, compute feature vectors for each instance on all datasets.
- Machine learning. Train algorithm on training set and evaluate on validation set, optimize hyperparameters. Finally, evaluate on test set.

Domain dependency

- Domain
 - A set of texts that share certain properties
 - Can refer to a topic, genre, style, or similar or combinations
 - Texts from the same domain often have a similar feature distribution.
- Domain dependency
 - Many algorithm work better in the domain of training texts than in others.



- The same feature values result in different output information.
- Different features are discriminative regarding the target variable. Example: "Read the book" in book reviews vs. movie reviews... vs. hotel reviews?

Next section: Conclusion

- I. Introduction to computational argumentation
- II. Basics of natural language processing -
- III. Basics of argumentation
- IV. Argument acquisition
- V. Argument mining
- VI. Argument assessment
- VII. Argument generation
- VIII.Applications of computational argumentation
- IX. Conclusion

- a) Introduction
- b) Linguistics
- c) Empirical methods
- d) Tasks and techniques
- e) Rule-based NLP
- f) Statistical NLP
- g) Conclusion

What makes NLP hard?

Effectiveness challenges

- Ambiguity of natural language
- Missing context and world knowledge
- Accumulation of errors through the text analysis process
- Lack of sufficient data for development

Efficiency challenges

- Large amounts of data may need to be processed, possibly repeatedly
- Complex, space-intensive models may be learned
- Often, several time-intensive text analyses are needed

Robustness challenges

- Datasets for training may be biased
- Many text characteristics are domain-specific
- Learned algorithms often capture too much variance (i.e., they overfit)

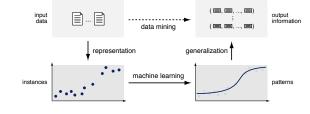
Approaches to NLP challenges

How to improve effectiveness?

- Joint inference may reduce/avoid error propagation
- Different algorithms work well for different amounts of data
- Sometimes, data can be extended easily
- Redundancy can be exploited in large-scale situations
- Combinations of statistical and rule-based approaches often do the trick
- How to improve efficiency?
 - Resort to simpler algorithms
 - Filtering of relevant information and scheduling in pipelines
 - Scale-out and parallelization of text analysis processes
- How to improve robustness?
 - Use of heterogenous datasets in training
 - Resort to domain-independent features
 - Adaptation of algorithms based on sample from target domain

Conclusion

- Basics of natural language processing (NLP)
 - Linguistic knowledge from phonetics to pragmatics
 - Empirical methods for development and evaluation
 - Rule-based and statistical (machine-learned) algorithms
- How to approach NLP tasks?
 - Start from annotated text corpora
 - Develop algorithms that use rules or learn patterns
 - Evaluate quality of their output empirically
- Goals of NLP
 - Technology that can process natural language
 - Empirical explanations of linguistic phenomena
 - Solutions to problems from the real world



References

- Ng (2018). Andrew Ng. Machine Learning. Lecture slides from the Stanford Coursera course. 2018.<u>https://www.coursera.org/learn/machine-learning</u>.
- Wachsmuth (2020). Henning Wachsmuth. Introduction to Text Mining. Lecture slides. Winter term, 2020. <u>https://cs.upb.de/css/teaching/courses/text-mining-w20/</u>