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Abstract

In this thesis, we will explore the potential of large pre-trained Language Models
to assess the Local Sufficiency quality dimension of an argument. We study two
different approaches: (1) Directly assessing the Local Sufficiency of an argument
as a (binary) classification task and (2) Indirectly assessing Local Sufficiency of an
argument by generating a conclusion based on a set of premises first and afterward
use the generated conclusion to augment the (binary) classification task in (1).
We establish a new state-of-the-art Local Sufficiency assessment approach using the
BERT model achieving 96.7% of human performance. Subsequently, we show that
leveraging Argument Mining to obtain argumentative units and thus, following the
Local Sufficiency definition more strictly, decreases the assessment performance. We
also investigate the reasons for this behavior. In addition, we study the task of
conclusion generation and its similarity to other tasks in the NLP domain using
the BART model. We show that the conclusions generated by our models are of
equal quality and could not be discriminated from those written by humans in a
manual ranking study. Furthermore, we find that multiple different conclusions
are equally likely to be drawn without further context of the conclusion target
given a set of premises. Finally, using the generated conclusion to augment the
Local Sufficiency assessment approach led to no performance improvements. Still, it
revealed that, given the currently available datasets, the Local Sufficiency assessment
of arguments relies mostly on the given premises and not on the corresponding
conclusions, displaying the need for further research in this direction to better fulfill
the task of Local Sufficiency assessment.
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1Introduction

In recent years, deep learning and the ability to process large amounts of data have
accelerated progress in Natural Language Processing (NLP). Numerous work focuses
on a general representation and generation of human language, that can be applied
to approach a wide range of problems involving natural language text. Similar to
Language Modeling approaches, the analysis of arguments strives to understand
underlying concepts, relationships, and logic. This field referred to as Computational
Argumentation focuses on the analysis and synthesis of arguments, which are used
in many applications, e.g., virtual assistants (Rinott et al., 2015) and search engines
(Stab et al., 2018; Wachsmuth et al., 2017b).

In the past, researchers have developed approaches to extract arguments from
natural language text. These approaches belong to the task of Argument Mining,
which not only aims to extract argumentative discourse units (Ajjour et al., 2017)
but also tries to find different sub-structures within arguments (Stab, 2017). While
the problem of Argument Mining has not yet been solved completely, it has supported
the exploration of several downstream tasks.

One of the most important tasks in Argumentation Theory is the automatic evaluation
of student essays (Shermis and Burstein, 2003), which aims to measure the quality
of an argumentation written by a student on a specific topic. However, argument
search engines (Stab et al., 2018; Wachsmuth et al., 2017b), which provide pro and
contra arguments for a particular topic, consider not only student essays but also
arguments from numerous other domains, e.g., comments or newspaper articles.
In addition, these search engines must assess arguments to decide how to present
them to the user. Existing approaches either use a holistic assessment scheme (Gretz
et al., 2019a) or approach the problem through a deviation into several subproblems,
often referred to as quality dimensions (Wachsmuth et al., 2017a). While a holistic
approach is promising due to its simplicity, it is less useful in areas that require
feedback (Shermis and Burstein, 2003). This is of interest not only from computer
scientists’ perspective but also from a social and philosophical point of view (Aristotle,
2007). Hence, the evaluation of the quality of arguments is sometimes regarded as
the "ultimate question" in Argument Mining (Stede and Schneider, 2018).
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In this work, following the definitions in Wachsmuth et al., (2017a), we assess
the Local Sufficiency of an argument, measuring whether the premises given in
an argument are sufficient and together make it rational to draw the proposed
conclusion. For this purpose, we study two approaches that build upon the success
of state-of-the-art (SOTA) NLP models in recent years.

1.1 Research Questions

In recent years, the newly proposed methods, which are now widely used in NLP
tasks, have changed considerably. Models have become more refined, and the amount
of data processed greatly improved. Research has shifted from the predominant use
of hand-crafted features to the use of deep learning. Newly developed models can not
only generate language representations, which can be used for direct classification
or regression but can generate natural language text on its own. Furthermore, they
allow transferring general language understanding knowledge, obtained through
pre-training on massive corpora, to tasks where this knowledge is of use but cannot
be fully inferred due to a lack of available data. Although these models have so far
been adapted towards the holistic assessment of argumentation quality (Gretz et al.,
2019b; Toledo et al., 2019), there is still great potential.

Considering the definitions of argument quality dimensions proposed in Wachsmuth
et al., (2017a), one dimension is particularly useful to explore this potential, i.e.,
Local Sufficiency. As of now only Stab and Gurevych, (2017b) assessed the Local
Sufficiency in argumentative essays. However, the approach is mainly based on hand-
crafted features and model semantics only as n-grams or universal word embeddings.
Moreover, the authors did not use argumentative features, i.e., only conclusions
and premises instead of the whole text containing them, to create their features. In
contrast, Wachsmuth et al., (2016) showed that the use of argumentative features
created based on argumentative units improves the performance of assessing the
quality of an argument in multiple dimensions. This raises the question of how else
argumentative units can be used to improve performance in this domain. Other
LSTM-based approaches have focused on the relative convincingness (Habernal and
Gurevych, 2016a; Potash and Rumshisky, 2017; Simpson and Gurevych, 2018) of
arguments or their evidence (Gleize et al., 2019). However, approaches that assess
the quality of arguments using transformer-based architectures are still very limited
(Gretz et al., 2019b; Toledo et al., 2019) and only focused on a holistic assessment
in contrast to the more fine-grained view of Wachsmuth et al., (2017a).

To assess Local Sufficiency, Language Modeling based models, which have achieved
SOTA results in other NLP areas, seem to be a promising choice, as they avoid the
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necessity of crafting features by hand and allow to directly operate on the level of
argumentative units in natural language form. The potential of these methods to
directly output Local Sufficiency scores based on given argumentative units could
thereby lead to substantial improvements. In addition, their ability to generate
text allows studying a wide range of augmented assessment approaches. In our
case, that is to first try to generate a conclusion based on a set of premises and in
a second step infer a quality dimension score, e.g., by comparing the generated
conclusion to the ground truth conclusion. Finally, it is important to investigate how
well an augmented assessment (using generation) performs compared to a more
direct approach to capture the trade-off between accurately predicting the quality
dimension score and providing interpretable intermediate results (the generated
conclusion). Therefore, the idea of directly assessing quality dimensions of argu-
ments using contextual embedding methods and an augmented assessment through
generation seem to be a novel and promising tasks, which can contribute to the field
of Computational Argumentation in different ways. In particular, our work tries to
answer and explore the following questions:

1. Can Language Models incorporating implicit knowledge gained through pre-
training and fine-tuning help improve the assessment of Local Sufficiency?

2. To what extend can pre-trained Language Models be used to learn to generate
proper conclusions given a set of premises?

3. How can text generation, i.e., conclusion generation be used to assess the Local
Sufficiency of an argument?

1.2 Approaches

In this work, we create two different Local Sufficiency assessment approaches. Figure
1.1 shows an overview of the components used to create the final assessment
models. Our models can be distinguished according to their basic approach, namely
direct Local Sufficiency assessment and indirect Local Sufficiency assessment through
generation. For direct Local Sufficiency assessment, we used the BERT (Devlin et al.,
2018) transformer model and adapted it to the task of binary text classification. In
total, we evaluate our approach by comparing it to baseline of Stab and Gurevych,
(2017b), on the AAE-v2 dataset (Stab and Gurevych, 2017a) and two adaptations of
it. For indirect Local Sufficiency assessment we create three models based on the BART
(Lewis et al., 2019) transformer model: one without fine-tuning, one fine-tuned on
the CNN-DailyMail (Nallapati et al., 2016) extractive news summarization dataset
and one fine-tuned on the XSum (Narayan et al., 2018) abstract news summarization
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dataset. We then investigate the performance of conclusion generation models using
a wide range of automated metrics combined with a manual ranking study involving
five annotators. Finally, we select the best of the conclusion generation models to
produce conclusions for the entire dataset and use these to train a BERT based model
that takes them as an extra input to predict the Local Sufficiency of an argument.

Private schools succeed where public 
schools fail largely because in a public 
school the teach's hand are tied by
potlitically correct nonsense. They 
cannot correct errors, cannot encourge 
high achievers for fear of upsetting the 
regular students , assign homework, or 
expect respect from the students. The 
inmates are running the asylum in many
public schools. 

Premises:
in a public school the teach's hand 

are tied by potlitically correct 
nonsense. They cannot correct 
errors, cannot encourge high 

achievers for fear of upsetting ...

Conclusion:
Private schools succeed where 

public schools fail largely 

Unit Segmentation
and Classification

Conclusion
Generation

Local Sufficiency
Assessment

Figure 1.1.: Overview of the planned approaches: After extracting the conclusion and
premises from the input text, the premises are used to generate a conclusion so
that the Local Sufficiency assessment is performed either directly based on the
conclusion and premises (dashed black lines) or indirectly using the conclusion
and the generated conclusion (solid black lines).

1.3 Results and Contributions

Our results show that large-scale, pre-trained Language Models can successfully
improve the prior SOTA of Local Sufficiency assessment. This said we found that
the removal of non-argumentative text from arguments decreases the performance
of Local Sufficiency assessment models in general due to the loss of contextual and
connectivity information, i.e., textual markers for opposing views or the number of
premises. In contrast, removing textual markers indicating the use of an example
improves performance. Overall, however, the decrease significantly outweighs the
increase in performance. Augmenting the task of assessing the Local Sufficiency of
an argument using generated conclusions, we found that given a set of premises,
multiple conclusion targets, and thus different conclusions, are viable choices for
the human observer. In addition, we found that while the task of abstractive news
summarization comes closest to generating conclusions, the fine-tuning on our
dataset makes its potential transfer learning benefit negligible. Ultimately, given
a set of premises, five human annotators could not distinguish between machine-
generated conclusions and conclusions written by humans. Finally, comparing the
generated conclusions to the ground truth conclusions and using the generated
conclusions as an additional input to our evaluation model did not improve the Local
Sufficiency classification performance. With that said, we found that premises are
significantly more important than the corresponding conclusions in assessing the
Local Sufficiency of an argument, which is likely a product of the available datasets
and its, on average, high quality of arguments.
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Leveraging the potential of large-scale pre-trained transformer models in combina-
tion with the theoretical background of argument quality assessment, in this work,
we contribute to solving the research questions in the following way:

1. Combining the work of Stab and Gurevych, (2017a) and Stab and Gurevych,
(2017b), we created a new dataset that presents a single argument as a
conclusion, a set of premises, and a binary Local Sufficiency score.

2. We studied the effects of removing non-argumentative text from arguments in
Local Sufficiency assessment.

3. We created a Local Sufficiency assessment model that outperforms the previous
SOTA model by Stab and Gurevych, (2017b) and achieves 96.7% of human-
level performance.

4. We performed a first analysis of the relationship between well-known NLP
tasks and the conclusion generation task.

5. We created automated models that can generate conclusions that, given a set
of premises, are equally probable to be inferred as conclusions written by a
human.

6. We explored a variety of ideas to use argumentative features, i.e., the generated
conclusions, to improve the Local Sufficiency assessment of arguments.

In summary, we hope to contribute valuable insights into the potential of text gener-
ation approaches in the context of Computational Argumentation and demonstrate
the general potential of large-scale pre-trained Language Models in this area.
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1.4 Outline

In Chapter 2, we provide the necessary background knowledge we use in our work.
We give a brief introduction to Natural Language Processing and its objectives in
Section 2.1, followed by an explanation of the technical parts of the models used
in this thesis in Section 2.2 and of the models themselves in Section 2.3. Finally,
we conclude the background chapter by introducing important related ideas in
Argumentation Theory and Computational Argumentation and provide an overview
of the prior state-of-the-art (SOTA) models that attempt to assess Local Sufficiency in
Section 2.4. In Chapter 3, we provide a detailed introduction to the data used in our
work, introducing relevant corpus criteria based on characteristics introduced in the
background chapter. We explain currently available datasets in Section 3.1, followed
by a description of our new dataset in Section 3.2. Next, we provide implementation
details as well as our experiment setups in Chapter 4, which are divided into the
direct Local Sufficiency assessment approach in Section 4.1, the conclusion generation
approach in Section 4.2 and the indirect Local Sufficiency assessment approach in
Section 4.3. Next, we evaluate all our experiments in Chapter 5, starting with the
Local Sufficiency assessment approach in Section 5.1, the conclusion generation
approach in Section 5.2 and the indirect Local Sufficiency assessment approach in
Section 5.3. Finally, we discuss and conclude our work in Chapter 6 and state ideas
that we think are interesting to explore in the future in Section 6.1.
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2Background and Related Work

This chapter will introduce the background knowledge we use in this work: (1) We
will introduce Natural Language Processing (NLP) and its tasks related to this work.
(2) We will explain techniques and model architectures, which are prerequisites for
understanding the models that we will use later. (3) We will describe these models
in detail, have a closer look at how they are trained, and how they tackle the tasks
introduced before. (4) We will present the domain of Computational Argumentation
and the domain-specific tasks, including concepts regarding arguments’ quality.

2.1 Natural Language Processing and its
Objectives

Natural Language Processing (NLP) is one of the core parts of text mining. Its
ultimate goal is to discover, identify and structure previously unknown information
from natural language text1. Chowdhary, (2020) define the tasks of NLP researches
the following: "NLP researchers aim to gather knowledge on how human beings
understand and use language so that appropriate tools and techniques can be
developed to make computer systems understand and manipulate natural languages
to perform the desired tasks." During the past decades, the amount of tasks and
data in the NLP domain has grown continuously, covering a wide variety of different
tasks, e.g., speech recognition and question answering. While each task holds its
own challenges, some problems appear to be related to almost all natural language.
The most common of these problems is the ambiguity of natural language text.
Ambiguity describes the property of text to change its meaning based on context,
speech, and presuppositions. In the sentence "I saw a kid with a telescope." for
example, it is unclear whether the kid has the telescope or if it is seen through a
telescope. In contrast to humans who can try to resolve these problems based on
experience or phonetics, machines are often limited to one type of input and thus
struggle with concepts that are subconsciously used in everyday talks. Liddy, (1998)
and Feldman, (1999) propose the following levels of language analysis, which are
commonly used to evaluate the meaning of natural language text:

1Following the slides of the "Introduction to Text Mining" course by Henning Wachsmuth
at Paderborn University (https://en.cs.uni-paderborn.de/de/css/teaching/courses/text-
mining-w19).
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• Phonetics or Phonology: Physical and linguistic sound of speech.

• Morphology: The smallest part of a word and its meaning, e.g., word stems,
prefixes, and suffixes.

• Syntax: Grammatical relationships of words/sentences, e.g., nouns, verbs,
relative clauses.

• Semantics: Lexical and contextual meaning of words/sentences.

• Discourse: Structural meaning of larger text units, e.g., type of text, document
structure.

• Pragmatics: External knowledge about the world.

Looking at the methods applied in practice, NLP often follows a pipeline approach
that involves pre-processing the raw input text. This phase is usually used to
extract information related to the levels of language analysis presented previously.
The extracted information, often referred to as features, is then used, alone or in
conjunction with the raw text, to create an algorithmic model capable of solving a
specific task.

2.1.1 Text Classification, Summarization and Translation

In our work, we will face two different NLP tasks. First, we will classify text in
a binary setting to predict whether an input text consisting of a conclusion and a
set of premises is sufficient following the definition of Wachsmuth et al., (2017a).
Second, we train a model to generate conclusions based on a set of premises. To
do this, we will reuse methods from another task in NLP, i.e., text summarization.
Text summarization can be divided into two types of approaches. This is extractive
summarization and abstractive summarization. The former creates a summary
of an input text by copying and fusing parts of the input text, while the latter
creates a summary using newly generated content. Since conclusion generation
is a reasoning task that requires abstraction instead of picking and fusing parts
of the premises (extraction), our focus lies on approaches that successfully tackle
abstractive summarization. However, we will investigate both approaches in this
work. In addition, we will refer to the NLP task known as machine translation.
Machine translation aims to create an approach that is capable of translating from
one language to another. Famous examples which employ these techniques are
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Google Translator2 and more recently DeepL3. While translation is not our goal,
many of the past years’ major improvements were initially developed to solve this
problem and only later adapted and applied towards the tasks in scope. Therefore,
it is important to understand that while both text summarization and translation
are text generation tasks, their input-output relation differs substantially, e.g., the
length of a translated text is usually close to the input text. In contrast, the length of
summarization is much shorter than the corresponding input text.

2https://translate.google.com
3https://www.deepl.com/translator
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2.2 Neural Networks in Natural Language
Processing

This section will provide an overview of models and techniques typically used in
Natural Language Processing and are important for our experiments. As natural
language is mostly sequential, meaning that the order of words in a text is important,
we will explain Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986; Werbos,
1990) as a special form of Neural Networks that can process this special type of data.
We will also explain an adaptation of RNNs called Long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997). Based on these, we will introduce the task of
Sequence-to-Sequence learning, which is in our case to generate a conclusion based
on a set of premises. Finally, we will explain the architectural structures that are key
to the success of today’s language models, such as BERT and GPT-2.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986; Werbos, 1990) are a
special form of Neural Networks that were developed to process sequential, often
temporal data. Unlike feed-forward Neural Networks, RNNs do not process the
entire input data simultaneously but process it one bit (often a word) at a time using
the same procedure. However, the procedure itself is not only influenced by the
current input but also by the previously generated output and/or intermediate state.
Depending on the task, RNNs allow for different structures (Figure 2.1).

Figure 2.1.: RNN tasks depending on the number of input and output features. Taken from
a blogpost of Andrej Karpathy4.

One of the most used forms of RNNs are Long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) Neural Networks. While keeping the original idea,
the authors change the cells’ internal structure to adjust for long time relationships

4http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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in the data and deal with the vanishing grading problem that vanilla RNNs were
suffering from.

Figure 2.2.: Internal structure of an LSTM unit. Taken from a blogpost of Christopher Olah5.

The internal structure of an LSTM unit holds a gating system that consists of a cell
c that acts as a memory component and three gates that regulate the amount of
information that flows through the network. First, the input gate i controls the
amount of information that flows into the cell. Second, the forget gate f controls
how much of the cell’s information is kept. Third, the output gate controls how
much of the information in the cell is used to compute the output activation of the
LSTM unit. Figure 2.2 shows the internal structure of an LSTM unit.

it = σg(Wixt + Uiht−1) (2.1)

ft = σg(Wfxt + Ufht−1) (2.2)

ot = σg(Woxt + Uoht−1) (2.3)

c̃t = σc(Wcxt + Ucht−1) (2.4)

ct = ft ◦ ct−1 + it ◦ c̃t (2.5)

ht = ot ◦ σh(ct) (2.6)

Where it, ft and ot are the activation’s of the input, output and forget gate at time t.
Correspondingly xt is the input at time t and ht−1 the hidden state of the previous
LSTM unit. As shown in Equations 2.1 - 2.6, all gates are similar in structure, while
the cell depends on input and forget gate as well as on its own gate-like structure
c̃. The current LSTM unit output ht depends on the output gate and the cell state.
σg is a sigmoid function while σc and σh are tanh functions. The output of all gates
depends on their weight matrices W ∈ Rh×d and U ∈ Rh×h, which are learned
during the training of the network, where h is the number of hidden units and d the
number of input features. Note that we have omitted the bias term in Equations 2.1
- 2.6 for better readability.

5https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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2.2.2 Sequence-to-Sequence

The idea to use Recurrent Neural Networks (RNNs) (Rumelhart et al., 1986; Werbos,
1990) for sequence to sequence (Seq2Seq) learning, was first introduced by Sutskever
et al., (2014). The authors used the Long short-term memory (LSTM) idea of
Hochreiter and Schmidhuber, (1997), which is a special form of an RNN that is
particularly useful to account for long term relationships in texts. The general
structure includes an encoder that sequentially reads in the input text and creates a
context vector that is then used by a decoder to create text, token by token until a
special end-of-sentence token is produced (Figure 2.3).

x1

y1 y2 yT...

x2 xT

h1 h2 hT s1 s2 ... sTyx

...

...

Figure 2.3.: Seq2Seq model that has an encoder (blue) and a decoder (red). The encoder
sequentially reads an input (x1, . . . , xTx) and the decoder sequentially produces
an output (y1, . . . , yTy

).

Let x = (x1, . . . , xTx) be a sequence of input vectors where xt represents the word
of an input sentence x at time t. Furthermore, let y =

(
y1, . . . , yTy

)
be a sequence of

output vectors where yt represents the word of an output sentence y at time t. The
task of an encoder is to create a representation c based on x that serves as an input
to the corresponding decoder, which will then generate an output y. Following the
ideas of Bahdanau et al., (2014) the output of the encoder depends on two functions.
First f (Equation 2.7), which generates the hidden state at a specific point in time ht

based on the vector representation of the input word at this time xt and the previous
hidden state ht−1. Second a function q that takes all hidden states and creates the
representation c based on these states (Equation 2.8).

ht = f (xt, ht−1) (2.7)

c = q ({h1, . . . , hTx}) (2.8)

In encoder-decoder architectures q is often considered to take the last hidden state
hTx , thus setting c = hTx . After c is generated the decoder has to generate y based
on it. As the decoder itself is also a RNN it generates the output y sequentially such
that yt is a conditional probability function g (Equation 2.9) that depends on the
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previously predicted words yt−1, the current hidden state st and the context vector
generated by the encoder c. Broadly speaking g calculates the probability for each
word to be chosen at a specific point in time based on previously chosen words
and the context of the input. These probabilities are then combined to define a
probability over an entire output sentence y (Equation 2.10).

p(yt | {y1, . . . , yt−1} , c) = g(yt−1, st, c) (2.9)

p(y) =
T∏

t=1
p(yt | {y1, . . . , yt−1} , c) (2.10)

2.2.3 Attention

However, the previously described encoder-decoder architecture has some disadvan-
tages. As c is the same at every time-step t, it contains a general representation of
the input context that covers information about the whole input text. In contrast
the authors of Bahdanau et al., (2014) show that using a distinct context for each
time-step greatly improves the performance at the task of translation. This idea that
allows an output word to learn which parts of the input text are relevant for the
current step of generation, is referred to as attention. Technically, the previously
described function g does now depend on ci that is the context vector c at time i
(Equation 2.11).

p(yi|y1, . . . , yi−1,x) = g(yi−1, si, ci) (2.11)

This new context vector is calculated as the weighted sum of all hidden states in
the encoder. The weighting is calculated using a softmax function (Equation 2.12)
applied to the output of a feedforward neural network score(si−1, hj) which takes
into account the hidden state of the encoder at time hj and the previous hidden
state of the decoder si−1 (Equation 2.13).

ci =
Tx∑

j=1

exp (score(si−1, hj))∑Tx
k=1 exp (score(si−1, hk))

hj (2.12)

score(si−1, hj) = W T
3 tanh(W1hj +W2si−1) (2.13)

Where W1 ∈ Rn×n,W2 ∈ Rn×m and W3 ∈ Rn are weight matrices and m and n are
the number of hidden units in the encoder and decoder respectively. This specific
kind of attention is often referred to as additive attention.
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x1 x2 xT

h1 h2 hTx
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...

y1 y2 yT...

s1 s2 ... sTy

(a)

Attention Layer

x1 x2 xT

h1 h2 hTx

ciscore
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yi-1 yi
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...
...

...

si-1 si

(b)

Figure 2.4.: (a) Seq2Seq structure using an attention layer and (b) Internal attention layer
overview.

Generalizing Attention

While the general idea of attention stays the same, there exist several adaptations
that differ in the way how the weighting is computed (Cheng et al., 2016; Graves
et al., 2014; Luong et al., 2015; Vaswani et al., 2017). In order to better understand
the differences of these, we will use a generalized annotation for attention that is
consistent to the one used by Devlin et al., (2018). The way we described attention
above there are three different inputs, which are necessary to compute the final
weighting, that are independent of the architecture (in our case an RNN). In order
to describe these inputs, let Q be a set queries, K a set of keys and V a set of values.
Then we can rewrite the previous formulas as shown in Equations 2.14 and 2.15.

Attention(Q,K, V ) = ci =
Tx∑

j=1

exp(score(Qi−1,Kj))∑Tx
k=1 exp(score(Qi−1,Kk))

Vj (2.14)

score(Qi−1,Kj) = W T
3 tanh(W1Kj +W2Qi−1) (2.15)
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Attention vs. Self-Attention

One of the adaptations of the attention mechanism is known as inter-attention
or self-attention (Cheng et al., 2016). In contrast to the attention mechanism
presented before, self-attention solely relies on the input of the encoder to create
the attention scoring. Figure 2.5a and 2.5b show the different parts of attention in
their generalized form applied to the RNN structure of Graves et al., (2014) and the
corresponding self-attention adaptation.

h1 h2 hTx...

...... si-1 si

ciscore

Q

K V

(a)

Q K V

h1 h2 hTx...

...

...
... si-1 si

ciscore

(b)

Figure 2.5.: Generalized attention mechanism (a) as represented in Figure 2.4b and the
corresponding self-attention mechanism (b).

2.2.4 Transformers

Unlike the previous architectures that are typically RNNs or LSTMs, which use the
attention idea, Vaswani et al., (2017) introduced a new architecture entirely built on
the self-attention mechanism. The architecture itself consists of a multilayer encoder
and a multilayer decoder. Each layer holds a multi-head attention module followed
by a feed-forward neural network (Figure 2.6). Multi-head attention modules in the
encoder rely on normal self-attention. In contrast, the decoder holds two multi-head
attention modules, one who takes the decoder’s output as keys K and values V and
one which generates the corresponding input query Q. The latter is called a masked
multi-head attention module that performs self-attention on previous predictions
(i.e., generated tokens) and masks all future positions in the sequence, allowing
parallelizing training since the ground truth targets are known. However, during
inference, the masked multi-head attention module works sequentially, as masking is
not possible due to the unknown target. Thus, the final multi-head attention module
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accounts for the input and monitors what it has already generated, similar to RNNs
or LSTMs.

Figure 2.6.: Encoder (left) and decoder (right) of the Transformer model architecture from
Vaswani et al., (2017).

In contrast to RNNs and LSTMs, the input text is no more sequentially read but all at
the same time, thus to keep positional information, the authors introduce positional
embeddings which are added to the original input embeddings of the text (Equations
2.16 and 2.17). A positional embedding is considered a sinusoidal function based
on a token position in a text pos and the embedding dimension i.

PE(pos,2i) = sin(pos/100002i/dmodel) (2.16)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.17)

The model can thus learn the position of all words based on the pattern applied to
the word embeddings. The authors use scaled dot-product attention (Formula 2.19
and Figure 2.7a), which takes a set of values V , a set of keys K and a set of queries
Q. Scaled Dot-Product attention is a dot-product attention (Equation 2.18) scaled
based on the dimensionality of queries and keys dk in order to cope for vanishing
gradients caused by a large value of dk. Dot-Product attention instead of additive
attention allows all calculations to work on matrices that can be highly optimized.
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score(Qi−1,Kj) = QT
i−1Kj (2.18)

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V (2.19)

The key component introduced by the authors is the multi-head attention mechanism
(Figure 2.7b). Before running scaled dot-product attention, all queries, keys and
values are mapped into lower dimensional spaces by using the weight matricesW V

i ∈
Rdmodel×dv , WK

i ∈ Rdmodel×dk and WQ
i ∈ Rdmodel×dk correspondingly (Equation

2.20). Where dv and dk are the number of dimensions in the values and keys and
dmodel the number of dimensions the model is supposed to output. The Scaled
Dot-Product Attention mechanism is then computed h times in parallel and the
results are concatenated and fed through another linear layer using the weight
matrix WO ∈ Rhdv×dmodel to recreate the original dimensionality (Equation 2.21).

headi = Attention(QWQ
i ,KW

K
i , V W V

i ) (2.20)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO (2.21)

Each Scaled Dot-Product Attention mechanism, computed in parallel, is called a head
that can attend to different parts of the original input. The authors use an output
dimensionality of 512 and 8 heads in their base model, resulting in a dimensionality
of 512/8=64 for each head.

(a) (b)

Figure 2.7.: (a) Scaled Dot-Product attention and (b) Multi-head self-attention from
Vaswani et al., (2017).
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2.3 Language Modeling, Text Classification and
Text Summarization

This section will introduce the task of Language Modeling (LM) that is widely
used for model pre-training. Pre-trained models are supposed to contain a general
understanding of language syntax and semantics. This knowledge can be used for
a wide variety of downstream tasks, e.g., text classification or question answering.
Subsequent, we will explain the models which we will use in our experiments namely
GPT (Radford et al., 2018), GPT-2 (Radford et al., 2019), BERT (Devlin et al., 2018)
and BART (Lewis et al., 2019). Finally, we will discuss the major differences in
model pre-training and introduce the terms Autoregression and Autoencoding.

2.3.1 Language Modeling

Previously, we have introduced the idea of predicting an output word based on
previously generated output words and a context vector which, generated by an
encoder, represents the original input sentence (Equations 2.9 and 2.10). This idea
is a special case of Language Modeling, which describes the general idea to predict
the probability of an output word wn (Equation 2.23) or a sequence W of words
(Equation 2.22) based on a set of input words.

p(W ) = p(w1, w2, . . . , wn) (2.22)

p(wn | w1, w2, . . . , wn−1) (2.23)

Using chain rule on the conditional probabilities the probability of a sequence can
be written as:

p(W ) =
n∏

i=1
p(wi | w1, w2, . . . , wi−1) (2.24)

However, the Equations 2.22, 2.23 and 2.24 only describe unidirectional models. In
our context, this means that only words that appear before the word which we are
trying to predict (on the left side) are used to compute its probability. In contrast,
bidirectional models use both words before and after the target word to estimate this
probability (Equation 2.25). While this idea is less useful for tasks where the next
word is unknown, i.e., Text Generation; Language Modeling, which is usually used
for model pre-training to obtain general Natural Language Understanding (NLU),
is shown to benefit from leveraging the entire context surrounding a word (Devlin
et al., 2018).

p(wn | w1, w2, . . . , wn−1, wn+1, wn+2 . . . , wN ) (2.25)
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Unlike the work introduced in Chapter 2.2 which is mostly focused on the task of
machine translation, LM simply takes an input word or sequence and predicts the
next word. This condition allows for tackling a common problem in NLP. While the
Natural Language Processing domain includes a wide range of different tasks, the
amount of data effectively labeled for each task is often insufficient to obtain Natural
Language Understanding. To be more precise: Solving natural language-related
problems usually requires background knowledge about language in general, e.g.,
about words that convey a similar meaning or the order that words do/can appear in.
In contrast to the amount of labeled data, unlabeled data (written text) is available
in large amounts.

To cope with this problem, a lot of work (Mikolov et al., 2013; Pennington et al.,
2014) focuses on transferring general natural language knowledge, obtained from
unlabeled written text, into a format that is easy to use when approaching tasks
where the data itself is not big enough to infer the required NLU. Most prominent,
word-vectors, which represent each word as a fixed-size vector, helped improve the
performance on a wide range of different domains and tasks. However, most of the
past work focused on representations of single words, leaving the order of words
and their meaning in different contexts out of scope.

Improving Language Understanding by Generative Pre-Training (Radford
et al., 2018)

Radford et al., (2018) approached LM using an approach known as generative pre-
training (GPT). Instead of creating a vector representation for each word, the authors
provide a pre-trained model. GPT allows for discriminative fine-tuning towards the
task at hand by adaptation of its architecture. It is based on a slightly modified
version of the transformer (Vaswani et al., 2017) decoder architecture explained in
Section 2.2.4. Essentially allowing the positional embeddings to be learned instead
of having to rely on sinusoidal functions. In contrast to the previously discussed
work, the main contribution is not the architecture but the way its pre-training and
fine-tuning works. The proposed model is pre-trained, using the LM objectives, on
7000 books of different domains from the BooksCorpus (Zhu et al., 2015) containing
approximately one billion tokens. To fine-tune the model towards different tasks
instead of predicting the probability of words, the final layer is replaced by a single
linear layer that projects the output to the required dimensionality. Thus, the
architecture and all weights (except for the final layer) are fine-tuned for the task
and its domain, while only the newly added layer is trained from scratch. Based on
the task at hand, the input text is augmented through special tokens, which allow
the model to learn structural relationships in the data, e.g., questions and answers.
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While the model allows for arbitrary special tokens, these usually signify the start or
end of input and delimiters between the start and end.

Language Models are Unsupervised Multitask Learners (Radford et al., 2019)

Based on their initial GPT idea, the authors also released a more recent version
named GPT-2 (Radford et al., 2019) making minor adjustments to the architecture,
but using a new dataset and drastically scaling the number of parameters the model
has to learn. Instead of using the BooksCorpus as for GPT, the authors create a new
corpus named WebText, including over 8 million documents and 40GB of text. The
crawled web text introduces a greater number of domains and tasks that naturally
appear in natural language, e.g., translation or summarization. The authors show the
advantages of their approach, beating 7 SOTA results on LM datasets from different
domains. The authors show that although the model was only trained on the newly
proposed dataset and has never seen the task-specific target (zero-shot learning),
GPT-2 has learned multiple tasks during pre-training, which can be accessed through
natural language keywords, e.g., adding the TL;DR: token to the end of a sequence
lets the model output a summary of that sequence. The results show that GPT-2
without fine-tuning yields a reasonable performance. However, it could not beat
models that were fine-tuned or are specialized in a specific task. Thus to obtain
the best results for a particular task and/or domain, GPT-2 should be fine-tuned as
described in Radford et al., (2019). As GPT and GPT-2 mostly consist of the same
architecture and GPT is the predecessor of GPT-2 in the following, we will only refer
to GPT-2 for readability reasons.

BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding (Devlin et al., 2018)

Bidirectional Encoder Representations from Transformers (BERT) is another pre-
trained language model similar to GPT-2 (Radford et al., 2019) that allows for
an easy and efficient adaptation towards different NLP tasks through fine-tuning.
In contrast to GPT-2, BERT is based on the encoder of the transformer (Vaswani
et al., 2017) architecture, meaning that it is based on self-attention without masking
future input. Thus, the most significant difference between BERT and GPT-2 is
that the former is bidirectional while the latter is unidirectional, which we will
explain later in this section. In addition, BERT is trained on the BooksCorpus (Zhu
et al., 2015) and the English version of Wikipedia, which totals approximately 3.5
billion tokens. The authors also introduce Next Sentence Prediction (NSP) as an
additional pre-training task, which they argue improves the performance on several
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downstream tasks that require an analysis of relationships between two sentences.
NSP is treated as a classification task where the model has to classify if a given
sentence is the next sentence after the current one. To do this, the input is altered
using "[CLS]" as a special token for classification at the beginning of input and
"[SEP]" as a separator token to mark the input boundaries. In contrast to GPT-2,
these tokens are used during fine-tuning and in pre-training, i.e., NSP, and can
be used for transfer learning. BERT achieved SOTA results on eleven downstream
tasks, e.g., question answering. Figure 2.8 shows an example input and how BERT
computes the embedding used as an input to its transformer architecture. The Final
Embeddings is based on Position Embeddings, representing the temporal structure
in a text, Segment Embeddings which are used to signal to which part of an input
the text belongs, and Token Embeddings, which cover the semantic meaning of input
tokens.
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[SEP]
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E[SEP]
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[SEP]
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E[SEP]
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Figure 2.8.: Final Embeddings used as an input to BERTs transformer architecture are
created as a sum of Token, Segment and Position Embeddings. Adapted from
Devlin et al., (2018).

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension (Lewis et al., 2019)

The Bidirectional and Auto-Regressive Transformer (BART) is a Seq2Seq model
developed for natural language text generation. It combines both BERT (Devlin
et al., 2018) and GPT-2 (Radford et al., 2019) into a single architecture, with the
former being the encoder and the latter being the decoder, respectively. Figure 2.9
shows an example of the pre-training strategies of GPT-2, BERT, and BART. This
combination is very similar to the original transformer architecture (Vaswani et al.,
2017), with minor changes in the architecture as introduced in (Devlin et al., 2018;
Radford et al., 2018, 2019).
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Figure 2.9.: Example input and output during pre-training (Language Modeling): (a) GPT-2,
(b) BERT and (c) BART. Adapted from Lewis et al., (2019).

The authors show that this architecture allows for a new LM training procedure
in which input text can be corrupted arbitrarily (as in BERT), which improves the
generational performance of GPT-2. The different input transformations are the
following:

• Token Masking: As introduced in BERT, some tokens are randomly masked
(replaced) by a masking token.

• Token Deletion: Some tokens are randomly deleted from the input text.

• Text Infilling: Same as Token Masking, but instead of masking single tokens,
multiple tokens that form a sequence are masked at the same time and replaced
by a single masking token.

• Sentence Permutation: All sentences in the document are shuffled to create
a different sentence order.

• Document Rotation: Randomly selecting a single token and rotate the input
text such that it begins with this token.

BART achieves SOTA results in seven text generation tasks and performs exceptionally
well in abstractive summarization tasks, making it an excellent choice for our work.
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Autoregression, Autoencoding and Sequence-to-Sequence

There are three different categories that the models based on the transformer
(Vaswani et al., 2017) architecture fall into. These models differ in the way they are
pre-trained using the Language Modeling objective. First, Autoregressive models
are trained on the LM tasks and correspond to the transformer architecture decoder.
Autoregressive means that the model is unidirectional. Thus, during pre-training,
it only looks at the left (previous) part of an input to predict the current word,
while the rest of the input is masked out as it is the case for GPT-2 (Radford et al.,
2019). Second, Autoencoding is linked to the transformer architecture encoder
and describes its bidirectional pre-training objective. Unlike Autoregressive models,
Autoencoders consider both the left (previous) and right (after) input to predict the
current word as it is the case for BERT (Devlin et al., 2018). Figure 2.10 shows
how the difference between Autoregressive and Autoencoding models based on their
architecture. Instead of predicting the next word, Autoencoding models try to fix
a corrupted version of the input by predicting the missing (masked) word. Finally,
Sequence-to-Sequence models use both the encoder and the transformer architecture
decoder, i.e., Lewis et al., 2019. During the encoder phase, the entire input is
considered (bidirectional), while in the decoder phase, only the left (unidirectional)
part, together with the representation created by the encoder, is used.

Both Autoregressive and Seq2Seq models are usually used for text generation tasks,
while Autoencoders are used for downstream tasks, e.g., classification. Note, how-
ever, that all three can be fine-tuned to a wide range of different tasks.
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Figure 2.10.: (a) Autoregressive model architecture as in GPT-2 (b) Autoencoding model
architecture as in BERT. Adapted from Devlin et al., (2018).
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Metrics

To measure the generated conclusions’ quality, it is important to choose a metric that
measures the properties we want to be present in the generated text. To do this, we
will first compare the nature of our task with already existing NLP tasks that require
text generation and discuss which of the metrics used in these contexts might be
useful for us.

Compared to the task of translation, in our case, the generation of conclusions is
characterized by a single reference conclusion. For the second major task in the field
of text generation, that is to summarize, we have to differentiate between extractive
and abstractive text summarization assessment. In extractive summarization, the
information from the text input is copied and fused into a summary. The resulted
summary, therefore, contains many words that can directly be taken from the input.
On the contrary, when creating a conclusion, the text is not directly copied from
the premises. Finally, abstractive summarization requires the output to convey the
meaning of the input text but can express the meaning by words different from those
used in the input text. This task is at least in evaluation similar to ours, even if our
task does not need a summary to compare to but a logical conclusion that can be
inferred but not found in the input text.

Looking at these well-established tasks, we conclude that our task’s evaluation is
most similar to the evaluation of abstractive summarization, considering that we
are looking to cover the meaning of the ground truth conclusion in our generated
conclusion. In the following, we will briefly introduce the metrics we will use to
evaluate our conclusion generation approach and explain why we included them.

Bilingual Evaluation Understudy (Papineni et al., 2002)

The Bilingual Evaluation Understudy (BLEU) is one of the most used metrics in text
generation approaches. Initially, it was used to evaluate the quality of translations
created by a machine to a set of human references. BLEU measures how many words
(and/or n-grams) that appear in the candidate also appear in the set of references
(Equation 2.26). To avoid counting matches that appear in more than one reference
multiple times, it uses a clipped count.

pn =
∑

C∈{Candidates}
∑

n-gram∈C Countclip(n-gram)∑
C′∈{Candidates}

∑
n-gram′∈C′ Count(n-gram′) (2.26)

Thus BLEU is a precision based metric. It also involves a brevity penalty term BT to
avoid candidates c to be much shorter than the references r (Equation 2.27) and
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averages multiple n-gram sizes using uniform weights wn. Equation 2.28 shows the
complete BLEU formula. In all of our experiments we use a BLEU implementation6

which uses n-grams of size one (N = 1) and two (N = 2).

BP =

1 if c > r

e(1−r/c) if c ≤ r
(2.27)

BLEU = BP ∗ exp(
N∑

n=1
wn ∗ log(pn)) (2.28)

We will consider BLEU as our evaluation metric to measure the precision of our
generated conclusions as it is an easy to interpret metric (range 0-1) that is well
established in the literature and correlates well with human judgement. However,
it is important to keep in mind that the task of conclusion generation is highly
abstractive and BLEU does not account for the use of synonyms but requires the
n-grams of the generated text to match those in the reference texts exactly.

Recall-Oriented Understudy for Gisting Evaluation (Lin, 2004)

The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is one of the most
frequently used metrics for evaluating the quality of text summarization approaches.
Unlike BLEU, it is recall oriented, i.e., it measures how many of the n-grams of the
reference texts appear in the generated text (Equation 2.29). There are several
different adaptations of ROUGE, which are used depending on the task at hand.
The most common adaptations consider the longest common sequence of n-grams
(ROUGE-L, ROUGE-W) or try to keep the order of words in the generated text
(ROUGE-S, ROUGE-SU). Unlike BLEU, ROUGE prefers longer generated texts and
does not apply any penalty to cope with this problem. However, this is not a
problem for approaches that allow a controlled maximum number of n-grams, such
as BART (Lewis et al., 2019). Different n-gram sizes are not averaged, but each is
simply considered an independent measurement. Like BLEU, one of ROUGE’s main
problems is the absence of taking into account synonyms and, in general, texts that
convey the same meaning but use different words/grams to express it. Note that the
Google version of ROUGE that we use7 also uses stemming and text normalization.

ROUGE −N =
∑

S∈ReferenceSummaries

∑
n∈S Countmatch(gramn)∑

S∈ReferenceSummaries

∑
n∈S Count(gramn) (2.29)

6https://github.com/mjpost/sacrebleu
7https://github.com/google-research/google-research/tree/master/rouge
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We will use ROUGE-1 and ROUGE-2, as commonly used in the literature, as our
evaluation metric to measure the recall of our approach to conclusion generation
because of its interpretability (range 0-1) and its correlation with human judgment.

Metric for Evaluation of Translation with Explicit ORdering (Banerjee and
Lavie, 2005)

The Metric for Evaluation of Translation with Explicit ORdering (METEOR) is com-
monly used in machine translation and was developed to solve some of BLEUs
problems. Unlike BLEU and ROUGE, METEOR takes recall and precision into ac-
count. However, it weights precision much higher (9x) then recall (Equation 2.30).
In general, METEOR can be thought of as a penalized F1 score that favors precision
over recall (Equation 2.32). In addition, METEOR uses stemming and synonym
resolution to allow matches that do not cover exactly the same words/gram. ME-
TEOR uses a penalty term (Equation 2.31) to consider words/grams that occur only
in the references and not in the candidate (and cannot be resolved as a synonym)
and vice versa. Recall is defined as the ratio of unigrams in the references that can
be mapped to a unigram in the candidate, and precision as the ratio of unigrams
in the candidate that can be mapped to a unigram in the references. For all our
experiments, we use the METEOR implementation that is available as part of the
Natural Language Toolkit8 (NLTK).

Fmean = 10PR
R+ 9P (2.30)

Penalty = 0.5 ∗ ( chunks

unigrams_matches
)3 (2.31)

METEOR = Fmean ∗ (1− Penalty) (2.32)

We will use METEOR as a metric, primarily to account for the use of synonyms, which
is necessary due to the abstract nature of our task, but also to evaluate precision and
recall in a single score.

8https://www.nltk.org/_modules/nltk/translate/meteor_score.html
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BERTScore (Zhang et al., 2019)

BERTScore is one of the most up-to-date metrics that has been developed for evalu-
ating the quality of a generated text. It is based on BERT’s contextual embeddings,
which consider words in relation to their surrounding words/text, and is pre-trained
on large amounts of data. BERTScore takes a reference x and a candidate x̂ and
creates a contextual embedding for each word in both sentences. Afterward, the
pairwise cosine similarities between all words in the candidate and the reference
are calculated. The maximum similarity value for each word is then weighted by
importance using the inverse document frequency (Equation 2.33) and combined
into a single precision/recall and F1 score (Equations 2.34, 2.35 and 2.36).

Figure 2.11.: Overview of BERTScore approach from Zhang et al., (2019)
.

BERTScore can assess reference-candidate pairs that express the same meaning but
use different wording in contrast to BLEU, ROUGE, and METEOR. However, it is
much less interpretable, as the exact influence of individual words and the creation
of embeddings and the resulting similarity assessment is no longer a transparent
process. Note that the Equations 2.34 and 2.35 are based on pre-normalized vectors
(unit vectors) and therefore do not contain the denominator of the cosine similarity
formula ( x>

i x̂j

‖xi‖‖x̂j‖).

idf(w) = − log 1
M

M∑
i=1

I[w ∈ x(i)] (2.33)

RBERT =
∑

xi∈x idf(xi) maxx̂j∈x̂ x>i x̂j∑
xi∈x idf(xi)

(2.34)

PBERT =
∑

x̂j∈x̂ idf(x̂j) maxxi∈x x>i x̂j∑
x̂j∈x̂ idf(x̂j) (2.35)

FBERT = 2 PBERT ·RBERT

PBERT +RBERT
(2.36)

We will use BERTScore to evaluate our approaches, as this is the only metric that
can fully account for the use of different ways to represent the same meaning.
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2.4 Argumentation, Argument Mining, and
Argument Quality

2.4.1 Argumentation

Even though argumentation is part of our everyday life, its structure and motivations
often evolve naturally without clear rules to follow. But what is argumentation?
Why do we argue? And what is a good argument? The answer to these questions
are still not fully explored (Freeley and Steinberg, 2013) and may never be solved
completely. Van Eemeren et al., (2004) define argumentation as "a verbal, social,
and rational activity aimed at convincing a reasonable critic of the acceptability of a
standpoint by putting forward a constellation of propositions justifying or refuting
the proposition expressed in the standpoint." A more simplistic definition could be
"The usage of arguments to persuade, agree, deliberate, or similar." 9. While holistic
definitions of argumentation may be useful in some cases, they lack the precision
and completeness necessary in others.

Bentahar et al., (2010) offer a more fine-grained look into argumentation by cat-
egorizing the past decades’ research. The authors divide argumentation based on
Monological, Dialogical and Rhetorical models which differ in structure, foundation,
and linkage: (1) Monological models focus on the structure within single arguments,
meaning they split an argument into components, often referred to as argumentative
units, and analyze the relationships (linkage) between them. While several models
represent these components and their relationships in different ways (Farley and K.
Freeman, 1995; Reed and Walton, 2003; Toulmin, 2003), the main components of a
single argument are some kind of premises and conclusions. Usually the /conclusion
is supported by one or more premises (Walton et al., 2008) and states a stance on a
controversial issue (Freeley and Steinberg, 2013). In contrast, premises shall provide
reasons to prove conclusions (foundation). However, premises often remain implicit
(Toulmin, 2003). That is, the author of an argument does not explicitly state all
premises but leaves out those that he believes to be true in common sense. (2) In
contrast, Dialogical models aim at the relationships between arguments (linkage)
and how they are used to reason in an argumentation. They describe structures
that appear in conversations between two or more participants that are mostly
governed by rules that limit participants’ possibilities to persuade others of their view.
Dialogical models are based on the idea that most arguments are defeasible (Walton,
2005) by nature (foundation). (3) Rhetorical models are based on the audience’s

9Following the slides of the "Computational Argumentation" course by Henning Wachsmuth
at Paderborn University (https://en.cs.uni-paderborn.de/de/css/teaching/courses/
computational-argumentation-s19).
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perception of arguments (foundation) and describe the structure of arguments in
terms of patterns, schemes, or strategies. Their main target is not to find the truth but
to discover how arguments can be connected (linkage) to persuade the audience.

The categorization of Bentahar et al., (2010) shows that argumentation differs based
on the circumstances it is used in as well as on different granularity levels. The levels
of granularity sorted from low to high are (1) argumentative units, (2) arguments,
(3) (Monological) argumentation; and (4) (Dialogical) debates Wachsmuth et al.,
2017a. Our work will focus on the level of arguments and the argumentative units
they consist of. However, as our source dataset (Chapter 3) contains essays, we
will also briefly provide an overview of (Monological) argumentation models in the
following. (Monological) argumentation models are often represented as graphs or
graph-like structures. A graph usually contains the argumentative units as nodes
connected by labeled or unlabeled edges that express the relations between nodes.
Beardsley, (1950) and Thomas, (1981) define a total of five different types of
structures that can be found in arguments, later further discussed by J. B. Freeman,
(2011). Following the explanations and graphs of J. B. Freeman, (2011) and Stab and
Gurevych, (2017a), Figure 2.12 shows the different types of argument structures.
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(a) Single

C

P P

(b) Convergent

C

P P

(c) Linked

C C

P

(d) Divergent

C

C/P

P

(e) Serial

Figure 2.12.: The five different types of argument structures.

• Single: A conclusion supported by a single premise.

• Convergent: A conclusion supported by multiple independent premises.

• Linked: A conclusion supported by multiple premises that depend on each
other.

• Divergent: Multiple conclusions supported by the same premise.

• Serial: A conclusion supported by a premise that simultaneously is the conclu-
sion on another premise.

While Convergent and Linked arguments are hard to distinguish (Stab and Gurevych,
2017a), we still think that typing common structures within arguments is useful to
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understand argument models in general. Toulmin, (2003) for example, focus on
the use of unit roles, differentiating between facts, warrants, and backings as types
of supportive premises, rebuttals as attacking premises, a qualifier which signals
how strong the conclusion is and the conclusion itself. Facts are specific contextual
information, while warrants are rules that support the conclusion considering the
context given by the facts and backings that support the warrants. In contrast, J. B.
Freeman, (2011) focus on a dialectical view of argumentation, where oppositions and
propositions are fighting each other to establish the main conclusion’s truth. Closest
to our work is the model of Walton et al., (2008), which models argumentation as a
conclusion supported/attacked by minor and major premises that belong to a certain
type of argument, e.g., an argument from values. Minor premises provide specific
information, while major premises link multiple premises together to generalize a
rule. The concept is similar to facts and warrants of Toulmin, (2003) respectively.
While these complex structures are understandable for humans, they are tough
for computers to access and especially problematic to use as an input to machine
learning algorithms. In our work, we will use arguments annotated similar to the
approach of Walton et al., (2008) and transform them to fit our approaches. The
data and our transformation procedure will be discussed in Chapter 3.

But what defines good argumentation in general? Wachsmuth et al., (2017a) survey
existing theories and combine them into a single taxonomy of 15 dimensions (Figure
2.13).

Figure 2.13.: Argument quality dimensions from Wachsmuth et al., (2017a).
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The 15 dimensions are split into 3 head-categories and 12 sub-categories which hold
a parent-child relationship.

• Cogency describes the logical aspect of an argument, previously referred to by
Monologial models (Bentahar et al., 2010). According to Wachsmuth et al.,
(2017a): "An argument is cogent if it has acceptable premises that are relevant
to its conclusion and that are sufficient to draw the conclusion." Thus it has to
fulfill the requirements of all three of its sub-categories: Local Acceptability as
a measure of the truthfulness of the premises, Local Relevance as a measure of
usefulness from premises to the conclusion; and Local Sufficiency to measure if
the premises give enough support to rationally draw the conclusion.

• Reasonableness describes the dialectical aspect of argumentation, that is it
"contributes to the issue’s resolution in a sufficient way that is acceptable to
the target audience" (Wachsmuth et al., 2017a). Its sub-categories are the
same as in Cogency but redefined on the level of argumentation instead of a
single argument. Thus Global Acceptability is a measure of the truthfulness of
all arguments in the argumentation that also considers how arguments are
presented. Global Relevance is a measure of the usefulness of the argumentation
to resolve the target issue, and Global Sufficiency, is a measure of robustness to
counter-arguments.

• Effectiveness describes the rhetorical aspect of an argumentation. As dis-
cussed previously, it tries to persuade the target audience to believe the au-
thor’s stance on the issue. The sub-categories of Effectiveness are defined as:
Credibility, as a measure of credence of the author and the way he argues,
Emotional Appeal to create emotions which help to persuade, Clarity as a mea-
sure of correctness of the language used and to avoid ambiguities, unnecessary
complexity as well as deviation from the issue, Appropriateness to measure if
the language used fits the issue; and Arrangement to measure if the structure
of the argumentation is correct.

Considering these quality dimensions, a "good" argumentation appears to be of
a complex nature and requires many different considerations. To gain further
insight into the various aspects of argumentation, we will next explain the field of
Computational Argumentation. To avoid confusion of terms related to argument
quality, we will follow the ideas and terms proposed by Wachsmuth et al., (2017a)
throughout this work. In particular, we will use the definition of Local Sufficiency as
it is the assessment task of this thesis.
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2.4.2 Computational Argumentation

Today, with the recent advent of so-called fake news as well as filter bubbles, it has
become more and more complex to form an opinion in a self-determined manner.
Computational Argumentation is at the core of a wide range of applications that can
help solving this problem e.g. fact-checking (Popat et al., 2017; Samadi et al., 2016)
or argument search engines (Stab et al., 2018; Wachsmuth et al., 2017b). Com-
putational Argumentation describes the analysis and synthesis of natural language
argumentation based on data that is processed by a machine10. In contrast to the
traditional argumentation research, Computational Argumentation usually processes
larger amounts of data. While some resources exist on the web, e.g., idebate.org
and debate.org, that provide data that is directly related to argumentation, most of
the available text is either not argumentative or only partially argumentative. Thus
to obtain large amounts of argumentative data, it is necessary to filter the available
text for argumentative units. In addition, to evaluate the quality of argumentation,
it is often necessary to understand its structure, i.e., find premises and conclusions
and their relationships and the type of these relationships (support vs. attack). This
process of data acquisition is called Argument Mining which is often necessary as
a pre-step to perform other tasks, e.g., Argument Quality Assessment and Argument
Generation.

Argument Mining

As discussed previously, arguments are often modeled as graphs containing con-
clusions and premises connected by an attack or support relation. Following the
definitions of Wachsmuth et al., (2017a), to measure Local Sufficiency, it is nec-
essary to extract both premises and conclusions and their relationships. While
these are already annotated in the Argument Annotated Essays (AAE) corpora
(Stab and Gurevych, 2014, 2017a) (see Chapter 3), to get more data or data from
other domains, automatic annotation is often required. The approach to extract
arguments and their structure from natural language text is often modeled as a
pipeline consisting of multiple steps. A typical pipeline could look as follows: First,
the argumentative units are extracted, that is, the text that fulfills an (until now)
unknown argumentative function. Second, the argumentative units are classified
into argumentative components, e.g., conclusions or premises. Third, the relations
between these components are identified. Fourth, the argument structure is modeled
using components and relations. Finally, the relationships are classified, e.g., support

10Following the slides of the "Computational Argumentation" course by Henning Wachsmuth
at Paderborn University (https://en.cs.uni-paderborn.de/de/css/teaching/courses/
computational-argumentation-s19).
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or attack. Stab and Gurevych, (2017a) for example use an Integer Linear Program-
ming (ILP) approach on the AAE-v2 corpus which contains 751 major conclusions,
1506 conclusions, 3832 premises. Their evaluation suggests that the extraction of
argumentative and non-argumentative units and the extraction of components work
well (F1-scores of .867 and .826). In comparison, the classification performance for
relations and relation stance classification is much lower than the human baseline
(F1-scores of .751 and .680), showing that both finding relationships and especially
attacking relationships is a complex task (F1-scores of .585 and .413). In contrast,
Wachsmuth et al., (2016) leverage the structure of an essay to obtain premises and
conclusions that relate to each other and build a classifier to classify each sentence
in an essay into one of four classes (thesis, conclusion, premise, none). However, in
contrast to the approach of Stab and Gurevych, (2017a), the authors define each
sentence to belong to exactly one of the four classes. They thus do not account for
multiple argumentative discourse units within sentences. Compared to the approach
of Stab and Gurevych, (2017a) the results of Wachsmuth et al., (2016) are slightly
better with F1-scores of .745 and .726 correspondingly. Besides that, Al Khatib et al.,
(2016) show that cross-domain Argument Mining is an even more challenging task
and that the domain of essays is dissimilar from other domains, e.g., online debates,
which makes it difficult to generalize the performance of both approaches.

In this work, we will perform the assessment of an Arguments quality dimension,
i.e., Local Sufficiency and exploit its definition in such a way that we redefine it
to an Argument generation task, which is: An argument is locally sufficient if the
conclusion can be generated based on its premises. As the code of Stab and Gurevych,
(2017a) is not publicly available, we decided to use the approach of Wachsmuth et al.,
(2016) in our work to extend the amount of input data for our generation approach.
However, as we found no improvement in a first test of conclusion generation using
the approach of Wachsmuth et al., (2016) on the ICLE-v2 dataset (see Chapter 3),
we will use only the annotated AAE-v2 dataset and do not mine argumentative
discourse units in this work.

Argument Generation

The task of argument generation has gained traction in recent years. In contrast
to our work, most of the approaches focus on generating entire arguments, e.g.,
premises and conclusions. Reisert et al., (2015) approach the task of argument
generation utilizing rules to create arguments that follow the Toulmin model, thus
extracting warrants, backing, and facts based on a conclusion as input. Similarly,
Sato et al., (2015) tackle the same task without relying on a complex argumentative
model using a neural network ranking approach. Le et al., (2018) focus on creating
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an argumentative dialogue agent that can discuss topics with users. The authors use
a siamese LSTM to obtain relevant responses to the input, which are then combined
to generate the output using a Seq2Seq model. Wachsmuth et al., (2018) and
El Baff et al., (2019) generate arguments that follow rhetorical strategies based
on a combination of clustering, Language Modeling, and regression. Instead of
focusing on planning based argument generation, Schiller et al., (2020) focus on
aspect-based argument generation using the Controllable Language Model (CTRL)
(Keskar et al., 2019) architecture. Arguments generation can thus be controlled
based on topic, stance, and aspect. Similarly, Park et al., (2019) use a Seq2Seq to
generate arguments from multiple perspectives; however, instead of controlling the
aspects, the authors use latent mechanisms as an extra input to the decoder to create
a more diverse output. Hua and Wang, (2018) and Hua et al., (2019) generate
counter-arguments using an adapted version of the attention approach by (Bahdanau
et al., 2014) and later an LSTM based planning approach, incorporating external
knowledge from Wikipedia and news media. Hidey and McKeown, (2019) approach
the task of counter-argument generation on the level of conclusions obtaining data
from the fixed-that-for-you (FTFY) Reddit sub-forum. Closest to our approach, Wang
and Ling, (2016) generate abstractive summaries using opinionated text from the
IDebate portal and RottenTomatoes. The authors use an LSTM with an attention-
based encoder and importance based sub-sampling to allow the encoder to learn
which parts of the input text are essential to creating a summary. Considering both
datasets, the iDebate dataset is closest to the data in our work. It contains a central
conclusion that is supported by multiple premises. In addition, Alshomary et al.,
(2020b) tackled the problem of conclusion target inference using a Seq2Seq-based
approach. The authors try to infer a conclusion target from a set of potential premise
targets. To do this, they use a combination of a ranking based approach and a triplet
neural network that embeds premises and conclusions in an embedding space to
pick the conclusion target. For comparison premise targets, annotations were used
as an additional input to the LSTM proposed by Wang and Ling, (2016) to create
a conclusion. During training and test, premises and conclusions of the iDebate
dataset were used. The authors showed that premise targets annotations can further
improve the Seq2Seq approach by on their task.
In our work, as an alternative to the LSTM-based approach, a transformer-based
approach will be used. In our case, we will consider BART (Lewis et al., 2019) due to
its extensive pre-training, which can introduce not only knowledge about language
which is useful in creating more fluent output, but also a latent representation of
common knowledge.
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Argument Quality Assessment

To conduct the planned work, it is necessary to define a few terms related to argument
quality. Therefore the ideas proposed by Wachsmuth et al., (2017a) are used to
define the terminology for quality dimensions. In particular, the definitions of Local
Sufficiency will be used. Local Sufficiency belongs to Cogency, meaning the way it is
trying to persuade is of logical nature. The applicability of these quality dimensions
was tested on 304 arguments, taken from the UKPConvArgRank dataset (Habernal
and Gurevych, 2016b), annotated by three annotators on a scale of 1-3. The authors
evaluate the annotators’ agreement using all annotators’ full and majority agreement,
which shows that the dimension is reasonably well defined to be assessed (at least
for humans). Stab and Gurevych, (2017b) annotated 402 essays from the AAE-v2
corpus for the Local Sufficiency criterion as either sufficient or insufficient. During the
evaluation of the annotation process, the authors found that 33.8% of all annotated
arguments were insufficiently supported. To automatically assess the Local Sufficiency
of an argument, an SVM on lexical, syntactic, and length-based features and a CNN
with word vectors were used. The best results were obtained by a CNN with a macro
F1-score of .827 and an Accuracy of .843. In addition, Wachsmuth et al., (2016) used
various argument discourse units and structural features to improve the assessment
of four argument quality dimensions. The results show that argumentative features
obtained from Argument Mining can improve the performance in assessing the quality
of arguments, especially if these are related to structure.

In our work, we will use the work of Stab and Gurevych, (2017b) as our main
baseline as it is, to the best of our knowledge, the only work that assesses Local Suffi-
ciency. In addition, we will also try to assess Local Sufficiency using argumentative
features as proposed by Wachsmuth et al., (2016). In particular, the argumentative
feature we are aiming for in our work is the generated conclusion.
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3Data for Local Sufficiency
Assessment and Conclusion
Generation

This chapter will describe and discuss the datasets used in this work: (1) We will
describe existing datasets that fulfill the previously discussed criteria at least partially.
(2) We will combine datasets to create our own dataset, which completely meets our
requirements.
The datasets discussed in this chapter were chosen based on our approaches’ re-
quirements and are based on the general steps of our pipeline. Thus, we need data
that fits our domain and is annotated towards Local Sufficiency. In addition, as we
aim to explore the potential of argumentative features as well as to follow the Local
Sufficiency definitions of Wachsmuth et al., (2017a) more strictly, we need data that
is already segmented and classified, i.e., claims and premises, together with their
relationship.

3.1 Existing Corpora

3.1.1 Persuasive Essays

International Corpus of Learner English v2 (Granger et al., 2009)

The International Corpus of Learner English v2 (ICLE-v2) corpus was published in
2009 as a collaborative result of several universities. It contains 6805 essays written
by students from 16 countries who learn English and belong to higher intermediate
or advanced learners. All essays were written as a response towards a given prompt,
which belongs to one of the many topics covered in the corpus. We chose this corpus
due to its overlap in the topic (student essays) with the other corpora to extend
the number of argument annotated essays to improve conclusion generation. Since
there are no annotations of conclusions and premises available for this corpus, and
the automated mining of them using the approach of Wachsmuth et al., (2016) did
not improve conclusion generation results in a first test, we decided against using
this corpus. However, it could still be a valuable resource for future research in this
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domain as Argument Mining approaches improve or manual annotations become
available.

Argument Annotated Essays v2 (Stab and Gurevych, 2017a):

The Argument Annotated Essays v2 (AAE-v2) corpus was published in 2017 in
the paper "Parsing Argumentation Structures in Persuasive Essays," using the same
annotation scheme as its predecessor the AAE-v1 (Stab and Gurevych, 2014) corpus.
The corpus contains annotations for 402 essays written by students taken from es-
sayforum.com. In general, student essays usually consist of an introduction followed
by one or more arguments/paragraphs and ends with a conclusion. A conclusion
represents each argument/paragraph’s central component, while a premise provides
the reasons for the argument/paragraph. An essay can contain several main con-
clusions, usually located in its introduction and conclusion. Since the annotation
scheme used does not explicitly model the relations between conclusions and major
conclusions, it is not entirely clear whether a conclusion’s stance can be translated as
a support/attacking relation to all major conclusions. However, the authors implicitly
suggest that the stance of all major conclusions in an essay are the same. Thus, it
is reasonable to assume that a conclusion’s relationship to all major conclusions in
an essay is the same. In total, 751 major conclusions, 1506 conclusions, and 3832
premises were found. Premises and conclusions are connected by 219 attack and
3613 support relations.

Conclusion

MajorClaims

Premise

for, against

support, attack support, attack

Figure 3.1.: Argument annotation scheme of the AAE-v2: Argument components are con-
nected by support/attack relations (paragraph level) or a for/against relation
(essay level).

The argumentation structure of each essay is modeled as a tree structure (Figure
3.1), where the first level (root) is a major conclusion, which represents the stance
of an essay on its topic. Note that the stance towards the topic is not part of the
annotated dataset. The second level of the tree is a conclusion that supports or
attacks the corresponding major conclusion. Each other level of the tree contains
premises that either support or attack a conclusion or, at deeper levels of the tree,
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another premise. Thus both conclusions and premises have exactly one outgoing
relation and no or several incoming relations. To distinguish the inner relations of
arguments/paragraphs from relations, which cross these boundaries, relations from
conclusions to major conclusions are labeled as for/against instead of support/attack.

Prompt. Prevention is better than cure. Out of a country's health budget, a large proportion should be 
diverted from treatment to spending on health education and preventative measures. To what extent 
do you agree or disagree with this statement?

Introduction. In today's world, the concept of the welfare state requires governments to provide 
sustainable healthcare and health education to their citizens. I completely agree with the idea that 
[governments should devote a greater portion of their health budgets to health education and means 
for precautions]major-claim1.

Paragraph1. The first reason why education and preventative measures should receive a greater 
budget is the potential improvements in health system. I believe that [decreasing the number of patients 
in the health system can lead hospitals and healthcare centers to be managed effectively which will 
result in better treatments for current patients]premise1. Therefore, [society should be educated and 
became aware of health issues]claim1 so that [the potential precautions on the way of illnesses can be 
taken instead of trying to provide treatment for the increasing number of patients]premise2. 

Paragraph2. The second reason why governments should allocate more budget on prevention from 
illness and providing health education is the welfare of the society. In my opinion, [there is nothing 
more important than health in a human's life and the happiness and welfare come with health]
premise3. Therefore, [a government's role should be providing means that lead its citizens to learn how 
to prevent from potential illness that can cause misery in people's lives]claim2. For example, [the 
marketing campaign of Ministry of Health in Turkey which aimed smoking problem among the youth 
increased the well-being of those who quit smoking and adapted a better lifestyle after the campaign]
premise4.

Conclusion. In conclusion, [a greater proportion of the budget should be allotted to education and 
prevention issues in comparison with treatment due to achieve more effective health system and 
greater level of well-being]major-claim2.

Figure 3.2.: Example annotations of Essay171: Major conclusions (pink) and conclusions
(orange) are connected by for/against relations (dotted-arrows), while con-
clusions and premises (blue) are connected by support/attack relations (solid-
arrows). Relation labels are omitted as they are not important for our approach.

Figure 3.2, shows an example essay from the AAE-v2 dataset and its annotations.
The shown essay consists of an introduction, two arguments/paragraphs, and a
conclusion. Both arguments/paragraphs contain two premises supporting a single
conclusion. Each conclusion contains a stance towards the major conclusions in the
introduction and in the conclusion. The resulting tree structure is shown in Figure
3.3.
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p2p1

c2

p4p3

mj1 & mj2mj1 & mj2

Figure 3.3.: Argumentation structure of Essay171: Major conclusions (pink) and conclu-
sions (orange) are connected by for/against relations (dotted-arrows), while
conclusions and premises (blue) are connected by support/attack relations
(solid-arrows). Note, that for/against relations are not specific to a single major
conclusion.

We chose the AAE-v2 corpus because it is the only corpus that contains argument
component annotations for essays which are also annotated for Local Sufficiency.

3.1.2 Local Sufficiency Assessment

Insufficiently Supported Arguments in Argumentative Essays (Stab and
Gurevych, 2017b):

The authors of the paper "Recognizing Insufficiently Supported Arguments in Argu-
mentative Essays" used the 402 essays of the AAE-v2 corpus as a starting point to
create binary Local Sufficiency annotations for each argument/paragraph of an essay.
To define Local Sufficiency, the definitions of Johnson and Blair, (2006) were used.
Stab and Gurevych, (2017b) define Local Sufficiency as:

"An argument complies with the sufficiency criterion if its premises
provide enough evidence for accepting or rejecting the claim."

In total, the authors labeled 1029 arguments/paragraphs, of which 681 (66.2%)
were considered sufficient and 348 (33.8%) were considered to be insufficient.
On average, each argument/paragraph has a length of 4.5 sentences and contains
94.6 tokens. Note that all annotations are on the level of arguments/paragraphs
and thus do not strictly follow the definition of Wachsmuth et al., (2017a), since
some (4.3%) of the arguments/paragraphs contain several conclusions supported by
premises. However, the authors argue that this abstraction has practical advantages,
as it prevents possible error propagation in the identification of argumentative
components and relationships.
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Sufficient.

Insufficient.

Paragraph1.�The first reason why education and preventative measures should receive a greater 
budget is the potential improvements in health system. I believe that decreasing the number of patients 
in the health system can lead hospitals and healthcare centers to be managed effectively which will 
result in better treatments for current patients. Therefore, society should be educated and became 
aware of health issues so that the potential precautions on the way of illnesses can be taken instead of 
trying to provide treatment for the increasing number of patients. 

Paragraph2.�The second reason why governments should allocate more budget on prevention from 
illness and providing health education is the welfare of the society. In my opinion, there is nothing 
more important than health in a human's life and the happiness and welfare come with health. 
Therefore, a government's role should be providing means that lead its citizens to learn how to prevent 
from potential illness that can cause misery in people's live. For example, the marketing campaign of 
Ministry of Health in Turkey which aimed smoking problem among the youth increased the 
well-being of those who quit smoking and adapted a better lifestyle after the campaign.

Figure 3.4.: Example Local Sufficiency annotations of Essay171: Paragraph 1 is considered
sufficient and paragraph 2 is considered insufficient.

Figure 3.4 shows an exemplary annotation of the arguments/paragraphs of Essay171
(Figure 3.2). In this case, one of the arguments/paragraphs is marked as insufficient,
which means that its premise does not provide sufficient support for accepting the
conclusion. In contrast, the other is marked as sufficient, which means that its
premises provide sufficient support for accepting the conclusion.
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3.2 Corpus Transformation and Creation

3.2.1 Corpus Transformation

Since none of the previously discussed corpora is annotated forLocal Sufficiency and
argumentative units simultaneously, we have transformed the sufficiency corpus
annotations of Stab and Gurevych, (2017b) accordingly with information from the
AAE-v2 corpus of Stab and Gurevych, (2017a). However, arguments/paragraphs
sometimes contain argumentative structures for which it is not trivial to assign a
unique Local Sufficiency label to them. To deal with this problem, we will discuss
the different types of argumentative structures we found in the datasets and how
we resolved these in the following. Figure 3.5 gives an overview of the rules we
have used to decide whether the argument/paragraph is kept or removed. The rules
are sorted in order of application. Note that we have omitted major conclusions as
we are only interested in Local Sufficiency labels on the argument/paragraph level.
Furthermore, we do not distinguish between supporting and attacking relations.
Thus a conclusion can include supporting and attacking relations in its set of premises
at the same time.

c1 c2

c2c1

p1 p3p2

c1

p4

p3 p5p2p1

c1

p5p3 p4p2p1

c1

p2p1

Figure 3.5.: Rules used to transform the AAE-v2 (Stab and Gurevych, 2017a) and insuf-
ficiency (Stab and Gurevych, 2017b) corpora into a single corpus containing
conclusions and premises supporting these conclusions as well as a sufficiency
label.
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The most trivial structure of an argument/paragraph contains only one conclusion
and one or more premises, which support this conclusion. In these cases the
corresponding Local Sufficiency label of the argument can simply be used. Figure 3.6
shows an example essay containing a single conclusion supported by two premises.
As this is the exact structure we aim for, the essay would be accepted for our dataset.

Besides, [nowadays technology is entering into our society really quick]claim1 and [scientists develop 
robots, which help people cope with their problems or just invent coffee machines, engines with 
integrated computers and etc]premise1. For example, [before centeries, there were not washing 
machines, which clean your clothes, while a person do another job]premise2. 

Figure 3.6.: Second paragraph of Essay335 and its argumentative structure as represented
in the AAE-v2 (Stab and Gurevych, 2017a).

Second, some arguments/paragraphs contain only a single conclusion followed by
one or more premises, but these premises could have incoming relations from other
premises. If this is the case, we simply append all premises, which appear in the
argumentation tree below the second level, directly to the conclusion. Thus the
final tree structure is a simple conclusion followed by premises. Although we lose
some structural information at this point, we assume that these premises are still
important for drawing the conclusion and thus decided to keep them. Figure 3.7
shows an example essay containing a conclusion supported by five premises. One of
these premises (Premise5) is supported by another premise, which is then attached
directly to the conclusion, while the relationship to the parent premise is removed.
After solving this problem, we end up with a single conclusion supported by five
premises and thus will be accepted.

Secondly, [it is crucial to keep one’s identity]claim1 for [they need a connection back to their country as 
well as teach their children their value of origin]premise1. For instance, [children immigrated to a new 
country will face social troubles in school with new friends]premise2. [In this new environment, parent 
should find friends coming from their same country so that they can socialize in a very familiar 
manner as feeling being home]premise3. [Fail to create this familiarity makes them felt isolated, in the 
extreme can lead to social disorder like autism]premise4. Hence, it is clear that [keeping the cultural 
traditions in the destination countries is tremendous important]premise5. 

Figure 3.7.: Second paragraph of Essay002 and its argumentative structure as represented
in the AAE-v2 (Stab and Gurevych, 2017a).

Third, we remove all arguments/paragraphs containing more than one conclusion.
The reason for this is that it is not clear whether the Local Sufficiency label is attached
to one of the conclusions or to both. Figure 3.8 shows an example essay containing
two conclusions, one of which is supported by a single premise and the other by two
premises. It is therefore unclear whether the corresponding Local Sufficiency label,
applies to both conclusions or only to one of them.
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On the other hand, [the significance of competition is that how to become more excellence to gain the 
victory]premise1. Hence it is always said that [competition makes the society more effective]claim1. 
However, [when we consider about the question that how to win the game, we always find that we 
need the cooperation]premise2. The greater our goal is, the more competition we need. [Take Olympic 
games which is a form of competition for instance, it is hard to imagine how an athlete could win the 
game without the training of his or her coach, and the help of other professional staffs such as the 
people who take care of his diet, and those who are in charge of the medical care]premise3. The winner 
is the athlete but the success belongs to the whole team. Therefore [without the cooperation, there 
would be no victory of competition]claim2.

Figure 3.8.: Second paragraph of Essay001 and its argumentative structure as represented
in the AAE-v2 (Stab and Gurevych, 2017a).

Finally, some arguments/paragraphs contain only one conclusion, without any
premises associated with the conclusion. If this appears, we cannot assign a Local
Sufficiency label, as our approaches need at least one premise as input to generate a
conclusion as output. Figure 3.9 shows an example essay that falls into this category.
Interestingly, the paragraph is originally labeled as sufficient. This paragraph also
violates our second rule because it contains several conclusions and cannot be solved
by rule three.

Firstly, [connecting people by email is easy and fast]claim1. In addition, [World Wide Web offers 
humanity to access to information, which they want to know for less than 10 seconds]claim2. These are 
two of the benefits, why IT is useful. 

Figure 3.9.: First paragraph of Essay335 and its argumentative structure as represented in
the AAE-v2 (Stab and Gurevych, 2017a).

In total, we removed 47 (4.6%) paragraphs/arguments from the original corpus
so that 982 conclusions and their premises are included in the end. The final
corpus contains 647 (65.9%) sufficiently and 335 (34.1%) insufficiently supported
conclusions. Each document in our corpus has exactly one conclusion and an average
of 3.6 premises, resulting in an average of 81.5 characters per document. Compared
to the original sufficiency data set, the class distribution has changed by 0.3% and
the number of sentences by 0.1, while the average number of tokens has been
reduced by 13.1.
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4Approaches and Implementation

In this chapter, we will discuss the experimental setup of our work. (1) We will
explain our approach to directly assess Local Sufficiency and explain our Model Setup
plus the Data Pre-processing and the Training Procedure we have used to train our
models. (2) Similarly, we will describe how we obtained our conclusion generation
baselines and our final fine-tuned models, which we will use for the indirect Local
Sufficiency assessment approach. (3) Finally, we will explain how we used the
conclusions generated as an argumentative feature to augment the Local Sufficiency
assessment approach established at the beginning of this chapter.

4.1 Direct Local Sufficiency Assessment

This section will explain our approach to directly assess the Local Sufficiency of an
argument. That is, we use the conclusion and its corresponding premises as an input
to a BERT (Devlin et al., 2018) model to output a binary Local Sufficiency score that
indicates whether the source argument is sufficient or insufficient.

Model Setup

Our data transformation procedure (see Chapter 3) led to the removal of 4.6% of
the data, which could affect the models’ performance, e.g., by removing difficult
instances. Similarly, removing the non-argumentative text from arguments keeping
only conclusions and premises could also influence our results. To rule out these
problems, we train and evaluate our models and the CNN of Stab and Gurevych,
(2017b) on the original dataset, our new version where we removed some instances,
and the final version without non-argumentative text. For each of the three settings,
we created a baseline using the original code used in Stab and Gurevych, (2017b)
which we received from the authors to compare our approach against.
We chose BERT as a transformer-based model to predict the Local Sufficiency of an
argument for our approaches. BERT’s classification procedure is quite simple in our
case and mostly follows the ideas proposed by the original authors (Devlin et al.,
2018). First, remove the Language Modeling head of the original model, that is, the
layers that predict the input’s masked words. Second, add a linear layer on top of
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BERT that projects the final layer embeddings of the "[CLS]" token to the desired
output dimensionality, which in our case is one, as the Local Sufficiency annotations
are binary. We build upon the Huggingface transformers implementation1 of BERT
for all our experiments and adjust it according as previously discussed.

Data Pre-processing

Considering that a single instance of input data consists of a set of premises and
a conclusion, there is no structural relationship in the order in which they appear.
However, BERT (Devlin et al., 2018) is pre-trained on natural language text and
thus requires its input to be natural language text as well. To cope with this problem,
we transformed all premises and the conclusion to appear like regular sentences
and ordered them based on their original order in the argument, beginning with the
conclusion. Thus we obtain a single natural language text sequence. To transform
the conclusion and its premises into regular sentences, we uppercased the first letter
and added a period at the end of each of them. Our input data is a single sentence
conclusion and a joined sequence of single sentence premises. This structure allows
two different types of input for BERT, based on its input structure discussed in
Chapter 2 and especially Figure 2.8: First, join the conclusion and the sequence
of premises to form a single sequence input and set input type tokens, which are
responsible for the Segment Embeddings, to be the same for every input. Second,
treat the conclusion and the sequence of premises as two different inputs, that is,
joining them together to form a single sequence, but separate them using a "[SEP]"
token and adjust the input type tokens accordingly. For the CNN approach of Stab
and Gurevych, (2017b) we only considered the single sequence approach as it is
difficult to tell the model which part of the input is a premise or a conclusion without
changing the architecture.

Training Procedure

As we use a large pre-trained Language Model, i.e., BERT (Devlin et al., 2018), that
takes a long time to train, we could not assess the Local Sufficiency of an argument
following the original 20 times 5-fold cross-validation setting. Instead, we only used
the first two of the 20 5-fold cross-validation setups proposed by Stab and Gurevych,
(2017b) yielding a total of 10 different test folds. Every split ensures that conclusion
and premise tuples from one essay are not split between training, validation, and
test data. This avoids possible data leakage that could artificially improve the final
evaluation scores. To ensure our changes to the cross-validation setup were also

1https://github.com/huggingface/transformers
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not affecting the results, we again repeated the CNN’s training and evaluation by
Stab and Gurevych, (2017b) accordingly. For each cross-validation fold, we use 70%
training, 10% validation, and 20% test data.
During our work, we found it difficult to successfully optimize BERT using Mean-
Squared-Error (MSE) or Cross-Entropy loss functions, as both of them did not seem
to align with our target metric (macro F1-score) very well. We found the work of
Puthiya Parambath et al., (2014) and Eban et al., (2017) to be useful in this regard,
as well as their application and discussion in practice2,3. The authors propose to
directly optimize machine learning models on the F1-score. Instead of interpreting a
single binary value, we allow the model to output probabilities. If the model predicts
0.2 as a label and the ground truth is 1, the loss is calculated as 0.2 true positive
and 0.8 false negative.
Similar to Stab and Gurevych, (2017b), we also allow our model to adjust hyper-
parameters between folds. To do this, we use the hyperparameter optimization
framework optuna4 to optimize the dropout percentage of the final layer, batch size,
and learning rate. Hyperparameter optimization frameworks automate and optimize
the hyperparameter selection, defining a search space that is efficiently explored
based on the model’s feedback at the end of the training procedure. In our case, this
is the macro F1-sore of the validation data obtained at the end of the training. We
run 10 trials for each fold to find a dropout rate between 0.0 and 0.5, a batch size
between 2 and 32, and a learning rate between 1e-6 and 5e-5. The boundaries are
chosen based on sequence classification tasks that BERT was already fine-tuned on
(e.g., SQUAD, MNLI). We fixed the number of epochs to 3 per fold because we could
not find any improvements afterward and used a cosine learning rate scheduler
without warm-up to reduce the learning rate during training as the model proceeds
to see more examples. Finally, we selected the epoch for each trial out of the three,
which performed best on the validation data.

4.2 Conclusion Generation

This section will explain our approach to generate conclusions. That is, we use the
premises of a conclusion as an input to a BART (Lewis et al., 2019) model to output
a conclusion that is close/matches the ground truth conclusion.

2https://www.kaggle.com/rejpalcz/best-loss-function-for-f1-score-metric
3https://towardsdatascience.com/the-unknown-benefits-of-using-a-soft-f1-loss-

in-classification-systems-753902c0105d
4https://optuna.org/
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Model Setup

In contrast to our Local Sufficiency assessment approach, we will use BART (Lewis
et al., 2019) to generate conclusions. This is because BERT (Devlin et al., 2018) is
not particularly useful for text generation tasks due to its pre-training procedure.
In contrast, BART’s performance on abstractive summarization could be useful for
the task of conclusion generation. As explained in Chapter 2 BART is a sequence-to-
sequence architecture consisting of BERT as an encoder and GPT-2 as its decoder.
To the best of our knowledge, conclusion generation is a novel task previously only
explored by (Wang and Ling, 2016). Thus, in addition to pre-trained BART, we
investigate the transfer learning opportunities from tasks that BART was already fine-
tuned on and seemed related to our task. In particular, we found BART pre-trained
on the CNN-DailyMail (Nallapati et al., 2016) and the XSum (Narayan et al., 2018)
dataset to be promising. Considering extractive (CNN-DailyMail) and abstractive
(XSum) summarization tasks could improve results on the generation and provide
valuable information to the conclusion generation task. We also consider three
different versions of our dataset for conclusion generation: (1) the full dataset, (2)
only the instances in our dataset that are labeled as Local Sufficient, (3) only the
instances that are labeled as not Local Sufficient. These scenarios help us to rule out
potential problems in generating conclusions, as conclusions from instances that are
labeled as not Local Sufficient, could be much harder or even impossible to generate
based on their premises and thus introduce a lot of noise to the data, which may
affect the model effectiveness.

Data Pre-processing

Our model’s input is a set of premises joined into a single sequence as in our BERT
for Local Sufficiency assessment approach. Similarly, we also used the conclusion in
its regular sentence setting as previously described.

Training Procedure

To generate conclusions that we can use as an input for our Local Sufficiency as-
sessment approach and avoid overfitting, we must generate a conclusion for every
conclusion premise tuple in our dataset from the test set. Thus to create a full
set of conclusions, we must train multiple models to combine all test set predic-
tions. Consequently, to keep our results consistent, we followed the same two 5-fold
cross-validation setup as previously described for our Local Sufficiency assessment
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approach. Each 5-fold cross-validation iteration yields a full set of generated con-
clusions for our dataset, of which we pick one (the first) for our downstream task.
However, note that our automatic evaluation is still averaged over both 5-fold cross-
validation iterations, thus being a total of 10 different settings.
We use the Cross-Entropy loss for fine-tuning BART, as is the usual loss function used
in text generation.
Otherwise, we follow the same hyperparameter optimization procedure as before
but with different parameters and ranges to tune. As the BART model is a lot bigger
in terms of parameters, we adjusted the batch size between 4 and 8 and the learning
rate between 5e-6 and 5e-5. As we did not change the model architecture, there
was no dropout value to tune anymore. Considering that the search space is much
smaller now, we also adjusted the number of trials to 5 per fold. We fixed the number
of epochs to 3 and used cosine learning rate scheduling to reduce the learning rate
the further the training advances. As our batch size was much smaller this time, we
also used 50 warm-up steps to stabilize the training. Warm-up steps linearly increase
the learning rate for some batches, in the beginning, i.e., 50 until we reach our
initial learning rate from which we decay using cosine learning rate scheduling. This
procedure can help stabilize the training with small batch sizes as picking a "bad"
batch in the beginning, does not influence the model too much, which could lead
to worse results in the end. To obtain the generated conclusion for our test set, we
use a beam size of 4, max length of 70 tokens (derived based on our longest ground
truth sequence +20%). Instead of generating a single conclusion greedily word by
word, beam search explores multiple possible words at each level, i.e., 4 that are the
most likely, and creates conclusions based on these. Afterward, the conclusion with
the highest overall probability is chosen as the output. Finally, we considered the
epoch out of the three, which performs best on the validation data.
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4.3 Indirect Local Sufficiency Assessment

This section will explain our approach to indirectly assess the Local Sufficiency of an
argument. That is, we use the conclusion and its corresponding premises as well
as the generated conclusion as an input to a BERT (Devlin et al., 2018) model to
output a binary Local Sufficiency score that indicates whether the source argument is
sufficient or insufficient.
The indirect Local Sufficiency assessment approach uses the same model as its direct
counterpart. In addition, the procedure in which we obtain hyperparameters stays
the same, as well as the cross-validation setup. Thus we will skip repeating the
explanation at this point and only address the difference in Data Pre-processing,
which explains how we used generated conclusions to augment the Local Sufficiency
assessment and what baselines we compare our approach to.

Data Pre-processing

After generating conclusions, we use the Local Sufficiency assessment approach
previously described in this chapter in combination with our generated conclusions.
Thus we change the input data in the following ways:

1. Use only the premises as input.

2. Use only the ground truth conclusion as input.

3. Use only the generated conclusion as input.

4. Use both conclusions as input.

5. Use the generated conclusion together with the premises as input.

6. Use the generated conclusion, the ground truth conclusion, and the premises
as input.

Note that we used the single sequence setup, as we could find no improvements
(see Chapter 5) in adjusting the input type tokens in our direct Local Sufficiency
assessment approach.

50 Chapter 4 Approaches and Implementation



5Experiments and Evaluation

This chapter will evaluate the approaches described in Chapter 4. (1) We will
evaluate our approach to directly assess Local Sufficiency and analyze the impact of
our data set changes on model performance. (2) We will evaluate our approach to
conclusion generation both automatically and in a manual annotation study. (3) We
will evaluate our indirect Local Sufficiency assessment approach.
This chapter’s results are calculated based on 10 models (two times 5-fold cross-
validation). Therefore, for each measurement, we report the average metrics and
the corresponding standard deviation. To ensure the statistical significance of our
approaches, we use the Wilcoxon signed-rank test, since the number of observations
in our case is small (10) and the difference between the measurements does not
follow a normal distribution, as is required for other statistical tests, such as the
paired student t-test. Note that all results discussed in this chapter, unless stated
differently, are significant concerning the Wilcoxon signed-rank test with a p-value
of 0.05.

5.1 Direct Local Sufficiency Assessment

Based on the approaches described in chapter 4.1, we compare our approach with
the human baseline and the former SOTA CNN of Stab and Gurevych, (2017b). Note,
however, that the human baseline created by Stab and Gurevych, (2017b) is based
on a subset of 433 arguments annotated by three annotators. The human baseline
scores are based on pairwise comparisons of the three annotators. As previously
described, we have modified the data set to better fit the Local Sufficiency definition
of Wachsmuth et al., (2017a). To avoid that changing the data affects our evaluation
values, we investigate three different settings in our experiments: (1) the original
data set without changes, which we refer to as Full, (2) a subset of the original data
set where we have removed 4.6% of the data referred to as Sub; and (3) the subset
of (2), but without non-argumentative text (only conclusions and premises), which
is referred to as C&P.

For evaluation purposes, we consider the macro F1 score to be our main metric, as
it considers the balance of recall and precision and the imbalance of the data set.
However, we also report recall and precision, and overall accuracy independently
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in Table 5.1. We also perform a more fine-grained assessment of our approaches
for each of the datasets. That is, we divide the evaluation for each dataset into
sufficient and insufficient instances and compare F1, recall, and precision scores in a
class-specific manner. Table 5.2, Table 5.3, and Table 5.4 show the results for the
Full, Sub, and C&P dataset. Finally, we examine how the changes we made to the
data (Chapter 3) affect our results and the reasons for the changes.

Accuracy Macro F1 Macro Prec. Macro Rec.

Full
Human† .911± .022 .883± .029 .873± .042 .903± .020
CNN .846± .022 .831± .023 .830± .021 .832± .028
BERT .868± .017 .854± .020∗∗ .856± .046 .860± .066

Sub
Human‡ .912± .021 .886± .027 .876± .041 .906± .017
CNN .836± .024 .820± .023 .820± .021 .820± .029
BERT .874± .026 .854± .037∗∗ .865± .047 .860± .061

C&P
CNN .805± .040 .778± .037 .807± .049 .752± .031
BERT .837± .034 .811± .041∗ .831± .049 .800± .056
BERT[SEP ] .829± .023 .801± .030 .822± .043 .792± .056

Table 5.1.: Results of the direct assessment approach based on two 5-fold cross-validations
compared to a human upper bound. ∗∗ and ∗ mark significance over the
CNN baseline of Stab and Gurevych, (2017a) with a p-value of 0.01 and 0.05
respectively. ‡ and † are obtained on a subset of 432 and 410 arguments
respectively.

Table 5.1 shows that our approach significantly outperforms the previous SOTA of
Stab and Gurevych, (2017b) on all of our three datasets and metrics. Specifically, we
outperform the previous SOTA on the Full dataset on average by a macro F1 score of
+.023. Compared to the human baseline on the same dataset, our model performs
slightly worse with an average difference of −.029. Thus, our model is approximately
at a level of 96.3% of human performance. Considering the Sub dataset, we find the
same pattern with our model being a solid step in between the CNN of Stab and
Gurevych, (2017b) and the human baseline, with macro F1 score differences of +.034
and −.032 respectively. Overall, we could not find a significant difference between
the performances on the Full and the Sub dataset, even though the average macro
F1 score of the CNN is slightly lower (−.011). Based on these results we conclude,
that the removal of 4.6% of the data during dataset transformation (Chapter 3.2)
does not impact the learnability of the dataset. Finally, the evaluation of the C&P
dataset in terms of macro F1 score, holds the same relationships between our BERT
model and the reference CNN, as on the Full and Sub datasets, with our model
outperforming the CNN by a macro F1 score of +.045. However, the overall scores
are significantly lower compared to the other datasets for our best model as well
as the CNN with a reduction in macro F1 score of −.043 and −.042 respectively
compared to the Sub dataset. We will discuss possible reasons for this effect later in
this Section. As discussed in Chapter 4.1 we also tried to separate the two inputs (a
conclusion and its premises) using a separator token in between as well as adjusting
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the token type ids correspondingly. However, considering the macro F1 score, we
found its performance to be significantly worse compared to the single sequence
BERT model (−.022). We think that this is due to the similarity between conclusions
and premises. Both are statements, but the former needs support to be seen as
true, while the latter is usually seen as true without any support. Supposedly, the
models are not able to learn the difference between them correctly. Contrasting
the macro F1 scores with accuracy’s, which favor sufficient arguments due to the
dataset imbalance (65.9% vs. 34.1%), the results are analogous. Thus showing
that in both cases (balanced and imbalanced), our model outperforms the previous
SOTA CNN. Analysing precision and recall, our model as well as the CNN of Stab
and Gurevych, (2017b) are balanced on the Full and Sub dataset, with our model
scoring .856; .860 and .865; .860 respectively, beating the CNN on both dataset as also
indicated by the macro F1 score. Thus, our model weighs the retrieval of sufficient
and insufficient arguments and the correctness of each class’s retrieved arguments
equally. In contrast to the automated approaches, on average, humans have slightly
higher recall than precision (+.030), thus slightly favoring finding all the sufficient
and insufficient arguments over confusing both classes. However, we could not find
statistical significance for this result, which may be caused by the small number of
annotators. While our BERT model outperforms the CNN and BERT[SEP ] on the C&P
dataset, their overall scores drop as indicated by the macro F1 score. Interestingly,
for both models, the recall drops much more than the precision (−.068 and −.060
vs. .−024 and .− 034), but still not to the point of significance.

F1 Precision Recall

Suff.
Human† .827± .043 .787± .099 .884± .049
CNN .882± .019 .892± .033 .875± .041
BERT .899± .015∗ .915± .037 .886± .047

Insuff.
Human† .940± .035 .959± .023 .923± .038
CNN .775± .034 768± .046 .788± .075
BERT .810± .029∗∗ .797± .055 .833± .086

Table 5.2.: Results of the direct assessment approach based on two 5-fold cross-validations
compared to a human upper bound on the Full dataset. ∗∗ marks significance
over the CNN baseline of Stab and Gurevych, (2017b) with a p-value of 0.01. †
is obtained on a subset of 432 arguments.

On the Full dataset (Table 5.2), in terms of F1 score, our model yields minor improve-
ments in recognizing sufficient arguments (.007) but major improvements for those
arguments that are labeled as insufficient (.035). Similar to the CNN of Stab and
Gurevych, (2017b), our model is better at recognizing sufficient arguments (.899)
than recognizing insufficient arguments (.810). This result is especially interesting in
the context that humans hold an inverted behavior (.827 vs. .940). In total, although
our model outperforms the human baseline on sufficient arguments by an F1 score
of .072 overall it is slightly less accurate (−.023) as humans outperform our model
by an F1 score of .130. Considering precision and recall for both classes on average
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we found both automated approaches to favor precision over recall for sufficient
arguments while the classification on insufficient arguments is the other way around.
However, the statistical test shows no significance in this observation. Humans, in
comparison, show a completely inverted behavior thus favoring recall for sufficient
and precision for insufficient arguments.

F1 Precision Recall

Suff.
Human‡ .831± .041 .792± .098 .887± .045
CNN .874± .022 .881± .035 .870± .043
BERT .896± .015∗∗ .906± .035 .906± .042

Insuff.
Human‡ .941± .014 .960± .021 .924± .037
CNN .761± .036 .759± .045 .770± .075
BERT .815± .038 .824± .058 .815± .080

Table 5.3.: Results of the direct assessment approach based on two 5-fold cross-validations
compared to a human upper bound on the Sub dataset. ∗∗ and ∗ mark signifi-
cance over the CNN baseline of Stab and Gurevych, (2017b) with a p-value of
0.01 and 0.05 respectively. ‡ is obtained on a subset of 410 arguments.

We also find the same behavior for the Sub dataset, supporting our hypothesis that
deleting 4.6% of the data does not affect the general performance.

F1 Precision Recall

Suff.
CNN .874± .022 .809± .039 .919± .052
BERT .881± .024 .849± .034 .917± .033
BERT[SEP ] .875± .017 .845± .031 .909± .034

Insuff.
CNN .673± .035 .806± .082 .584± .059
BERT .740± .058∗∗ .813± .064 .683± .079
BERT[SEP ] .728± .045 .798± .056 .675± .078

Table 5.4.: Results of the direct assessment approach based on two 5-fold cross-validations
compared to a human upper bound on the Full dataset. ∗∗ marks significance
over the CNN baseline of Stab and Gurevych, (2017b) with a p-value of 0.01.

Finally, on the C&P dataset the class-specific F1 scores, mostly affect the capability
of the models to recognize insufficient arguments, decreasing it by −.088 for the
CNN −.075 for our best BERT model compared to the Sub dataset. In contrast, the
performance of sufficient arguments does not change significantly. We also find that
there is no significant drop in precision between sufficient and insufficient arguments,
as was the case for the other datasets, although on average their performance is
still lower for our model (−.36). This is especially the case for the CNN of Stab and
Gurevych, (2017b) which on the Sub dataset has a significantly higher precision on
sufficient arguments compared to insufficient arguments. On the C&P in contrast, we
could not find this significant difference anymore. Also, both our model as well as the
reference CNN significantly drop precision performance on the sufficient instances
while changing the dataset without losing significant performance on insufficient
arguments. In terms of recall, we found the inverted behavior thus both our model
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as well as the reference CNN perform significantly worse on insufficient arguments,
induced by a significant drop in performance for this class transitioning to the C&P
dataset.

(a) (b)

Figure 5.1.: (a) Number of arguments that were classified incorrectly before removing
non-argumentative text and correctly after the removal and (b) the number of
arguments that were classified correctly before removing non-argumentative
text and incorrectly after the removal.

As we have found a significant drop in performance between the Sub and C&P, we
investigated the corpus creation procedure to better understand potential problems
during dataset conversion. As we trained two 5-fold cross-validations, we have two
predictions for each argument. To find the most impactful cases, we specifically
looked at those arguments that were predicted to be sufficient by both models before
removing non-argumentative text and predicted as insufficient by both models
afterward and vice versa. Figure 5.1 shows how removing non-argumentative text
from the arguments changed the models predictions. In a manual investigation, we
found 137 cases in which our models consistently changed their predictions, with 46
of them changing from incorrect to correct and 91 from correct to incorrect. Based
on the non-argumentative text which we removed, we clustered these arguments
into Connectivity and Context classes. Connectivity describes arguments where only
text is removed that indicates typical argumentative structures, which are single
words, e.g., "First," "Second," "Thus"; or short sequences, e.g., "Another argument
is." Context in contrast includes all arguments where either Context in the literal
sense is removed or markers that indicate the quality or stance of an argument. As
we found the latter to be common cases, we further divided the Context class into
Opposing view and Example classes. Opposing view describes Context that indicates
that one or more of the premises convey a different stance on the issue than the
rest of the premises (attacking relationship), important sequences we found are, for
example, "One may argue ... but ...", "... however ..." or "I disagree with ... because
...". On the other hand, Example describes arguments where the text was removed
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that indicates that one or more premises are examples, usually introduced as "For
example" or "For instance." Comparing the change in predictions, we found that
dropping Connectivity is more likely to decrease classification performance (8 vs. 49)
while dropping Context can be equally beneficial as hurting to our models. However,
a deeper investigation shows that removing Example instances, often increases the
performance (30 vs. 4) while removing Opposing view leads to a decreases (30 vs.
5).
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5.2 Conclusion Generation

In addition to our direct assessment approach, we also study the task of conclusion
generation and its potential to enhance the Local Sufficiency assessment. This section
will evaluate our conclusion generation approaches both in an automated way using
the metrics discussed in Chapter 2 and based on a manual annotation study involving
five annotators. Based on our experimental setting (see Chapter 4), we use the
pre-trained BART (Lewis et al., 2019) model as an initial starting point. In the
following, we will refer to the pre-trained BART model as BART-large. In addition,
we also explore the potential of transferring knowledge from text summarization,
i.e., news article summarization. Thus, we consider two versions of BART-large that
were pre-trained on news summarization datasets. We refer to these models as
BART-CNN and BART-XSum, with the former being trained for extractive and the
latter for abstractive text summarization. In our evaluation, we differentiate three
versions of our C&P dataset to ensure that our conclusion generation model can
learn its task successfully: (1) The full dataset referred to as Full, (2) only sufficient
arguments from the dataset referred to as Suff. and; (3) only insufficient arguments
from the dataset referred to as Insuff..
As for the direct approach, all of the results in this chapter are calculated based
on 10 models (two times 5-fold cross-validation). Therefore, for each measure-
ment, we report the average metrics. The full table with standard deviations can
be found in the appendix for readability reasons. To ensure our approaches’ sta-
tistical significance, we use the Wilcoxon signed-rank test for the same reasons as
mentioned previously. The results discussed in this chapter, unless stated differently,
are significant concerning the Wilcoxon signed-rank test with a p-value of 0.05.

5.2.1 Automatic Evaluation

As all the models we use in this section are already pre-trained, we divided the
evaluation into two steps. First, we will evaluate the initial performance of the
models on our dataset without any training. This is to create baselines and explore
which pre-trained model is the best starting point for the fine-tuning process. Second,
we fine-tune the pre-trained model on our dataset and discuss the results concerning
the baselines we have created.
To evaluate our conclusion generation approaches, we use several different text
generation metrics discussed in Chapter 2. We use BLEU-1 (B1) and BLEU-2 (B2) to
measure exact word precision, ROUGE-1 (R1) and ROUGE-2 (R2) to measure exact
word recall, and METEOR (M) as a combination of them. As measuring exact word
overlap, does not account for potential matches in meaning, we also use BertScore
to obtain equivalent precision (BS-P), recall (BS-R), and combinational (BS-F1)
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evaluation scores. The complete tables with standard deviations can be found in the
appendix.

B1 B2 R1 R2 M BS-P BS-R BS-F1 Len.

—
BART-large 11.5 1.71 15.9 2.74 15.8 7.22 24.1 15.6 52.8
BART-CNN 13.7 1.99 18.4 3.15 16.8 13.6 28.0 20.7† 43.8
BART-XSum 19.7 2.44 20.0 3.32 14.2 19.9 26.8 23.4†‡ 25.9

Full
BART-large 26.5 4.06 21.5 4.44 13.4 32.9 28.4 30.6‡ 17.2
BART-CNN 24.7 3.63 20.2 4.04 12.8 30.8 27.9 29.4 17.9
BART-XSum 27.9 4.21 21.1 4.23 12.4 34.5 28.0 31.2‡ 15.8

Suff.
BART-large 25.5 3.84 20.7 4.09 12.9 32.2 28.2 30.2‡ 17.6
BART-CNN 24.2 3.44 20.5 3.92 13.2 29.6 27.9 28.8 18.6
BART-XSum 25.9 3.86 21.0 4.19 13.1 32.7 28.6 30.7‡ 17.2

Table 5.5.: Results of the conclusion generation approach based on two five-fold cross validation with and
without fine-tuning. † and ‡ mark significance over the BART-large and BART-CNN models.

Considering Table 5.5, without any fine-tuning on our dataset, the BART-XSum
performs best with an BS-F1 score of +2.7 and +7.8 compared to the BART-CNN and
BART-large respectively. However, its BERT based recall score (BS-R) score is much
higher (+6.9) compared to the corresponding precision score (BS-P), thus generated
conclusions favor containment of words from the ground truth conclusion over
the inclusion of irrelevant words. The same behavior can also be found for BART-
CNN and BART-large, with +14.4 and + 16.9 respectively. Even though BART-XSum
performs best on the BS-F1 score, BART-CNN has higher BS-R (+1.2) and thus lower
BS-P (−6.3). Considering that BART-CNN is trained on extractive summarization that
uses sentences from the input and fuses them into a summary, this is expected as
extractive summarization usually creates longer summaries compared to abstractive
summarization and thus contains more irrelevant words because conclusions are
often short sentences. As BART-large just generates text that the model believes
follows after the input text, it has the lowest BS-P score (7.22). Note that we have
limited the number of generated tokens to 70 (based on ground truth conclusions)
to avoid artificial performance decreases due to generated text that is too long. In
general, as none of the models was trained on our dataset, the average length of
the summaries varies heavily (52.8 vs. 43.8 vs. 25.9) while the average ground
truth conclusion length is 19.3. In general, longer conclusions potentially increase
recall oriented metrics, while shorter conclusions increase precision-oriented metrics.
However, considering that conclusions generated by BART-XSum are on average
−17.9 tokens shorter compared to those generated by BART-CNN and −26.9 tokens
shorter compared to those generated by BART-large and that the increase of BS-P is
much higher compared to the decrease in BS-R, the task of abstractive summarization
does still seem to be closest to our task of conclusion generation. In terms of the
traditional metrics that require exact token matches, we found similar behavior
with BART-XSum being the best model for B1, B2, R1, and R2, even outperforming
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BART-CNN on the recall metrics R1 and R2. However, R1 is a bit lower than BS-R on
average (−8.2, −9.6, and −6.8). We also found that B2 and R2, which both assess
the overlap of longer sequences (in this case 2), are very low for all three models
with a maximum of 2.44 and 3.32 for the BART-XSum respectively. Finally, the M
score favors BART-CNN over BART-XSum by a score of +2.6, although the former
beating the latter on B1 and R1, which is probably caused by either the synonym
resolving or word ordering assessment of M.

B1 B2 R1 R2 M BS-P BS-R BS-F1 Len.

BART-large
Suff. 11.9 1.79 16.0 2.75 15.5 8.62 24.0 16.2† 50.3
Insuff. 10.7 1.59 15.8 2.72 16.3 4.49 24.4 14.3 57.6

BART-CNN
Suff. 14.4 2.06 18.9 3.20 16.8 14.9 28.1 21.5† 41.7
Insuff. 12.5 1.89 17.5 3.01 17.0 11.1 27.7 19.3 47.7

BART-XSum
Suff. 19.9 2.55 20.0 3.32 14.3 19.7 26.4 23.1 26.2
Insuff. 19.4 2.20 19.8 3.29 14.0 20.4 27.5 24.0 25.3

Table 5.6.: Results of the conclusion generation approach based on two five-fold cross validation without
fine-tuning split by sufficient and insufficient arguments. † marks significance improvement over
the the other class.

Table 5.6 shows the performance of all models without fine-tuning split into suffi-
cient and insufficient instances. BART-large and BART-CNN both perform better on
sufficient arguments with BS-F1 scores of +1.9 and +2.2. In contrast BART-XSum
performs better on insufficient arguments (+0.9) on average but without signifi-
cance. Considering metrics that require exact matching of words (B1, B2, R1 and
R2), we find that for all of our models the performance on sufficient instances is
slightly better compared to insufficient arguments. In contrast analysing BERTScore
precision and recall, we find that in terms of BS-P BART-large and BART-CNN perform
significantly better on sufficient arguments (+4.13 and +3.8) while there is no signif-
icant difference in BS-R for all of our models. The higher BS-F1 score of BART-large
and BART-CNN is thus the result of better precision on sufficient arguments. Finally,
the results indicate that it is slightly easier to generate conclusions of sufficient
arguments, which is in so far expected as some conclusions of insufficient arguments
may suffer from not correctly adhering to the topic at hand. However, the results of
the BART-XSum model which is the best model without finetuning, suggest that once
a model reaches a certain performance this difference becomes negligible.

To investigate both hypothesises, we finetuned each of the three models on the full
dataset, as well as on only sufficient arguments (see Table 5.5). BART-XSum and
BART-large outperform BART-CNN on both datasets with an BS-F1 score of +1.8
and +1.2 on the Full dataset and +1.9 and +1.4 on the Suff. dataset. Overall,
based on the Full dataset, the finetuned models outperform the pre-trained model
baselines by +15.0 for BART-large, +8.7 for BART-CNN and +7.3 for BART-XSum and
likewise for the Suff. dataset. This shows that the task of conclusion generation
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can be learned to at least a certain degree. We also found that after finetuning,
all models perform roughly the same, that is BART-large which was previously
the weakest model gained the most performance, BART-CNN previously second
weakest the second most performance and BART-XSum previously the best gained
the least performance. Consequently, even though abstractive summarization seems
to be the closest task compared to conclusion generation, our dataset does not
profit from transferring knowledge between both tasks. However, as BART-CNN has
significantly lower BS-F1 scores compared to BART-large and BART-XSum, extractive
summarization seems to be the least related task to conclusion generation and if
used as a starting point decreases its overall performance compared to the initial
pre-trained BART-large. Although, finetuning increased the performance on all of
our metrics, longer sequence metrics which measure exact word matches (B2 and
R2) are still very low. Most of the improvements we see are precision based metrics,
thus focused on avoiding irrelevant words in the generated conclusion. This is to a
degree related to the much shorter length of generated conclusions. However, as
the recall oriented metrics also increase in performance, the model also successfully
generates relevant text. After finetuning we could find no significant difference
between training the model on the Full dataset and training it on the Suff. dataset,
although on average the metrics of the full dataset are slightly higher with an BS-F1
score of +0.4, +0.6 and +0.5 respectively.

B1 B2 R1 R2 M BS-P BS-R BS-F1 Len.

BART-large
Suff. 26.6 4.01 21.4 4.32 13.3 32.5 27.9 30.3 17.3
Insuff. 26.1 4.01 21.5 4.63 13.5 33.5 29.2 31.4† 17.1

BART-CNN
Suff. 24.8 3.65 20.0 3.99 12.6 30.8 27.5 29.2 17.9
Insuff. 24.5 3.59 20.6 4.07 13.1 31.0 28.6 29.8 18.1

BART-XSum
Suff. 28.4 4.24 21.2 4.24 12.3 34.6 27.6 31.1 15.8
Insuff. 27.0 4.13 20.9 4.16 12.6 34.2 28.7 31.5 15.9

Table 5.7.: Results of the conclusion generation approach trained on the Full dataset based on two five-
fold cross validation with fine-tuning split by sufficient and insufficient arguments. † marks
significance improvement over the the other class.

Evaluating the performance on sufficient and insufficient arguments from models
trained on the Full dataset (Table 5.7), we found that the average performance
of generated conclusions for insufficient arguments is better compared to their
sufficient counterparts, with BS-F1 differences of +1.1, +0.6 and +0.4 for the BART-
large, BART-CNN and BART-XSum model respectively. However only the BART-large
based model performs significantly better on insufficient arguments.
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B1 B2 R1 R2 M BS-P BS-R BS-F1 Len.

BART-large
Suff. 25.5 3.81 20.6 3.97 12.9 31.8 27.8 29.9 17.7
Insuff. 25.4 3.91 21.0 4.27 13.0 32.9 28.9 31.0 17.3

BART-CNN
Suff. 24.8 3.59 20.8 3.99 13.3 30.1 27.9 29.1† 18.5
Insuff. 23.1 3.16 20.0 3.68 13.0 28.6 27.8 28.7 18.9

BART-XSum
Suff. 26.3 4.01 21.2 4.14 13.2 32.7 28.5 30.6 17.3
Insuff. 25.1 3.57 20.6 4.23 13.0 32.7 28.8 30.8 17.1

Table 5.8.: Results of the conclusion generation approach trained on the Suff. dataset based on two five-
fold cross validation with fine-tuning split by sufficient and insufficient arguments. † marks
significance improvement over the the other class.

In contrast, analysing the performance on sufficient and insufficient arguments from
models trained on the Suff. dataset (Table 5.7), we found that only the BART-CNN
model performs significantly better on sufficient arguments with an BS-F1 difference
of +0.4. For BART-large and BART-XSum, we found no significant difference in the
performance on sufficient and insufficient arguments. Thus training a model on
only sufficient arguments does not change the model to improve its performance
both on sufficient and insufficient arguments. This observation is interesting as it
helps us to draw conclusions about the dataset of Stab and Gurevych, (2017a): First,
the quality of the data seems to be high in so far as both sufficient and insufficient
arguments contain premises that fit the topic of the conclusion. Second, it shows
that the difference between both classes seems to be small, as removing insufficient
arguments from training does not bias the models to favor sufficient arguments.
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5.2.2 Manual Evaluation

The metrics that we have used to automatically evaluate our conclusion generation
approach are not perfectly suitable for conclusion generation. They either expect
a single correct result from a pool of very similar results (as in summarization)
or multiple references (as in translation). The task of conclusion generation, in
contrast, allows for multiple dissimilar correct conclusions, e.g., having a different
target created from a single set of premises. Since our dataset has only a single
reference conclusion, we decided to conduct a manual annotation study to assess our
models’ general conclusion generation ability compared to the human ground truth
and to find the best model for our indirect Local Sufficiency assessment approach.
In the appendix we have included ten sets of premises together with conclusions
generated by our models and the human reference.

Figure 5.2.: Example ranking task from our annotation study: annotators are asked to rank
the four conclusions (lower part) and their likelihood to be drawn, based on
the premises (upper part) on a scale from 1 (most likely) to 4 (least likely)

We designed the study as a ranking task where we chose 100 arguments from our
dataset at random such that 50 of the arguments are labeled as sufficient and the
other 50 as insufficient. For each argument, we used the generated conclusions
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from the first 5-fold cross-validation for each of our finetuned models (BART-large,
BART-CNN, and BART-XSum) together we the ground truth conclusion written by
a human. Note that we have used the models trained on the Full dataset, as we
found no difference between this models performance and the model trained on the
Suff. dataset in our automatic evaluation. We presented the four conclusions with
their premises to five annotators with different academic backgrounds (economics,
computer science, health/medicine). We asked each annotator to solve the following
task for each of the 100 arguments:

"Rank the conclusions that you believe are most likely/least likely to be
made based on a set of premises."

Figure 5.2 shows an example annotation task for a single argument taken from
the study created with Google Forms1. In addition, we also provided the following
annotation guidelines:

• You must give exactly one answer per row and exactly one answer per column
for each form you will see.

• You should assume that all the premises given are true. Therefore, you should
apply the beliefs of the authors to create the ranking.

• Sometimes, the conclusions can refer to different topics. If this is the case, you
are invited to deduce the most probable/most unlikely topic yourself.

• If you come across very similar conclusions, you are supposed to choose the
one that is better expressed.

• Finally, the conclusions and premises you will see in this study are all taken
from student essays and may therefore contain language errors that you can
simply ignore. However, if you do not understand the premises or conclusions,
you can skip the question.

To evaluate the inter-annotator agreement, we used the rank correlation coefficient
Kendall’s τ , which is a non-parametric significance test between two features on an
at least ordinal scale. Table 5.9 (a) shows the pairwise Inter-Annotator Agreement
(IAA) and (b) Inter-Rank Agreement (IRA). If one of the annotators decided to
skip an argument, we did not consider it in our evaluation. Using this procedure,
the maximum number of skipped arguments of two annotators we found was 10,
leaving 90 arguments for evaluation, which should still be a representative quantity

1https://www.google.com/forms/about/
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for agreement calculation. We also tested all of our agreement scores using a
one-sample Student’s t-test to ensure a significant difference from zero.

(a) IAA Full
1 2 3 4 5 Avg.

1 − .20 .28 .22 .27 .24
2 .20 − .14 .23 .23 .20
3 .28 .14 − .25 .39 .27
4 .22 .23 .25 − .32 .26
5 .27 .23 .39 .32 − .30
Avg. .24 .20 .27 .26 .30 .25

(b) IRA Full
1 2 3 4 Avg.

1 − .06 .25 .48 .26
2 .06 − .09 .39 .18
3 .25 .09 − .18 .18
4 .48 .39 .18 − .35
Avg. .26 .18 .18 .35 .24

Table 5.9.: Pairwise Kendall’s τ (a) of the Inter-Annotator Agreement (IAA) between the five annotators of
our conclusion generation study and (b) of the Inter-Rank Agreement (IRA) based on the IAA
agreement scores.

Considering the IAA scores from Table 5.9a, we found an average agreement score
between all annotators of .25 which we consider as slight agreement. We found
the highest agreement between Annotator-3 and Annotator-5 with a τ value of .39,
considered as moderate agreement. In addition, Annotator-5 is also the annotator
with the highest average agreement score (.30). As some of our annotators reported
difficulties ranking conclusions that are very similar in their semantic meaning or
the fit to the premises, especially for Rank-2 and Rank-3, but also for other ranks
if multiple conclusion do not fit the premises, we also evaluated the Inter-Rank
Agreement (IRA), which is the agreement between annotators in distinguishing
the different ranks from one another. The results in Table 5.9b, show an average
agreement score between all ranks of .24 which is very similar to the IAA score. Thus
there is only slight agreement in overall rank discrimination. In contrast, we found
moderate agreement discriminating Rank-1 and Rank-2 from Rank-4 with Kendall’s
τ scores of .48 and .39 respectively, which shows that annotators are able to agree
on the worst conclusion given. Consequently Rank-4 also has the highest average
agreement (.35) of all ranks. Consistent with the statement of our annotators,
the agreement between Rank-2 and Rank-3 is very low (.09). Interestingly the
agreement on the best (Rank-1) and second best (Rank-2) conclusion holds an
even lower agreement score (.06) while Rank-1 and Rank-3 can be differentiated
to some degree (.25). This also explains the moderate agreement of Rank-2 and
Rank-4 which is the results of a higher confusion between Rank-1 and Rank-2 (.06)
compared to Rank-3 and Rank-4 (.18). In summary our annotators best agree on
which is the worst conclusion while agreement on the best conclusion is mostly split
between two of the remaining conclusions. Therefore, in order to choose the best
model for the indirect Local Sufficiency assessment, we will consider the IRA as an
additional factor.
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(a) IAA Suff. (b) IAA Insuff.
1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

1 − .27 .36 .24 .30 .29 1 − .14 .20 .20 .25 .20
2 .27 − .21 .25 .32 .26 2 .14 − .06 .22 .14 .14
3 .36 .21 − .35 .47 .35 3 .20 .06 − .16 .32 .18
4 .24 .25 .35 − .37 .30 4 .20 .22 .16 − .26 .21
5 .30 .32 .47 .37 − .37 5 .25 .14 .32 .26 − .24
Avg. .29 .26 .35 .30 .37 .31 Avg. .20 .14 .18 .21 .24 .19

Table 5.10.: Pairwise Kendall’s τ of the Inter-Annotator Agreement (IAA) between the five annotators of our
conclusion generation study, split into (a) sufficient and (b) insufficient arguments.

In addition to the IAA Full as well as the IRA, we analysed IAA split into arguments
sufficient and insufficient (Table 5.10). We found that annotators agree more often
on sufficient arguments compared to their insufficient counter parts with average
Kendall’s τ scores of .31 and .19 respectively. Although, we can not fully explain this
behavior, we hypothesize that sufficient arguments either hold premises that support
choosing the premise order e.g. by narrowing down the conclusion target and thus
limiting the space of possible suitable conclusions which helps to differentiate the
ranks; or the generated conclusions are more diverse between the models. The
best agreement between pairs of annotators are equally distributed between both
classes with Annotator-3 and Annotator-5 agreeing the most with moderate scores
for sufficient (.47) and for insufficient (.32) arguments.

To compare the conclusion generation models to the human baseline and find the
best model to use for our indirect Local Sufficiency assessment approach, we used
the majority rank of our five annotators for each argument and the corresponding
models. In case we found ties between our most frequent ranks, we resolved this
issue as follows: In our case, due to the number of annotators, a tie is only possible
between two ranks with two votes each. Thus, to resolve this issue, we use the
remaining annotation to decide between the tied ranks. If the remaining annotation
is closer to the pair of better ranks, we choose this rank and vice versa for pairs of
worse ranks. If the remaining annotation is in between the tied ranks, we simply
select the best among them. Figure 5.3 shows the majority based ranking split by
our three conclusion generation model in terms of their total count. For each of
the models, we have 100 ranks, which correspond to the 100 conclusions generated
by the models/written by the human. Our findings show that BART-large performs
best in terms of receiving the most (32) Rank-1 votes in total while having a similar
number of Rank-4 votes (28) as BART-CNN (28) and the Human baseline (29). In
contrast to the BART-large model, the Human baseline and the BART-CNN model
have a higher number of Rank-4 conclusions compared to Rank-1 conclusions (+5).
Considering Rank-2 and Rank-3, the Human Baseline seems to be slightly better
compared to BART-CNN as the former has marginally less (−2) Rank-3 conclusions.
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BART-XSum is more challenging to evaluate. It is similar to BART-large in having a
positive difference of Rank-1 and Rank-4 conclusions (+3), but it also has the most
Rank-3 conclusions (37) by far. The overall average ranks also reflects the model
ranking with values of 2.32, 2.5, 2.53, and 2.55 for BART-large, Human baseline,
BART-CNN, and BART-XSum, respectively. In summary, the most interesting finding of
our study is that although our annotators have a moderate agreement over ranking
the conclusions, the human baseline’s performance is very close to all of our models’
performance and overall slightly lower compared to our best model. Consequently,
we argue that our conclusion generation models create relevant and convincing
conclusions for a set of premises. However, as the conclusions for a single set of
premises often differ in their target, we hypothesize given a set of premises, it is
possible to draw multiple conclusions with different targets that fulfill the Local
Sufficiency quality criterion. Our study also shows that, given a set of premises, it is
unclear which conclusion target is correct. As the BART-large model performs best
in our manual annotation study and is on par with other models in our automatic
evaluation, we will use it for our indirect Local Sufficiency assessment approaches.

Figure 5.3.: Majority based ranking of our three conclusion generation models and the
human baseline based on 100 randomly chosen arguments from our Full dataset.
Horizontal bars show the number of times an argument of the corresponding
model was ranked to one of the four ranks.
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Finally, we also investigate the performance of our models split into sufficient and
insufficient arguments. Figure 5.4 shows the absolute difference in majority ranks
between both classes. Similar to our automatic evaluation results, we could not find
a clear difference between both classes. Thus the quality of generated conclusions
seems to be independent of the Local Sufficiency. Considering BART-large as the
best overall model, we found that although the number of conclusions on Rank-4,
which are generated of premises from an insufficient argument, is much higher (10)
compared to their sufficient counterparts, for the second-lowest rank, the relationship
is the other way around (6). However, the average overall rank for BART-large is
slightly better for sufficient compared to insufficient conclusions (2.26 vs. 2.54). For
the other models and the Human baseline, we found no significant difference in
their overall ranking.

Figure 5.4.: Difference of the majority based ranking of our three conclusion generation
models and the human baseline based on 100 randomly chosen arguments from
our Full dataset, split into sufficient and insufficient arguments. Horizontal
bars show the absolute difference in the number of times arguments of the two
classes were ranked to one of the four ranks.

5.2 Conclusion Generation 67



5.3 Indirect Local Sufficiency Assessment

Analogous to the direct local sufficiency assessment in Section 5.1, we use the
BERT (Devlin et al., 2018) model to assess the Local Sufficiency of an argument in
our indirect approach. However, in contrast to the former, we use the previously
generated conclusions of the BART-large model as an additional input to the BERT
model. Table 5.11 shows the corresponding metrics for the used approaches as
well as some additional experiments we have run to evaluate our hypothesis of
the imbalance in importance between conclusions and premises in Local Sufficiency
assessment. Note that all the results here are on the C&P dataset we created for
this task. We refer to the Local Sufficiency assessment using only the premises as P,
only the ground truth conclusions as C, only the generated conclusions as GC, both
the ground truth conclusions together with the generated conclusions as C+GC, our
standard setup from Section 5.1 using the ground truth conclusions and premises as
C+P, the generated conclusions together with the ground truth premises as GC+P
and all three components together as C+GC+P. To join the components to a single
sequence, we use the same procedure described in Chapter 4.

Accuracy Macro F1 Marcro Prec. Macro Rec.
P .817± .028 .788± .071 .806± .052 .780± .061
C .641± .036 .553± .063 .582± .048 .567± .144
GC .632± .025 .532± .043 .560± .038 .544± .106
C+GC .659± .026 .571± .036 .762± .030 .396± .092
C+P .837± .034 .811± .041 .881± .024 .740± .058
GC+P .832± .030 .799± .038 .831± .038 .785± .046
C+GC+P .826± .043 .796± .051 .820± .056 .783± .057

Table 5.11.: Results of the indirect assessment approaches based on two five-fold cross-
validations compared a human upper bound and the results from the direct
Local Sufficiency assessment approach from Section 5.3.

Considering the results in Table 5.11, we found that although the direct BERT
approach (C+P) is still the best overall model with a macro F1-score of .811, it does
not significantly differ from the GC+P model with a macro F1-score of .799. Thus
replacing the original conclusion with our generated conclusion only slightly affect
the Local Sufficiency assessment. This result matches our findings in conclusion
generation evaluation that there is little to no difference between our generated
conclusions and conclusions written by humans. This is also supported by our
evaluation for the C and GC models where the former performs insignificantly better
than the latter. Consequently, adding the generated conclusion as an additional
input (C+GC+P) does not increase the performance of our approach but slightly
decreases it by a macro F1-score of−.015 and −.003 compared to the C+P and GC+P
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models respectively. Contrary the C+GC model shows that there is at least some
performance gained combining both premises with an increase in macro F1-score
of +.018 compared to the C model. However, this effect is most likely negligible
as using the premises already accounts for it. We think that this decrease is the
result of confusing the model, adding another conclusion. This is because the
added conclusion either has the same target as the original conclusion and thus
likely conveys the same semantic meaning, which, given our hypothesis, would
mean it is sufficient, or it has a different target, which would mean it is insufficient.
However, as already hypothesized during the valuation of our conclusion generation
approaches and supported by the results of Alshomary et al., (2020b), identifying
the target of premises is a very hard task that, given our study, even humans disagree
on. This raises the question of how important the conclusion is in assessing the
Local Sufficiency of an argument compared to the premises. To answer this question,
we trained two BERT models, one that only uses the premises of an argument to
predict the Local Sufficiency and on that uses only the conclusion. The evaluation
shows that the premises’ macro F1-score is only −.023 lower than our best model,
which uses both the conclusion and its premises. In contrast, the conclusion alone
only reaches a score of .553, which is better than a majority vote but far lower
than the premises. Thus premises are much more important in assessing the Local
Sufficiency of an argument than the conclusion. However, we do not think that
this observation is highly representative but rather a consequence of the domain
of student essays and the quality of arguments written in this domain. Looking
at the dataset, we could not find cases where conclusions are completely unfit to
the premises in terms of matching targets, which shows that the general argument
quality is rather high. Consequently, we believe that assessing the Local Sufficiency
of arguments, especially if used in real-world applications, requires not only a bigger
dataset in general but also a wider range of domains or at least a broader range of
different quality arguments to really learn the task of Local Sufficiency assessment.
However, considering that the C+P model outperforms the P model, we still see that
this property is at least to some degree present in the dataset of Stab and Gurevych,
(2017b). Finally, analyzing accuracy, macro precision, and macro recall, we see
no changes to our findings in Section 5.1 which is a slightly better performance in
precision compared to recall.
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6Conclusion

In this work, we assessed the Local Sufficiency of arguments, measuring whether the
premises given in an argument are sufficient and together make it rational to draw
the proposed conclusion (Wachsmuth et al., 2017a). To do this, we studied two
approaches. First, the direct assessment of Local Sufficiency using the BERT (Devlin
et al., 2018) model to predict whether an argument is sufficient or insufficient
(binary) and second the indirect assessment of Local Sufficiency in which we first
train BART (Lewis et al., 2019) models to generate a conclusion given a set of
premises, and in a second step uses the generated as an argumentative feature, to
augment the direct assessment approach further.

We proposed a news state-of-the-art Local Sufficiency assessment model, that outper-
form the previous SOTA CNN of Stab and Gurevych, (2017b) and achieves 96.7% of
human performance on the AAE-v2 dataset (Stab and Gurevych, 2017a) annotated
for Local Sufficiency by Stab and Gurevych, (2017b). Showing that large scale pre-
trained Language Models can successfully improve the performance in fine-grained
Argument Quality Assessment as already shown for holistic Argument Quality Assess-
ment (Gretz et al., 2019b; Toledo et al., 2019). Additionally, we found that following
the more strict view of the Local Sufficiency definition of (Wachsmuth et al., 2017a),
that is, removing non-argumentative text from arguments based on the annotations
of Stab and Gurevych, (2017a) decreases the performance of Local Sufficiency assess-
ment models in general. Our investigation revealed that removing textual markers
that indicate that a premise is an example improves the Local Sufficiency assessment.
In contrast, the removal of connectivity between claims and premises, which often
provides information about the number of premises, as well as removing textual
markers introducing an opposing view, decreases the Local Sufficiency assessment per-
formance. Using our adapted version of the AAE-v2 dataset, we have had a first look
into NLP tasks, and their relationship to the task of conclusion generation, in which
we found that abstractive summarization compared to extractive summarization
and Language Modeling is closest, although finetuning on our dataset revealed that
transferring knowledge from abstractive summarization to conclusion generation
did not work in our case. We also showed in a manual annotation study that the
conclusions generated by our models are on par or even slightly better compared to
the one written by a human. This result is interesting as our conclusions’ target is
not always the same as the target of the conclusion written by the human. Thus we
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hypothesize that given a set of premises, it is unclear or very hard to come up with a
single ground truth target because the premises can be sufficient to support multiple
conclusions with different targets. This hypothesis could also explain some of the
problems in the work of Alshomary et al., (2020a), who tried to infer the target
given a set of premises. Finally, we showed that our generated conclusion can be
used as a replacement of the original conclusion without significantly affecting the
Local Sufficiency assessment, which does support our previous finding that there is
no significant difference in the quality of the generated conclusions and conclusions
written by a human. However, as the conclusions are quite similar and we did not
find a significant difference in conclusions both generated and written by a human in
our study, adding the generated conclusion as an argumentative feature to assess the
Local Sufficiency of an argument did not improve our results any further. In addition,
as contrasting the generated and the ground truth conclusion to assess the Local
Sufficiency performed much worse compared to all approaches using premises, we
found that the importance of premises is much higher compared to the importance
of conclusions in Local Sufficiency assessment. This result is of high importance as it
shows that the general quality of arguments in the AAE-v2 dataset is very high in
so far as all sets of premises fit the corresponding conclusion, at least to a certain
degree. Thus, we argue that the task of Local Sufficiency assessment needs a bigger
and more diverse dataset.

Considering our initial research questions, we showed the enormous potential of
adapting large scale pre-trained Language Models to the task of Local Sufficiency
assessment and thus promote further usage towards other dimensions of Argument
Quality Assessment. Furthermore, we showed that LMs can successfully adapt to
the task of conclusion generation to human-level performance. Finally, we did
not find a proper way to incorporate text generation, i.e., conclusions generation,
as an argumentative feature to improve Local Sufficiency assessment. Instead, we
gained a lot of valuable insights into the task of Local Sufficiency assessment and the
strengths and weaknesses of the currently only available dataset. We hope that our
contributions to Computational Argumentation are useful not only in the theoretical
nature but especially help to bridge the gap to real-world applications by showcasing
the potential of SOTA NLP approaches and pointing out possible limitations that
need to be overcome in the future.
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6.1 Future Outlook

As we have touched on different parts of Computational Argumentation, including
Argument Quality Assessment, Argument Mining, and also Argument Generation, there
are some ideas that we hope to investigate or to be investigated by others in the
future. We think that most important for future success is the availability of more
diverse and consequently bigger datasets not only in the domain of Local Sufficiency
assessment but also in related Argument Quality Assessment dimensions as well
as in Argument Mining. However, we are well aware that the acquisition of such
datasets often requires experts who are limited in numbers and expensive compared
to crowd-based solutions. Nevertheless, we think it is an interesting topic to work on
as it is the fundamental key for advancement both in theory and practice. We believe
the goal of Computational Argumentation is social in nature. Thus results should
help people in their everyday life. Considering that Computational Argumentation
is a quite new field with limited research, we believe that it is important to unify
concepts to work on common ground as, for example, the work by Wachsmuth et al.,
(2017a). While the former is a more general observation that we made throughout
our time in the field, considering this thesis specifically, we still think that the task
of generation holds some potential in shaping good arguments. As a starting point,
we believe it would be interesting to study why removing non-argumentative parts
of the text affects its logical quality. In a first test, we found that training a model
to fuse premises and conclusions into a natural language text argument, which can
be thought of as Context or Connectivity creation, does increase the Local Sufficiency
assessment performance although not matching the performance before removal.
However, learning to generate these parts can be useful in applications such as the
IBM Debater1 or at any point where arguments generated by a machine are presented
to a human. Finally, it is still questionable if LMs in their current state can reason or
make logical conclusions. Thus, investigating these models’ real capabilities seems
an interesting and important task if we want to create high-quality content.

1https://www.research.ibm.com/artificial-intelligence/project-debater/
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AAppendix

A.1 Experiments and Evaluation: Conclusion
Generation

A.1.1 Automatic Evaluation

Table 5.5

B1 B2 R1 R2 M

—
BART-large 11.5± .334 1.71± .112 15.9± .412 2.74± .211 15.8± .552
BART-CNN 13.7± .192 1.99± .157 18.4± .270 3.15± .216 16.8± .770
BART-XSum 19.7± .779 2.44± .336 20.0± .937 3.32± .505 14.2± .991

Full
BART-large 26.5± 1.08 4.06± .524 21.5± 1.23 4.44± .613 13.4± 1.27
BART-CNN 24.7± 2.32 3.63± .751 20.2± .667 4.23± .484 12.8± .952
BART-XSum 27.9± 1.34 4.21± .410 21.1± .903 4.23± .490 12.4± .866

Suff.
BART-large 25.5± 1.63 3.84± .381 20.7± .891 4.09± .491 12.9± .890
BART-CNN 24.2± 1.47 3.44± .473 20.5± 1.02 3.92± .454 13.2± .599
BART-XSum 25.9± .975 3.86± .429 21.0± 1.00 4.19± .585 13.1± 1.04

Table A.1.: Results of the conclusion generation approach based on two five-fold cross validation with and
without fine-tuning.

BS-P BS-R BS-F1 Len.

—
BART-large 7.22± .789 24.1± .725 15.6± .551 52.8± 20.4
BART-CNN 13.6± .664 28.0± .547 20.7± .341† 43.8± 11.1
BART-XSum 19.9± 1.20 26.8± .760 23.4± .893 † ‡ 25.9± 5.91

Full
BART-large 32.9± 1.03 28.4± .996 30.6± .609‡ 17, 2± 3.71
BART-CNN 30.8± 2.84 27.9± 1.01 29.4± 1.26 17.9± 4.38
BART-XSum 34.5± 1.38 28.0± .841 31.2± .709‡ 15.8± 3.66

Suff.
BART-large 32.2± 1.75 28.2± .711 30.2± 1.05‡ 17.0± 3.55
BART-CNN 29.6± 2.14 27.9± .875 28.8± 1.26 18.7± 4.22
BART-XSum 32.7± 1.22 28.6± 1.35 30.7± 1.13‡ 16.0± 3.86

Table A.2.: Results of the conclusion generation approach based on two five-fold cross validation with and
without fine-tuning. † and ‡ mark significance over the BART-large and BART-CNN models.
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Table 5.6

B1 B2 R1 R2 M

BART-large
Suff. 11.9± .382 1.79± .191 16.0± .456 2.75± .323 15.5± .730
Insuff. 10.7± .732 1.59± .220 15.8± 1.20 2.72± .429 16.3± 1.15

BART-CNN
Suff. 14.4± .494 2.06± .291 18.9± .553 3.20± .430 16.8± 1.08
Insuff. 12.5± .599 1.89± .321 17.5± .821 3.01± .450 17.0± 1.09

BART-XSum
Suff. 19.9± .758 2.55± .260 20.0± .620 3.30± .410 14.3± .852
Insuff. 19.4± 1.23 2.20± .727 19.8± 1.78 3.29± .959 14.0± 1.74

Table A.3.: Results of the conclusion generation approach based on two five-fold cross validation without
fine-tuning split by sufficient and insufficient arguments.

BS-P BS-R BS-F1 Len.

BART-large
Suff. 8.62± .814 24.0± .659 16.2± .566† 50.3± 20.9
Insuff. 4.49± 1.77 24.4± 1.17 14.3± 1.16 57.7± 18.5

BART-CNN
Suff. 14.9± .937 28.1± .601 21.5± .505† 41.7± 10.5
Insuff. 11.1± .988 27.7± 1.06 19.3± .727 47.7± 11.2

BART-XSum
Suff. 19.7± 1.43 26.4± .739 23.1± .903 26.2± 5.77
Insuff. 20.4± 1.32 27.5± 1.59 24.0± 1.38 25.3± 6.12

Table A.4.: Results of the conclusion generation approach based on two five-fold cross validation without
fine-tuning split by sufficient and insufficient arguments. † marks significance improvement over
the the other class.
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Table 5.7

B1 B2 R1 R2 M

BART-large
Suff. 26.6± 1.27 4.01± .671 21.4± 1.20 4.32± .749 13.3± 1.50
Insuff. 26.1± 1.91 4.01± .986 21.5± 2.11 4.63± .973 13.5± 1.81

BART-CNN
Suff. 24.8± 2.13 3.65± .789 20.0± .979 3.99± .612 12.6± 1.42
Insuff. 24.5± 3.13 3.59± .962 20.6± 1.49 4.07± .984 13.1± .952

BART-XSum
Suff. 28.4± 1.39 4.24± .693 21.2± .951 4.24± .715 12.3± 1.13
Insuff. 27.0± 1.96 4.13± .755 20.9± 2.07 4.16± .963 12.6± 1.85

Table A.5.: Results of the conclusion generation approach trained on the Full dataset based on two five-fold
cross validation with fine-tuning split by sufficient and insufficient arguments.

BS-P BS-R BS-F1 Len.

BART-large
Suff. 32.5± .954 27.9± 1.08 30.3± .429 17.3± 3.79
Insuff. 33.5± 1.61 29.2± 1.48 31.4± 1.30† 17.1± 3.56

BART-CNN
Suff. 30.8± 2.79 27.5± 1.09 29.2± 1.15 17.9± 4.29
Insuff. 31.0± 3.23 28.6± 2.08 29.8± 2.15 18.1± 4.54

BART-XSum
Suff. 34.6± 1.80 27.6± 1.18 31.1± 1.04 15.8± 3.63
Insuff. 34.2± 1.10 28.7± 1.39 31.5± .964 15.9± 3.71

Table A.6.: Results of the conclusion generation approach trained on the Full dataset based on two five-
fold cross validation with fine-tuning split by sufficient and insufficient arguments. † marks
significance improvement over the the other class.

A.1 Experiments and Evaluation: Conclusion Generation 77



Table 5.8

B1 B2 R1 R2 M

BART-large
Suff. 25.5± 1.46 3.81± .320 20.6± .907 3.97± .487 12.9± 1.20
Insuff. 25.4± 2.21 3.91± .776 21.0± 1.72 4.27± .821 13.0± .837

BART-CNN
Suff. 24.8± 1.58 3.59± .425 20.8± 1.22 3.99± .574 13.3± .832
Insuff. 23.1± 1.86 3.16± .759 20.0± 1.24 3.68± .622 13.0± .762

BART-XSum
Suff. 26.3± 1.37 4.01± .516 21.2± 1.36 4.14± .843 13.2± 1.50
Insuff. 25.1± 1.17 3.57± .739 20.6± 1.23 4.23± .802 13.0± 1.05

Table A.7.: Results of the conclusion generation approach trained on the Suff. dataset based on two five-fold
cross validation with fine-tuning split by sufficient and insufficient arguments.

BS-P BS-R BS-F1 Len.

BART-large
Suff. 31.8± 1.40 27.8± .996 29.9± .806 17.7± 4.31
Insuff. 32.9± 2.82 28.9± 1.59 31.0± 2.13 17.3± 4.11

BART-CNN
Suff. 30.1± 2.03 27.9± .701 29.1± 1.01† 18.5± 4.16
Insuff. 28.6± 2.48 27.8± 1.67 28.7± 1.84 18.9± 4.75

BART-XSum
Suff. 32.7± 1.70 28.5± 1.46 30.6± 1.43 17.3± 3.89
Insuff. 32.7± .850 28.8± 1.79 30.8± 1.17 17.1± 3.97

Table A.8.: Results of the conclusion generation approach trained on the Suff. dataset based on two five-
fold cross validation with fine-tuning split by sufficient and insufficient arguments. † marks
significance improvement over the the other class.
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