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Abstract.
In this work, we examined the effectiveness of Semi-supervised learning for the E2E-
ABSA problem. With two Semi-supervised methods, we also performed cross-domain
analysis across five domains. Finally, we also performed E2E-ABSA experiments with
erroneous transcriptions and two other settings to evaluate the outcome. As part of the
first research task, the pre-trained BERT model with additional layers is used for the
downstream task of E2E-ABSA sequence labeling. The model is then incorporated as
part of two Semi-supervised methods, namely the Self-Training and the Tri-Training.
With Self-Training, one of the models achieved a Macro-F1 increment of 28.67% over
the baseline, and with Tri-Training, one of the models improved on its baseline by
a Macro-F1 percentage of 22.53%. Altogether, on the Self-Training and Tri-Training
experiments with four models, one model from Self-Training and two different models
from Tri-Training outscored its baseline. For the second research task of cross-domain
analysis, we evaluated the Semi-supervised models on their domain adaptation possi-
bilities. On the individual evaluation of sentiment and aspect, we found the domain
adaptation in terms of sentiment to be reasonable on four domains. However, the
evaluation of Aspect terms conducted on all domains combined was inadequate and
indicated scope for improvement. On the final research task of evaluating E2E-ABSA
under erroneous transcriptions from an external Automatic Speech Recognition system
(ASR), we found that even amidst a notable error rate, the E2E-ABSA determina-
tion remained unaffected. This observation remained true even while evaluating the
sentiment on instances containing erroneous and spontaneous speech instances. The
experiments with these instances outscored even the ones involving the gold standard
data. We establish that transcriptions obtained from an ASR are capable enough for
deducing aspects and sentiment, despite errors. We also observed that in the runs
involving one-fifth of the original unlabeled data and faulty transcriptions, the Macro-
F1 scores improved over the experiments that included complete unlabeled data. The
significance of the moderate addition of unlabeled samples for semi-supervised works
might also be an outcome of this work. In conclusion, this work expands the other
research on Semi-supervised methods for E2E-ABSA by signifying their constructive
results, leading to improved performances and generalization into other domains.
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Introduction
1

1.1 Motivation
Sentiment is a long-term disposition evoked when a person encounters a specific topic, person, or
entity (Deonna and Teroni, 2012). Understanding these inclinations has been a topic of interest
for research and subsequently has also been a driving force for many modern applications.
Sentiment analysis hence aims to uncover the underlying sentiment that the reviewer holds
against an entity. Earlier sentiment analysis works were predominantly carried out over text
data (Soleymani et al., 2017). Textual data in terms of movie reviews, restaurant reviews, etc.,
were largely available over the web which made these analyses possible in a mainstream manner.

Recent advances in the field of deep learning have enabled great progress in the sentiment
analysis field. According to the survey by Soleymani et al. (2017), in terms of twitter-based
sentiment analysis competitions, deep learning-based approaches outscored their counterparts
in SemEval challenges (Pontiki et al., 2016; Tang et al., 2014). Contextual info which is now
known to be crucial for these analyses has been greatly aided with the introduction of Long
Short-Term Memory networks (popularly known as LSTMs) (Schmidhuber et al., 1997). The
introduction of attention (Vaswani et al., 2017) based Sequence models has also been known to
be helpful.

Lately, with people’s opinions being shared online through forms other than text, the focus
has shifted towards audio-video sources. This, along with the limitations of text-only analysis
of sentiment (such as the presence of colloquialisms) and concurrent advances made in deep
learning, has today enabled multiple research to venture into sources other than language alone
for more info. This has in turn enabled many state-of-the-art approaches to derive sentiment
better. Hence, in this work, it is also our intention to look for sources of different modalities to
derive the sentiment.

In addition to the above, we also delve into two other perspectives of sentiment analysis
for this thesis. The first is a sub-field of sentiment analysis known widely as the Aspect Based
Sentiment Analysis (ABSA). Here, Aspect Mining, sometimes abbreviated as AM, and Aspect
Sentiment Classification, abbreviated as ASC are the two goals. These are also the point of
interest, either solely or together to many research works.

The majority of works in the research area of ABSA are set in the supervised setting, for
either of its sub-tasks. But there have been a few approaches in unsupervised backdrop even
though most of these works are focused on the sole task of AM (Jo and Oh, 2011; He et al.,
2017; Zhao et al., 2010). To the best of our information, in the supervised setting, there are no
works for ABSA when there are multiple domains involved. A well-known countermeasure for
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1.2 Problem Statement

such cases, in general, is known to be the incorporation of a semi-supervised approach. Hence
this will be the other perspective that will be the focus of this study.

1.2 Problem Statement

The field of sentiment analysis is extremely broad, with studies focusing on many domains for
various applications and use cases. The sub-field of sentiment analysis, ABSA, comes with three
existing research problems. The original ABSA, aiming to predict sentiment against a given
aspect entity, the Aspect Oriented Opinion Words Extraction and the E2E-ABSA (Li et al.,
2019c). In the E2E-ABSA challenge, the goal is to accomplish both the sub-tasks of ABSA
together. Over the years, there have been many challenges or competitions in several domains
to undergo each of these tasks, either solely or together. The SemEval challenges (Pontiki et al.,
2016, 2015, 2014) whose publishers have their datasets released can be said to be the most widely
used datasets here. The datasets in question are published over three consecutive years (Task-4
from 2014, Task-12 from 2015, and Task-5 from 2016) and comprise reviews for the restaurant,
laptops, etc. Here, sentences of varied lengths are annotated for sentiment and words that best
describe the aspect to which the said sentiment is associated with. The goal is to solve the
detection of both the aspect and sentiment together as a joint task rather than two separate
tasks.

At the time of writing this, the research works involving a Semi-supervised approach to
the ABSA problem are majorly on the AM task. Few works in the domain use prior domain
knowledge to aid an unsupervised topic model. This, however, requires domain-specific insights.
Xu et al. (2018) used pre-training to learn domain-specific word embeddings from unlabeled
reviews which are then used in a supervised learning setting. For the ASC task, a few works
(Lau et al., 2014; Hussain and Cambria, 2018; Cambria et al., 2015, 2016) use commonsense
knowledge networks which can also be a case of a semi-supervised approach. Miao et al. (2020)
used data augmentation to perform Semi-supervised opinion mining.

To the best of our information, the work, SEML (Li et al., 2020b) is the only Semi-supervised
approach to propose an end-to-end deep learning Semi-supervised framework that does both the
AM and ASC tasks. The work, however, does not provide cross-domain dataset analysis as the
dataset considered for both the labeled and unlabeled sets were from the same domain.

Hence with the Semi-supervised setting for the thesis, we also specifically focus on the fol-
lowing things. We tackle the task of an E2E-ABSA problem. For this, we leverage the SemEval
dataset re-prepared by Li et al. (2019b) as part of our labeled dataset. The unlabeled data coun-
terpart for this sub-goal would be obtained from the CMU-MOSEI (Zadeh et al., 2018), with
individual video captions being used for training. The CMU-MOSEI consists of videos focused
on multiple topics such as movie reviews, short speeches on politics, investments, etc. These
different subject matters act as different domains against which sentiment prediction would be
made. It is to be noted that, though we derive the data for the above task from sources of
different modalities, we do not model different modalities for the inference of sentiment. This is
to say that only the sources would be from more than one modality even though we finally base
all our tasks, as part of the thesis, solely on textual data eventually captured.

Hence, with the above setting defined, we devise the following research tasks for this work.

E2E-ABSA with Semi-supervised approaches As part of this task, first, we create a few baseline
models capable of tackling the E2E-ABSA. We then incorporate these models with two Semi-
supervised methods to record their E2E-ABSA performances.
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Chapter 1. Introduction

For the baseline, we create a computational model based on the bert-base-uncased with a
few additional layers. With BERT capable of encoding representations of words in a sentence,
we then pass on these representations to the additional layers capable of labeling every word
for aspect and sentiment. For the latter, we make use of the work from Li et al. (2019c). The
baseline models would be trained in a supervised manner from the SemEval datasets belonging
to Restaurant and Laptop domains.

Next, we make use of these models and employ two Semi-supervised methods. Specifically,
we make use of the Self-Training and the Tri-Training methods with unlabeled data from CMU-
MOSEI to evaluate E2E-ABSA performances.

Hence, the outcome of this task would be the results of the baseline implementations com-
pared against the two mentioned Semi-supervised methods.

Cross-domain analysis of E2E-ABSA This task would be an extension of the previous task.
The CMU-MOSEI dataset used as the unlabeled data counterpart contains data belonging to
various domains. Since the distinction between them are not readily available, we first devise a
method using Topic modeling to classify them into various domains.

We then leverage the models from two Semi-supervised methods to predict aspects and
sentiment to these domains that we then evaluate.

Hence, the outcome of this task is to segregate domains and predict aspects and sentiments
for them. The predictions for each domain are then evaluated on the sentiment separately. The
aspect evaluation, however, for the lack of sufficient labels is done on all domains combined.

E2E-ABSA across Erroneous transcriptions As part of the final research task, we investigate
E2E-ABSA with faulty transcriptions. For this, we first obtain the transcriptions for the videos
belonging to CMU-MOSEI from an external Automatic Speech Recognition system (ASR).
With the models from the Semi-supervised methods, we obtain E2E-ABSA predictions with the
transcriptions from the ASR and the gold standard as unlabeled data, in separate runs.

As part of the other adjacent experiments in this task, we evaluate for sentiment in the
additional setting of just the erroneous transcriptions and the instances of spontaneous speeches
involving incomplete transcriptions, repetitions, hesitation, etc.

Hence the outcome of this task is the direct comparison of E2E-ABSA results with runs
from the ASR transcriptions and gold standard. Additionally, the results for the evaluation on
sentiment under the setting of just the erroneous transcriptions and spontaneous speeches would
be made.

3
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1.3 Outline
With the research tasks for the work defined, we now give the outline of this entire work. In
Chapter 2, we present the overview of relevant literature referenced by our work. We also present
concepts that are important to this work. In Chapter 3, we explain in detail the datasets used
as part of this research and present the evaluation methods for evaluating one of our research
tasks. In Chapter 4, we present the approaches used for various research tasks of this work.
We explain the baseline models in section 4.1. In section 4.2, we explain how we use the two
Semi-supervised methods for our work. In section 4.3, we present the approach to the second
research task of this work, the cross-domain analysis of E2E-ABSA. We present the approach to
the final research task of our work, E2E-ABSA across Erroneous transcriptions, in section 4.4.

In Chapter 5, we give out additional experiment settings wherever utilized and follow them
up with the results and analysis. Finally, we conclude our work in Chapter 6 and present possible
future research that can extend this work.
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2

2.1 Natural Language Processing

Natural Language Processing or NLP, a branch of Computer science and subsequently Artificial
Intelligence, deals with equipping machines with the ability to read, understand and interpret
meaning from Human discourse and, in many cases, reproduce it in some form. NLP essentially
involves textual data and finds its application in many use cases such as Language Translation,
Question Answering, Smart assistants, Sentiment Analysis, and so on. Classical NLP approaches
included rule-based, lookup-based methods to address a problem, while the modern NLP uses
statistical methods such as Machine Learning to infer the patterns and regularities in the text
to generate a probabilistic structure to accomplish the task in hand.

NLP is also used in the context of various unsupervised and Reinforcement learning. How-
ever, in our case, the supervised approach is of interest. In supervised NLP problems, the models
are trained on annotated datasets that facilitate learning. Text classification, a classical super-
vised NLP problem uses labels or annotations to assign a certain category to the text or part of
the text. Sentiment Analysis, a major text classification problem and one of the key elements
of this work, assigns sentiment to text.

In the next section, we briefly discuss the text classification problem, especially, in the context
of Sentiment Analysis.

2.2 Text Classification

Earlier Text classification methods used shallow learning models such as K-NN-based classi-
fication, Support Vector machines (SVM), Decision Trees, etc. These classifiers were mainly
general purpose in nature and hence were not task-specific (Gasparetto et al., 2022). Some of
the earlier works in the field of Sentiment Analysis employed these classifiers. To name a few,
Kang et al. (2012) presented a Naive-Bayes classifier that classified sentiments on a restaurant
dataset. Li and Li (2013) used Support Vector machines (SVM) for opinion classification on
Twitter platform data. Some works used Decision Tree classifiers with algorithms such as CART,
ID3, C5.0, C4.5 (Revathy and Lawrance, 2017; Hssina et al., 2014; Singh and Gupta, 2014; Patel
and Prajapati, 2018) for opinion mining.

However, with the introduction of word embeddings such as Word2Vec and GloVe, them
paired with simple classifiers achieved better results (Gasparetto et al., 2022). Gasparetto et al.
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(2022) summarize them in an informal explanation that this is akin to how a person would likely
be able to label a piece of text if they understood what it meant.

Further, Deep-learning-based models such as the Recurrent neural networks (RNNs), Long
short-term memory networks (LSTMs), captured better representations of text than the above
counterparts and soon achieved state-of-the-art results (Kowsari et al., 2019). These models are
also called sequence models since they view text as a sequence of words/characters. They are
also employed in our thesis for the E2E-ABSA task and are explained in further sections.

2.3 Semi Supervised Learning
Supervised learning requires labeled data. But in circumstances where their availability is scarce
or there are more unlabeled data than the labeled counterparts, the supervised learning process
becomes difficult. In such cases, Semi-supervised learning becomes a viable option (Zhu and
Goldberg, 2009). It also becomes a feasible option in real-world applications since labeling is
more expensive than the collection of data due to the former being labor-consuming.

While there are numerous Semi-supervised approaches proposed over the years, we will
present the ones that are relevant to this work.

2.3.1 Self-Training
Self-Training (Yarowsky, 1995; McClosky et al., 2006; Reichart and Rappoport, 2007) is one of
the earliest introduced Semi-supervised approaches that leverage the model’s prediction of the
unlabeled samples for further learning.

Figure 2.1: Self-Training Algorithm 1

In Self-Training, a model m is initially trained on a labeled training set L. After this, the
model provides predictions m(x) in the form of a probability distribution over C classes for all
examples x from an unlabeled data set U . If the probability assigned to the most likely class is
higher than a pre-considered threshold τ , then x is added to the labeled examples with the label
p(x) = argmax(m(x)). The corresponding sample then becomes a pseudo-labeled sample for the
next iteration of training. This is then carried out at each iteration. The process could generally
be either repeated for a fixed number of iterations or until the predictions on unlabeled examples
are no more confident. This instantiation is the most widely used and shown in Figure2.11.

Van Asch and Daelemans (2016) believe that Self-Training remains a controversial approach
to Semi-supervised learning particularly when its effectiveness is taken into consideration. Sagae
(2010) opines that Self-Training is at its most effective when the training data and the test data,
which in this case, the unlabeled samples used at each iteration, are sufficiently dissimilar.

Hence Self-Training can be seen as a form of learning for domain adaptation wherein the
training and test data are from different domains, though the notion of the domain itself remains
debatable (Van Asch and Daelemans, 2016).

1from: https://ruder.io/semi-supervised/index.html
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Chapter 2. Literature

In this work, we also consider the application of Self-Training to be a domain adaptation
task. Here, essentially we evaluate the Self-Training method across multiple domains thereby
providing cross-domain analysis. Further details on this, will be explained in further chapters.

2.3.2 Tri-Training

Tri-Training, first introduced by Zhou and Li (2005) is essentially a form of Multi-view Training.
In Multi-view Training, the agenda is that different models trained on different views of data
help each other in improving their performances. This is a collaborative approach that aims to
ideally, complement the learning made by the other models. The views may come from training
these models with different features, by the architecture of the models themselves, or by the
data on which they are trained.

The algorithm for the Tri-Training is presented in the figures 2.2 and 2.3. There are two
phases to the implementation. In the first phase, the three classifiers are initially trained by
Bootstrap sampling of the labeled training data, as shown in Figure 2.2.

Figure 2.2: Tri-Training Algorithm Initialization phase, from Zhou and Li (2005)

Then in the second phase, the update phase, shown in Figure 2.3, each of the models are
checked for whether they are eligible for re-training with a portion of the unlabeled sample
added for them at that iteration. The criteria that any model h is eligible for this is based on
the error it generates at the previous iteration. If the error is lesser than that of other previous
ones, they are to continue training. For this purpose, when a model is trained at an iteration,
it is immediately checked for an error measurement at the beginning of the next iteration. The
iteration at which this does not hold, the model stops re-training.

Further, there is also a criterion to check whether an unlabeled sample could be added for
training to a classifier at any iteration. This is shown in the following relation:

L[t] ∗ e[t] < L[t − 1] ∗ e[t − 1] (2.1)

where L denotes the number of samples for training and e denotes the classification error at
iteration t and t − 1. The equation suggests that the combination of the number of unlabeled
samples L[t] and error e[t] at any iteration t should always be lesser than its previous iteration.

The main aim to limit the samples added for training is to compensate for the classifica-
tion noise rate. This is based on the idea that the increase in classification noise rate can be
compensated if the amount of newly labeled samples added is just sufficient.

Ruder and Plank (2018), in their work of POS tagging under Domain shift, found that
Tri-Training outperformed even the then other recent state-of-the-art approaches. Hence, we
try to investigate how well the Tri-Training approach (i) tackles the E2E-ABSA problem when

7
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Figure 2.3: Tri-Training Algorithm Update phase, from Zhou and Li (2005)

8
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compared to that of supervised setting and (ii) tackles E2E-ABSA for cross domain settings.
Further details are provided in the next chapters.

2.4 Language Models

Language modeling is the task of predicting the next word or sequence of words with an already
existing sequence available. While the goal is to assign a likelihood to a sentence, it can also
be considered a task where the next word is predicted based on the sequence at hand. These
models are built on an assumption that the likelihood of a word depends entirely on the n words
that precede it. Hence these are also sometimes called n − gram models.

While the language models were initially successful, they had two main problems2. First is
the inability to capture context info2. Context can hugely influence the choice of the next word
and language models cannot capture them. The next main problem is the scale and scarcity2.
As the size i.e., n increases, the number of possible permutations rises steeply, even though most
permutations never occur in the text. Non-occurring n-grams then create a sparsity problem.
The granularity of the probability distribution can be very low; as a result, most of the words
have the same probability.

Neural Network-based language models combat the sparsity problem by embedding layers,
creating an arbitrary-sized vector of each word. These embeddings then capture the needed
semantic, hierarchical, and context info2.

2.4.1 Recurrent Neural Networks

The Recurrent Neural networks or RNNs were able to solve the sparsity problem prevalent in
the language models. RNNs are also known to be part of sequence models since they capture
information as a sequence of units. In a textual setting, these units could be words or characters,
depending on the problem.

Some earlier works (Socher et al., 2013; Poria et al., 2016; Dragoni and Petrucci, 2017) used
RNNs for the sentiment classification tasks. But it quickly came to be known that RNN, though
capable of carrying contextual info, was ultimately limited when the task required capturing
contexts at a longer length. It also suffers from the vanishing-gradient problem which meant
that the gradients became smaller when they reached earlier layers during backpropagation.
These gradients that facilitate learning would then be inconsequential if they became too low.

2.4.2 Long Short-Term Memory Networks

Long short-term memory networks or LSTMs, introduced by Hochreiter and Schmidhuber (1997)
were very effective in retaining long-term dependencies using the mechanism of gates. The
architecture of LSTM is shown in Figure2.4.

Each cell shown in the figure corresponds to one unit in the LSTM and each unit comprises
cells and states. The cells are memory blocks that can be transferred to another LSTM cell by
the use of gates. These gates include the forget gate, input gate, and output gate.

The forget gate is responsible for removing info from the cell state. It takes in as input, the
ht−1 (info from the previous hidden state ) and xt (current input). A sigmoid function used on
top of both input vectors decides whether the cell state should retain the value (if 1) or not (if
0).

2 https://informationmatters.org/2022/05/the-power-and-the-pitfalls-of-large-language-models-
a-fireside-chat-with-ricardo-baeza-yates/
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2.4 Language Models

Figure 2.4: Architecture GRU vs LSTM, from Kowsari et al. (2019)

The input gate is responsible for adding info to the cell state. The gate takes in the input
ht−1 and xt.

The output gate is then responsible to pass on values to the next LSTM cell, which it deems
can be valuable.

The other variant of LSTM called the Bidirectional-LSTMs (Bi-LSTMs) uses information
from both the previous and the next time step. Both LSTMs and Bi-LSTMs have been a part
of various sentiment analysis works (Vateekul and Koomsubha, 2016; Uysal and Murphey, 2017;
Rao et al., 2018) and have managed to be generally better than RNNs.

2.4.3 Gated Recurrent Units

Gated Recurrent Units or GRUs (Cho et al., 2014) are a variation of RNNs and are similar to
LSTMs in their architecture, shown in Figure 2.4.

As opposed to the LSTMs, GRUs employ two gates, namely the update gate and the reset
gate. There is also only the hidden state and no cell state.

The update gate functionally is similar to that of the LSTMs, while the reset gate is respon-
sible for deciding whether the info from the previous hidden state is vital to be passed on or
not. This can be seen in the calculation of the current hidden state which is the element-wise
product of the reset gate and the previous hidden state.

2.4.4 The Transformer

With the paper "Attention is all you need", Vaswani et al. (2017) introduced the Transformer
architecture. The architecture consisted of Encoder-Decoder stack. Here, the encoder maps an
input sequence of symbol representations (x1, ..., xn) to a sequence of continuous representations
z = (z1, ..., zn). Given z, the decoder then generates an output sequence (y1, ..., ym) of symbols
one element at a time (Vaswani et al., 2017)

Encoder The encoder stack comprises two sub-layers. The Multihead self-attention and a fully
connected feed-forward network. A special encoding step performed before the first layer of the
encoder ensures that the embeddings for the same word appearing at a different position in the
sentence will have a different representation. This step is called positional encoding (Gasparetto
et al., 2022). Also, here, the input embeddings are three different weight vectors to generate
different representations known as Q (query), K (key), and V (value), given below:

Q = X.Wq, K = X.Wk, V = X.Wv (from V aswaniet al. (2017)) (2.2)

where Wq, Wk, Wv ∈Rdim×dk are learnable parameters and X ∈RN×dim are the embeddings
for the input sequence and Q, V, K ∈RN×dk .

10
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Figure 2.5: Transformer Architecture, from Vaswani et al. (2017)
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The Attention which is called as Scaled Dot-Product attention in the original paper is then
calculated by the following equation:

Attention(Q, K, V ) = softmax(QKT /
√

dk).V (from V aswaniet al. (2017)) (2.3)

While the above denotes the concept of attention, the authors also propose the idea of ’Multi-
head Attention’. The number of heads employed by the authors in their work was h = 8. This
is essentially projecting the queries, keys, and values h times with each time, a different learned
linear projection being made. These are all essentially done in parallel and hence there is no
additional time overhead involved. With different heads, for any input item, its context to the
other parts of the input are learned and then all these are concatenated at the end to provide a
rich representation for any input item.

MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O (from V aswaniet al. (2017)) (2.4)

where headi = Attention(QW Q
i , KW K

i , V W V
i ).

Decoder The Decoder stack is made of three layers. Here, the Attention layers are masked.
That is, during training, the decoder is supplied with the real target sequence, But during
Inference, the generation of the next word depends on the previous sequence. While predicting
the token at position i, the masked MH self-attention layer ensures that only the self-attention
scores between words at position [1, i,−1] are used. M is set to -inf for masked positions, and 0
otherwise. The exponential in the softmax operation will zero the attention scores for masked
tokens.(Gasparetto et al., 2022).

MaskedAttention(Q, K, V ) = softmax(QKT + M/
√

dk).V (from (Gasparettoet al., 2022))
(2.5)

The output of this layer is sent to the Multi head attention that also receives the output
from the encoder. The output from this layer after passing through the feedforward layer is then
fed to linear and finally, a Softmax layer to give out the most probable word.

There are few skip connections or residuals present in both encoders and decoders for better
results (Wankhade et al., 2022).

Attention-based models have been very effective in the Sentiment analysis problem. To name
a few, Yuan et al. (2018) employed Bi-LSTM with attention mechanism for their Multi-domain
sentiment classification work, Basiri et al. (2021) proposed Attention-based Bidirectional CNN-
RNN Deep model which gave them good results.

Attention-based models have also been used for Aspect based Sentiment analysis problem
(Wankhade et al., 2022) which is one of the focuses of our work. In addition to this, we also
employ the Self-Attention layer for the task of sequence labeling of Aspect and Sentiment tags
for the sentences. We provide further details regarding this in the next chapters.

2.4.5 BERT
Bidirectional Encoder Representations from Transformers or BERT is a multi-layer bidirectional
Transformer encoder. Since its first introduction, it has achieved great performances in the field
of deep learning (Wankhade et al., 2022) and has been also used for a multitude of NLP tasks.
The main advantage of BERT is that it is already pre-trained on BookCorpus (Zhu et al.,
2015) consisting of 11038 unpublished books3 containing 800M words and English Wikipedia

3as per: https://huggingface.co/bert-base-uncased#:~:text=of%20this%20model.-,Training%20data,
lists%2C%20tables%20and%20headers%
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consisting of 2500M words. BERT model can be trained in two ways: pre-training and fine-
tuning. Fine-tuning offers a great advantage to many NLP tasks since it reduces the training
overhead significantly. Due to this, BERT is employed in many works, for Sentiment Analysis
with studying the impact of coronavirus in social life (Singh et al., 2021), Aspect-based Sentiment
Analysis (Li et al., 2019c), Spam detection (Yaseen et al., 2021), For detection of text-based
emotion (Acheampong et al., 2021). A part of our work is adapted from the Aspect-based
Sentiment Analysis work mentioned above (Li et al., 2019c) which is further elaborated in the
next chapters.

BERT is made of the encoder stacks of transformer and is available primarily in two variants,
The BERT base and The Bert large. The BERT base consists of 12 encoders stacked upon one
other containing 110 million parameters and The BERT large consists of 24 encoders containing
330 million parameters. Our work makes use of the base version for all the experiments made.

BERT is pre-trained with two objectives:

Masked LM: The model takes a text as input and randomly masks 15% of the words. The
masked sentences are then processed by the model which now has to predict the masked words.
This allows the model to learn the bidirectional representation of the sentence.

Next Sentence Prediction: The model concatenates two masked sentences as inputs during
pretraining. These sentences could either be next to each other in the original text or not. The
model then has to predict if the two sentences were following each other or not. This task is
meant to allow the model to better learn sentence relationships (Wankhade et al., 2022).

The outcome of these tasks is that the model would now be able to be finetuned to the
downstream tasks very easily. Devlin et al. (2018) surmise that there have been very good
results obtained in classification by doing just this as the model passes representations obtained
by the encoders through a single-layer, feed-forward neural network.

2.5 Aspect-based Sentiment Analysis

Aspect-based Sentiment analysis (ABSA) has been a sub-field of Sentiment Analysis and opinion
mining for over a couple of decades (Schouten and Frasincar, 2015; Nazir et al., 2020). In the
ABSA problem, the concerned target on which the sentiment is expressed shifts from an entire
sentence or document to an entity or a certain aspect of an entity (Zhang et al., 2022). Zhang
et al. (2022), in their survey, categorize ABSA broadly as Single ABSA tasks and Compound
ABSA tasks.

In Single ABSA tasks, either aspect sentiment classification on a pre-specified aspect term
(Jiang et al., 2011) or only the aspect term extraction alone is carried out (Liu et al., 2015).

In Compound ABSA tasks, the aim is to not only extract the aspect terms and the tied
sentiment (or in some cases opinion terms) but also to accomplish them together. Some works
try to extract the aspect term and its associated opinion terms as a pair (Zhao et al., 2020;
Chen et al., 2020). For example, In the sentence, The portrait is beautiful , the mentioned
works try to extract ( portrait, beautiful ) as an aspect and opinion pairs together. But in
our work, we try to tackle the E2E-ABSA task which aims to derive the aspect term and the
associated sentiment polarity together. This ties back to the Aspect Mining or AM and the
Aspect Sentiment classification or ASC tasks that were mentioned in the section 1.1.

According to Zhang et al. (2022), there are three ways the task has been approached in
the literature. The first couple approaches tackle the task as a sequence-labeling work where
every word of the sentence is tagged to whether it belongs to the aspect of that sentence or not.
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Figure 2.6: Demonstration of the joint and unified tagging methods for the E2E-ABSA task,
from Zhang et al. (2022)

Usually, this is annotated with a particular labeling scheme (i.e, BIO or BIEOS, to account for
multiple aspect words).

In the Joint method, the labels are provided in two rows as shown in Figure 2.6. The first
row captures the aspect words and their positions if there are multiple aspect words. The second
row denotes the sentiment bound to those words. Here, the task is also tackled in a multi-task
learning framework (Liang et al., 2020; Luo et al., 2020; Chen and Qian, 2020b; He et al., 2019;
Luo et al., 2019) with two subtasks aiming to extract aspect and sentiment terms and a final
prediction being made from the combination of two sub-tasks (Zhang et al., 2022).

There are also a few works (Wang et al., 2018; Li et al., 2019b,c) that approach the task
with a Unified (or collapsed) tagging scheme, where the tags for both the aspect and sentiment
are provided together. This can also be seen in Figure 2.6 that the tags contain two parts. The
first part is made of a BIEOS tagging scheme denoting whether the corresponding words are
at the Beginning (B), Inside (I), or at the End of the Aspect (E). If the words do not define
the aspect, they are tagged an ’O’ and if there is only a single word aspect, then the word is
tagged with an ’S’. The second part now contains the sentiment polarity to the said aspect and
∈ {POS, NEU, NEG}.

In a novel third way by Hu et al. (2019), the authors approach the task in a sequential manner,
they infer that the sequence labeling approach suffers from problems such as huge search space
and sentiment inconsistency. The authors propose a span-based extract-then-classify framework,
where multiple opinion targets are directly extracted from the sentence under the supervision
of target span boundaries, and corresponding polarities are then classified using their span
representations (Hu et al., 2019). This approach can be seen as one conducted with a pipeline
since the tasks are undertaken sequentially.

With us adopting a part of the work from Li et al. (2019c) to ours, our approach hence
tackles the E2E-ABSA problem as a sequence labeling problem that uses a collapsed-labeling
scheme format for the training.

2.6 Semi-Supervised Approaches for ABSA
One of the focuses of this work is to evaluate the E2E-ABSA performances across domains. We
strive to evaluate how well an E2E-ABSA model trained on one domain can generalize to the
others. This cross-domain evaluation is also known as domain adaptation in some literature. In
this work, we use these terms interchangeably.

While the notion of the domain remains a vague concept (Van Asch and Daelemans, 2016),
in one of the tasks, we try to divide the data into different topics using one of the prominent
scientific methods known to do so. While doing so, we try to give it a sense of scientific meaning
in how we divide the data. But, this is elaborated in section 5.3.1

As we tried to tackle this task, we realized the data from the other domains did not contain
the annotation needed for the E2E-ABSA task. Hence, when multiple domains are involved, and
in the setting of E2E-ABSA, we concluded that a Semi-supervised approach may be warranted.
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Many of the works in the Semi-supervised approach to the ABSA are from the sole task of
AM. Some works (Mukherjee and Liu, 2012; Chen et al., 2013; Li et al., 2019a) use topic modeling
with pre-defined domain-specific seed words for the AM task. Few approaches have incorporated
varied forms of data augmentation such as masked sequence-to-sequence generation(Li et al.,
2020a), soft prototype generation (Chen and Qian, 2020a), progressive self-training (Wang et al.,
2021) to generate more pseudo-labeled data for the AM task.

One work aiming for the ASC incorporates the commonsense knowledge into their attentive
neural network (Ma et al., 2018).

To the best of our knowledge, Li et al. (2020b) is the only work that proposes an end-to-end
Semi-supervised Deep learning framework that can leverage labeled and unlabeled reviews for
both the AM and ASC sub-tasks. The work, however, incorporates labeled datasets from the
Laptop and Restaurant domain. The unlabeled data is collected from the laptop review of the
Amazon review dataset (He and McAuley, 2016) and restaurant reviews from the Yelp review
dataset(yelp,2014). Hence, they do not provide cross-domain analysis as the dataset considered
for both the labeled and unlabeled sets were from the same domains.
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Datasets & Evaluation Techniques
3

In this chapter, we first give an account of the datasets used in the ABSA task. Then we discuss
the version of this dataset we employ in our work as part of the labeled dataset. In the next
section, we discuss the dataset incorporated as part of the unlabeled data counterpart of our
work. We conclude this chapter by presenting techniques to evaluate the predictions made on
this unlabeled data.

3.1 E2E-ABSA Datasets
Labeled datasets play a vital role in the development of ABSA methods. For the ABSA task,
the annotated Laptop reviews and Restaurant reviews published as part of SemEval challenges
are the most widely used datasets. These datasets, namely are from SemEval-2014 (Pontiki
et al., 2014), SemEval-2015 (Pontiki et al., 2015), and SemEval-2016 (Pontiki et al., 2016).
The datasets contain annotations of aspect categories, aspect terms, and sentiment polarities
(although not all of them contain all these annotations),. This lends itself to many ABSA tasks
such as aspect mining or aspect sentiment classification(Zhang et al., 2022).

Since the release of the above datasets, there have been modifications and additions done to
it by other works. For instance, the original release did not contain the opinion terms. After
the work of Fan et al. (2019), these additional annotations were added by Xu et al. (2020).

For our work, we make use of the SemEval dataset repurposed by the work of Li et al.
(2019b)1. We also conducted all our experiments on both the restaurant and laptop data samples
which we respectively prefix with REST and LAPTOP in our work. The samples for the former
are accumulated from the respective tasks of the years 2014 to 2016. While, for the latter, we
leverage the repurposed set corresponding to Task-4 of SemEval-2014 (Pontiki et al., 2014).

Figure 3.12 gives a snapshot of one of the data samples from the original SemEval-2014
Task-4 challenge. The annotation is given in an XML format as can be seen. Along the text
XML tag is the individual sentence sample. The aspect terms and aspect categories are given
in their respective XML tags. All the aspect terms are mentioned under the aspect term tag.
Aspect terms, hence are single or multi-word terms naming particular aspects of the target
entity 2. Along with it are the individual properties such as the term, polarity, and the position
of the said aspect term in the sentence. Here, the possible values of the polarity field are:
positive, negative, conflict, and neutral. There is also a mention of the aspect category with

1Also available at https://github.com/lixin4ever/BERT-E2E-ABSA
2 As seen from https://alt.qcri.org/semeval2014/task4/
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Figure 3.1: Illustration of annotation format for the sentences in the REST 2.

an XML tag of its own. As can be seen, for this sample, the category assigned is food. The
possible values of the category field are fixed, and they are: food, service, price, ambiance, and
anecdotes/miscellaneous. A sentence may be classified into one or more aspect categories based
on its overall meaning 2.

For our work, we would be making use of the same data samples modified to suit the
task of sequence labeling as shown in the table 3.1. The sequence labeling includes the info
corresponding to that under the aspectTerms tag of Figure 3.1. The modified annotations are a
consequence of the work by Li et al. (2019b) and we would be adopting it directly to our work.
In the given table, the words are tagged with an ’OT’ tagging scheme. These are also recognized
by the ’IO’ scheme in some works (Sang and Veenstra, 1999). As can be seen in the table, the
corresponding aspect words that were tagged with positive polarity in the original release are
replaced with pairs ’T’ and ’POS’ together. The other words are tagged an ’O’.

All the appetizers and salads were fabulous , the steak was mouth watering
O O T-POS O T-POS O O O O T-POS O O O

and the pasta was delicious ! ! !
O O T-POS O O O O O

Table 3.1: Sequence labeled counterpart for Figure 3.1, obtained from Li et al. (2019b)

There were 1799 and 2741 data samples as part of labeled training data for REST and
LAPTOP, respectively. Additionally, there were 676 and 800 samples for the test data and 200
and 304 samples for the dev set respectively. All these segregations were done by the authors of
the work, Li et al. (2019c) and we do not alter it in our experiments.

3.2 CMU-MOSEI
For the cross-domain evaluation task of our work, we required a dataset that contained data
instances from domains other than the restaurant or laptop. The dataset should also have been
at least rooted in the study of Sentiment Analysis so that it would contain the labels needed for
the evaluation. Some of the datasets that were considered were the IEMOCAP (Busso et al.,
2008), ICT-MMMO (Wöllmer et al., 2013), YouTube (Morency et al., 2011), CMU-MOSI (Zadeh
et al., 2016), CMU-MOSEI 3 (Zadeh et al., 2018) and the muse-car (Stappen et al., 2021). These

3 Available at: https://github.com/A2Zadeh/CMU-MultimodalDataSDK
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datasets are approximately ordered according to their sizes and all of them are well known in
the field of Multimodal Sentiment Analysis, another sub-field of Sentiment Analysis. While
we do not venture into modalities other than text in our work, we still were interested in the
above datasets since they contained at least sentiment labels. The labels were for the manually
annotated transcriptions available for the videos in the respective datasets.

While the ICT-MMMO contained sentiment labels at a video level, the IEMOCAP was not
a publically available dataset. The labels for the muse-car were not aligned at the sentence
level and at the time of exploration, access to it required special permission from the organizers.
Since the labeled set containing ABSA annotations was for the individual sentences, we deemed
it necessary that choosing one of the above datasets as the unlabeled set meant that they should
contain labels for at least sentiment, but at a sentence level. After carefully examining the
remaining choices, we opted for CMU-MOSEI as it contained manual transcriptions of speech
along with sentiment and emotion labels at a sentence level. CMU-MOSEI also was larger than
CMU-MOSI and YouTube which would benefit us with greater training samples (pseudo-labeled
samples).

Figure 3.2: Summary of statistics for CMU-MOSEI 4

Figure 3.2 shows the summary of statistics for CMU-MOSEI 4. While the figure shows there
are 3228 videos to be found, we found that there were 3837 videos available when accessing
the dataset in its raw form. However, the manual transcriptions were available to only 3303
videos. Figure 3.3 shows the distribution of sentiment polarities among the sentences found in
CMU-MOSEI. Also, Figure 3.4 shows the word cloud for the diversity of topics found, with size
denoting the number of videos for the topic.

The CMU-MOSEI comes bundled with the SDK put together by the organizers called the
CMU-MultimodalDataSDK. It is a collection of various datasets along with the CMU-MOSEI,
accessible through an SDK. While the data (i.e, individual videos and their transcriptions) can
also be obtained in the raw form, the labels are obtainable through only the SDK provided.

Annotations for CMU-MOSEI CMU-MOSEI contains annotations for sentiment and emotion.
Sentiment annotations are in [-3,3] according to the Likert scale. Effectively, this would mean
as follows: [3: highly negative, 2: negative, 1: weakly negative, 0: neutral, +1: weakly positive,
+2: positive, +3: highly positive] (Zadeh et al., 2018). While the dataset also contains labels
for emotions, based on the Ekman emotions (Ekman et al., 1980) of {happiness, sadness, anger,

4 As shown in: http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
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fear, disgust, surprise}, emotion recognition of any form is out of scope for our work. Hence,
we only look for sentiment labels provided. Evaluation and analysis carried out for different
domains would be evaluated against these sentiment labels. More details on this are elaborated
in the next section 3.3.1

Figure 3.3: Distribution of Sentiment
polarities for individual sentences a

aAs shown in: http://multicomp.cs.
cmu.edu/resources/cmu-mosei-dataset/

Figure 3.4: Topic Distribution for
CMU-MOSEI a

aAs shown in: http://multicomp.cs.
cmu.edu/resources/cmu-mosei-dataset/

It is critical to mention that the annotations to the work of CMU-MOSEI were made under
the influence of modalities other than text alone. The annotators labeled the sentence samples
for sentiment and emotion after watching the individual videos which meant that there was
additional info such as visual and acoustic cues which were not the settings for either the REST
or LAPTOP. However, we continue to use these labels for the evaluation of sentiment in our
work but deem this distinction important enough to be mentioned.

3.3 Evaluation Techniques
In this section, we discuss the techniques used for evaluating predictions on the unlabeled data.
The techniques discussed here tie into the cross domain analysis task of section 4.3, whose results
are provided in the section 5.3.2.

3.3.1 Evaluation on Sentiment

As explained in previous sections, To obtain the labels for individual sentences, we needed to
utilize the CMU-MultimodalSDK 3, since the labels for CMU-MOSEI were not available in the
raw dataset. CMU-MultimodalSDK is an SDK that allows access to features and metadata of
different modalities corresponding to multiple datasets, including the CMU-MOSEI. These fea-
tures and other metadata such as intervals are available in the form of computational sequences
that can be operated only programmatically.

We first obtained the respective computational sequences required for our task. These were
the CMU_MOSEI_TimestampedWords and the CMU_MOSEI_Labels. We then aligned them
so that they can be both accessed in conjunction. Here, it is vital to state that this alignment
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led to a loss of many sentence samples (referred to as TimestamedWords in the SDK). More on
this is explained in section 5.3.2

Sentence Label
It’s important for teachers to understand
their legal, ethical, and professional
obligations in an educational setting.

[ 1.0, 2.3334, 0.0, 0.0, 0.0, 0.0, 0.0 ]

Table 3.2: A sample sentence and its associated label from CMU-MOSEI. The first value in the
array is the sentiment (valence) label and the rest values are for emotion (arousal).

The labels from the CMU-MOSEI contained sentiment and emotion values for the individual
sentences, the format of which is shown in the table 3.2

As can be seen, these labels were available as an array of floating-point numbers. The first
number corresponded to the sentiment and the rest corresponded to various emotions. In our
case, we use the former. The sentiment labels were annotated in the range [-3,3] with -3 being
highly negative to +3 being highly positive.

Since the format of these sentiment labels was different from that of REST and LAPTOP,
which was in either of {POS, NEU, NEG}, we used the following logic for comparison and
evaluation:

if predicted_sentiment = NEG and label in [−1, −3] :
correct_prediction = True

else if predicted_sentiment = POS and label in [1, 3] :
correct_prediction = True

else if predicted_sentiment = NEU and label = 0 :
correct_prediction = True

else correct_prediction = False

(3.1)

Hence, by evaluating the predictions of the individual sentences against the CMU-MOSEI
label in a semi-automatic fashion, as shown above, we record the results. In the next section,
we discuss the procedure to evaluate aspect words.

3.3.2 Evaluation on Aspect

Unlike the evaluation for sentiment, where we had the benefit of labels from CMU-MOSEI,
the Aspect evaluation could only be done with the inclusion of necessary annotations, these
annotations being the aspect words for individual samples of the unlabeled set. For this purpose,
we asked three annotators to annotate their opinion of aspect word(s) on a few sentence samples.
They were tasked with providing opinions on a randomly sampled 200 sentence-units. While
every unit mostly consisted of a single sentence, some units could be broken down into several
sub-sentences (separated by commas in CMU-MOSEI transcriptions). The sentences could be
shorter in nature (less than 5 words) or could be very long (more than 30 words). In the case of
the latter, while it is debatable to consider them as a single sentence, we believe, it could still
be considered a single unit for processing, and hence, in this work, we recognize them as such.
A couple of such samples are given below:

21



3.3 Evaluation Techniques

It’s Walt Disney

Frank will co-lead it with Peggy Brown from the Mental Health Commission, there
will be representatives from PHNs but, in particular, from throughout the mental health sector-

and this will take the form of redoing the guidelines but then overviewing each of the 31 PHNs-
doing intensive work on their individual commissioning to make sure, wherever possible,

we are building on existing services rather than simply creating or destroying and recreating, and that,
I think, is a very important initiative.

For annotation work, we followed the guidelines proposed by the works of SemEval Task-4
(Pontiki et al., 2014) and SemEval Task-12 (Pontiki et al., 2015), as close as possible. While the
guidelines5 6 give a more detailed account of the sentences that can or cannot be considered to
be of containing aspect terms, we give some of the major points here, as follows:

• Aspect terms could be single or multi-word terms.

• Each aspect term identified, has to contain one of the following polarities, based on the
sentiment that is expressed in the sentence about it 6

– positive
– negative
– conflict (both positive and negative sentiment)
– neutral (neither positive nor negative sentiment)

• Pronouns like we, they, and them cannot be aspect words. The following sentence has no
aspect words:

We all felt it was worth it.

• Sentences denoting objective information cannot be tagged for any aspect words6. The
following sentence has no aspect terms.

I went to this restaurant with a woman that I met recently.

• Subjectivity indicators (i.e., words/phrases expressing an opinion, evaluation, etc.) cannot
be considered as aspect terms6. The following sentence again has no aspect terms.

The MacBook is way too overpriced for something so simple and chaotic.

In addition to this, it is vital to mention that the original guidelines proposed were for the
dataset set in either the restaurant domain or the laptop. This made the detection of aspect
words relatively easier, as the target domain was known. But for the unlabeled data of our
task, the domains were very diverse. To combat this to a certain degree, we also provided the

5As seen in https://alt.qcri.org/semeval2015/task12/data/uploads/semeval2015_absa_restaurants_
annotationguidelines.pdf

6As seen in https://alt.qcri.org/semeval2014/task4/data/uploads/semeval14_absa_
annotationguidelines.pdf
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annotators with the domain info for the individual sentences. This domain info consisted of
two things. First, the domain category that the sentence belonged to, and second, the possible
topics from each of these domains. The procedure to obtain both of these are explained in the
sections 4.3.1 and 5.3.1.

Even with the presence of these guidelines and additional metadata info, we observed that
numerous instances contained neither positive nor negative sentiment but were also debatable
to be considered neutral. In such cases, we generally observed disagreements in opinion.

Additionally, we also asked the annotators to provide the sentiment info along the aspect
words. While this sentiment info is not used for evaluation (as it is already realized with true
labels, as explained in the previous section), we use them to infer the distribution of aspect
words to these sentiments (more on this in section 5.3.2).
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4

In this chapter, we first discuss the approach to the E2E-ABSA problem by detailing the model
design. We also elaborate on this by explaining the variants of the model and then set them
all as our baseline approaches. In the further sections, we set up the Semi-supervised approach
to the E2E-ABSA baseline and explain in detail the procedure for both the Self-Training and
Tri-Training methods.

In the next section, we give, in detail, the procedure to segregate the unlabeled data into
topics that we then consider as domains for our work. We also lay out details for experiments
on cross domain analysis by incorporating the above-mentioned Semi-supervised methods.

Finally, in the last section of the chapter, we outline the approach to evaluate the E2E-
ABSA in settings of spontaneous and erroneous speeches. For this, we present, in detail, the
methods to procure transcripts from an external Automatic Speech Recognizer that enables
these speech instances. We conclude the chapter by mentioning the experiments conducted on
these transcripts that would stand in as unlabeled data for this task.

4.1 Baseline for E2E-ABSA

With our approach to the E2E-ABSA problem set as a sequence labeling problem, we develop
the model in two steps. The first step involves the usage of BERT as an embedding layer to
learn the contextual representations of the individual sentences. In all our experiments, we use
Huggingface’s implementation of the BERT base model, the bert-base-uncased 1 to finetune our
model. In the next step, the learned representations from the BERT are passed on to another
layer for the downstream task of tagging individual words based on a tagging scheme. The
downstream task is carried out by a layer called the ABSA layer and is adapted from the work
of Li et al. (2019c). There are six various implementations for this layer from the original work
namely, the linear layer, Gated Recurrent Unit (GRU), Long short-term memory (LSTM), Self-
Attention networks (SAN), and transformer (TFM), and Conditional Random Fields (CRF).
When we conducted the experiments with these layers, we did not obtain good results with
both the LSTM and CRF, hence we would be omitting them in all our experiments and proceed
with the others.

1https://huggingface.co/bert-base-uncased
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4.1 Baseline for E2E-ABSA

Figure 4.1: Model Architecture

Formally, if we define input sequence X to be X = {x1, x2, ....., xt} with t being the length
of the sequence, Then after passing through the BERT with L layers, we get the corresponding
contextualized representations as HL = hL

1 , hL
2 , .....hL

t ∈Rt∗dimh with dimh denoting the di-
mension of the representation vector (Li et al., 2019c). The individual operations at the layer
performing the downstream tasks i.e., the E2E-ABSA layer can be regarded as follows:

4.1.1 Linear layer
The obtained contextualized representations can be directly passed onto a linear layer with
softmax activations, with the number of labels being |S| where S = {’O’,’ E’, ’S-POS’, ’B-POS’,
’I-POS’, ’E-POS’, ’S-NEG’, ’B-NEG’, ’I-NEG’, ’E-NEG’, ’S-NEU’, ’B-NEU’, ’I-NEU’, ’E-NEU’}.
This can be formally given as:

P (yt|xt) = softmax(WohL
t + bo) (from Liet al. (2019c)) (4.1)

where Wo ∈Rdimh×|Y | is the learnable parameters for the linear layer.

4.1.2 Gated Recurrent Unit
Gated Recurrent Unit or GRU, belonging to the family of Recurrent Neural networks are also
utilized for the downstream task. The layer with GRU implementation arrives at the calculated
value of ht as follows:

h‘
t = tanh(Whrtht−1 + bh) + tanh(WhXt + bh)

ut = σ(Wuht−1 + bu) + σ(WuXt + bu)
rt = σ(Wrht−1 + br) + σ(WrXt + br)
ht = uth

‘
t + (1 − ut)ht − 1

(4.2)

where σ is the sigmoid activation function and Wh ∈ R2dimh×dimh and Wu and Wr ∈ Rdimh×dimh

are learnable parameters. The ut and rt are update and reset gates respectively. The ht is then
passed onto the softmax layer for predictions as follows:
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P (yt|ht) = softmax(WohL
t + bo) (from Liet al. (2019c)) (4.3)

4.1.3 Self-Attention Networks

The authors (Li et al., 2019c) describe Self-Attention networks or SAN as to be one containing
a self-attention layer(Vaswani et al., 2017) and a residual connection(He et al., 2016), this can
be formalized as follows:

ht = LN(HL + SLF_ATT (Q, K, V )) (from Liet al. (2019c)) (4.4)

where Q, K, V = HLW Q, HLW K , HLW V , and LN is layer normalization added on top of
the Self-attention(Li et al., 2019c).

The ht is then passed onto the softmax layer for predictions as shown in equation 4.3

4.1.4 Transformer Layer

Another variant that has the same architecture as that of the single transformer encoder in the
BERT is used for the downstream task (Li et al., 2019c). The operations can be formalized as
below:

h′L = LN(HL + SLF_ATT (Q, K, V ))
h′

t = LN(h′L + FFN(h′L)) (from Liet al. (2019c))
(4.5)

where FFN refers to the point-wise feed-forward networks and LN is the layer normaliza-
tion(Vaswani et al., 2017)

The h′
t is then passed onto the softmax layer for predictions as shown in 4.3

With the individual layers defined, the whole architecture can be summed up in Figure 4.1.
For the baseline runs, we consider the model depicted in 4.1. The model with each of the

four different ABSA layers defined above is considered a different implementation. Hence, for
the baseline experiments, we have four implementations altogether.

With the BERT base model containing the number of transformer layers L = 12 and hidden
size dimh as 768, we train the model with the REST and LAPTOP. The REST and LAPTOP
contain 1799 and 2741 training samples, respectively. Here, the E2E ABSA layer would be
composed of either of the layers defined above and a run is made for each of them. So, in all,
there are four implementations with REST and another four with LAPTOP.

The other parameters for the model are as follows: The whole training is conducted up to a
maximum of 3000 steps with batch size set to 16 for REST and 24 for LAPTOP. The learning
rate is set to 2e-5. For every 100 steps of the training, the model is saved so that it can be
further accessed for the evaluation against the dev set and the test set. Model selection is done
on the dev set, considering Macro-F1 score as the primary metric. The experiment results would
be discussed in the chapter 5.1
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4.2 E2E-ABSA with Semi-Supervised Approaches

With the baseline models defined in the last section, we leverage the two Semi-supervised meth-
ods defined in section 2.3. First, we describe the E2E-ABSA with the Self-Training method. We
lay out the procedure for E2E-ABSA with the Tri-Training method in the next sub-section.

4.2.1 E2E ABSA with Self-Training

With the general outline for the algorithm given in section 2.3.1, we now give further details
regarding the runs made leveraging this algorithm. The details are presented considering the
training set as REST, But the procedure is analogous to LAPTOP.

The models initially trained on the 1799 samples are saved at every 100 steps (i.e., check-
points) of training and then loaded for evaluation against the dev set and the test set, as said
before. With the Macro-F1 being the primary metric of evaluation, we recognize the best check-
point when evaluated against the dev set. The checkpoint at which the highest Macro-F1 value
would be obtained would then be considered as our base model for the next set of training.

As part of the unlabeled data, we compiled 19961 sentences from 2467 documents (or video
transcriptions) from CMU-MOSEI. The base model chosen before is made to predict these
sentences for sequence labeling of Aspect and Sentiment (i.e, E2E-ABSA tags) at the end of
every iteration. Now, Suppose an ’X’ quantity of samples from a 19961 set would be tagged
for aspect by our model, then, these ’X’ samples would then be considered as pseudo-labeled
samples. Now, these pseudo-labeled samples are then added to the original labeled set and used
to re-train the model for the next iteration. Other hyperparameters remain intact for the next
iteration.

Effectively, for the next iteration, the number of unlabeled samples would be reduced by
X. The new model, now trained on data containing both the original labeled samples and
the pseudo-labeled samples (from the last iteration) is tasked with predicting the remaining
unlabeled samples. This process is iteratively continued for up to either 20 iterations of the run
or at an iteration where less than 30 tagged samples are produced.

This is carried out with all the four variants of ABSA layers, employed one at a time. We
consider each of these four runs as an implementation. These four implementations are then
repeated with LAPTOP as training data. We give the evaluated results in the section 5.2.1.

4.2.2 E2E ABSA with Tri-Training

Similar to the previous section, we present the procedure for Tri-Training implementations
considering REST as the training data, But the overall procedure remains the same for LAPTOP
as well.

The framework for Tri-training, as given in 2.3.2 will be made use for our work. For every
implementation, there are simultaneously three models in play. The three models are initially
trained on the labeled samples i.e., REST. While the original work by Zhou and Li (2005)
proposes bootstrap sampling of the original labeled data , we initially got poorer results while
measuring for error (explained further) using this sampled data approach. The number of labeled
samples being modestly low in totality could be a possible reason for this. It is for this reason
that we train all three models with the entirety of available labeled samples. In addition to this,
For measuring error, the models predict E2E-ABSA tags for samples from the test set of the
REST. In preparation of pseudo-labeled samples, the models also predict E2E-ABSA tags for
samples from the unlabeled set before concluding the first phase of the implementation. As part
of the unlabeled data, we leverage the 19961 samples of CMU-MOSEI.
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For the next phase, the update phase, since the agenda is to moderate the addition of
pseudo-labeled samples to the next iteration of training of a model, we calculate the error in
measurement for it first. This error measurement is carried out against the test set of the original
labeled data i.e., REST. Here for any model hi with i ∈ {1, .., 3}, the idea is to estimate the
classification error rate of the hypothesis derived from the combination of the other two models,
say, hj and hk (Zhou and Li, 2005). This is done by dividing the number of labeled examples
on which both hj and hk make incorrect classification with the number of labeled examples on
which the classification made by hj is equal to that of hk. Iteratively, this is done for all three
models. For any model hi if the classification error is more than 0.6 (as opposed to the proposed
0.5 in the original work), then it is not eligible for an update. An update involves re-training the
model with the addition of pseudo-labeled samples, as part of the next iteration. We changed
the comparison for error from 0.5 to 0.6 to facilitate the update since the error rate for all our
model were just above 0.5. Moreover, we did not find any significance for the value of 0.5 in the
original work and hence assume that it is open to re-interpretation.

After this, For re-training any hi, we consider those samples that are identically predicted
by hj and hk. While all these samples are available for re-training this model, we ultimately
sub-sample only a portion of them. The idea is to moderate the inclusion of these pseudo-labeled
samples so that there is no dramatic increase in classification error. This holds for any iteration.
This is also summarized with the following relation :

L[t] ∗ e[t] < L[t − 1] ∗ e[t − 1] (4.6)

where L denotes the number of samples for training and e denotes the classification error at
iterations t and t − 1.

The sub-sampling itself is carried out by a factor. This factor is given as |Lt|−s. The s,
however, can be calculated by a factor:

⌈et−1[Lt−1]
e

− 1⌉ (4.7)

We do this to all the three models in operation and we keep track of pseudo-labeled samples
for each of them.

We finally update the models with their respective pseudo-labeled samples added to the
original ones and update the parameters such as the error and sample terms for the next iteration.

This whole process is a single implementation and is carried out up to an iteration that
results in an error higher than that of the previous (for any of the three models), in which case
the implementation terminates.

The same proceedings are carried out for the LAPTOP. The results for all these implemen-
tations are presented in the section 5.2.2

4.3 ABSA across Domains using Semi-Supervised Approaches

In their work of predicting the effectiveness of Self-Training, Van Asch and Daelemans (2016)
state that the domain, in literature, is inherently a vague concept. They opine that, in Machine
Learning, it is paramount that any domain should differ from the other by the distribution of
words. One of the prevalent ways to identify domains is to measure a sense of similarity in-
between the corpora thereby creating a sense of boundary. This concept of similarity is applied
to many use cases such as feature selection (Della Pietra et al., 1997), training corpus creation
(Chen et al., 2009), etc . Van Asch and Daelemans (2016) state that the current research focuses
on semantic textual similarity (STS) (Agirre et al., 2013). One such method that uses the STS
is Latent Dirichlet allocation. We detail this in the further sub-section.
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4.3.1 Domain Classification using Topic Modeling

The CMU-MOSEI is distributed across various topics, as seen in Figure 3.4. While the original
work did not contain metadata concerning the domain(s) that each video could belong, for our
work, in order to proceed forward with evaluating E2E-ABSA across domains, these needed to
be classified. Hence for this task, we used the manual transcriptions available with the CMU-
MOSEI obtained in its raw form. With each of these transcriptions set as a document, we used
Latent Dirichlet Allocation (LDA) (Blei et al., 2003) to perform this unsupervised classification.
LDA, a topic modeling approach, can be seen formally as a multinomial distribution over the
several words in the corpus and represents documents as a mixture of topics. To start with, we
put together all sentences together from all the individual transcribed files which we consider as
a single document. 2467 such documents were considered for the topic modeling task.

Additional preprocess for the individual documents involved removing stopwords words lesser
than 3 characters. To identify and recognize successive words that made sense as a pair(than
alone), we then ran the words through the Bigram phraser to leverage the existence of prevalent
bigrams in the documents if any. We then remove tokens that appeared in less than 15 documents
and more than 0.5 documents. We finally only keep the first 100000 most frequent tokens.

We performed the training for the LDA model on two sets of corpora created from the
documents. First converts the documents into the bag of words. In the second, we make use
of gensim’s TF-IDF model 2 and apply it to the bag of words corpora to create the individual
vectors.

For the topic modeling itself, we make use of gensim’s LDAMulticore implementation 3 of
LDA and run it against both the bag of words corpus and TF-IDF vectors. To aim for a better
coherence value, we ran the model against the number of topics being set to between 4 and 20.
Other hyperparameters such as alpha and eta were varied by a factor of 0.10 in the range of 0.01
to 1. Other values for alpha included the ’symmetric’ and ’asymmetric’ and for eta, the value
’symmetric’. These were interchanged one after the other in each run and for every run, we also
simultaneously check for the coherence score c_v. To get the coherence score, again, we make
use of gensim’s CoherenceModel 4 implementation.

Among the results we had, we considered values for hyperparameters that resulted in a better
coherence value and began distributing documents into different domains. While distributing,
we also regarded the distribution of documents to be a considerable factor and eliminated those
that resulted in poor distribution. Here, the distribution where the bulk of the documents was
assigned to only a few topics with other topics distributed scantly was ignored.

We present the results for topic modeling in 5.3.1. For all the experiments in this section
including the further sub-sections, we consider the topics obtained from this method as our
domains.

4.3.2 E2E ABSA with Self-Training

The crux of this task would be similar to the section 4.2.1. We train the model initially with
REST consisting of 1799 samples for 3000 training steps to complete an iteration. At the end
of an iteration, the model is tasked with predicting the unlabeled samples intended to act as
pseudo-labeled samples for further iterations.

In addition to this, the model is tasked with also predicting another unlabeled set not in-
tended to act as pseudo-labeled samples but for evaluation against the individual domains. This
set consisted of 8250 samples drawn from 740 documents distributed to 5 different domains as

2https://radimrehurek.com/gensim/models/tfidfmodel.html
3https://radimrehurek.com/gensim/models/ldamulticore.html
4https://radimrehurek.com/gensim/models/coherencemodel.html
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explained in section 4.3.1. The number of sentence samples for each domain can be summarized
as follows:

• Domain-1: 1738 sentence samples

• Domain-2: 1704 sentence samples

• Domain-3: 2506 sentence samples

• Domain-4: 1105 sentence samples

• Domain-5: 1147 sentence samples

The predictions for these samples are tasked to the model at the end of every iteration and
we then record the results.

The other settings would remain the same as done in 4.2.1. The evaluation of these samples
is carried out in two different steps. For sentiment evaluation, we use the sentiment labels
available from CMU-MOSEI. For evaluating aspect terms, since we do not have any aspect
labels in CMU-MOSEI, we evaluate them against aspect labels provided by three annotators.
More details regarding this are elaborated in the sections 3.3.1 and 3.3.2. The results for them
are discussed in the section 5.3.2

4.3.3 E2E ABSA with Tri-Training
The approach is similar to the previous section. We leverage 8250 sentence samples distributed
among five domains for evaluation. The main difference here is that at every iteration, for each
model involved in a single implementation, we predict samples consisting of data for different
domains. These samples are unseen by any model at any iteration of training and are only
used for the evaluation of sentiment and aspect terms for different domains. We keep the other
settings intact as described in section 4.2.2. For evaluation, we follow the procedure discussed
in sections 3.3.1 and 3.3.2. The results are discussed in section 5.3.2.

4.4 E2E-ABSA across Erroneous Transcriptions
The final task for our work concerns the E2E-ASBA under the influence of faulty transcriptions
containing erroneous sentences and spontaneous speech instances. First, we explain the reasons
for this task. We then give the error rates of a few selected samples to demonstrate the differences
between manual transcriptions and that of an external Automatic Speech Recognition Systems
(ASRs). We then give an account of how the Transcriptions from an ASR were prepared. We
end this section by detailing the procedure of modeling E2E-ABSA with these transcriptions.

The authors of the dataset Muse-CAR, Stappen et al. (2021) obtained captions for their
dataset using the ASRs. To the best of our knowledge, it is the only dataset that obtains the
captions from an external system rather than manually annotating them. The authors surmise
that there is a considerable error rate while transcribing through an external service. Again, this
would impact the predicted sentiment and provide a rich ground for analyses. This forms the
first reason for the evaluation. Table 4.1 provides a few examples showing the differences between
the manual transcriptions versus the same samples transcribed with the Amazon Transcribe.

Also, the CMU-MOSEI is a collection of videos (which are annotated for sentiment in mostly
sentence levels) that contains essentially a single speaker giving his views on a specific topic.
Some of these are carried out unscripted and hence involve various instances of repetition,
hesitation, etc. Hence, this provides an opportunity to investigate sentiment detection under
the context of spontaneous speeches. This is the second reason behind the task.
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While considering various ASRs, we initially trialed a few video files on both Google’s Speech-
to-Text 5 and Amazon Web Service’s (AWS) Transcribe 6. While on an initial inspection, the
transcription from both the services seemed adequate, the transcriptions from AWS Transcribe
contained the additional timestamps info, which we deemed very useful for the task at hand.
Hence, for this task, we employed AWS’s Transcribe service to transcribe a fifth of our origi-
nal unlabeled set and conduct experiments and evaluations on various settings. More details
regarding this along with the results are presented in the section 5.4.

We explain the preparation of data in the next section and the further section explains the
approach to the task.

From Manual Annotation From AWS Transcribe Word-Error Rate (WER)
And now an interesting
question to ask is how do
people actually set prices in
real life? Well, why don’t
look around and ask? If
you ask your, let’s say,
restaurant uncle, he would
probably say "I take the
cost something on top so
that I will earn some
money" and this is what we
call markup pricing

And now an interesting
question to ask is how do
people actually set prices in
real life?Well why not walk
around and ask if you ask
your restaurant uncle?
He’ll probably say I take
the cost and I add
something on top so that
some money and this is
what we call mark up
pricing.

20.69%

The second issue that
Obama brings up and I
think one that needs to be
looked at very, very
carefully is he talks about
creating a new lending fund
that is going to ensure that
more money will make its
way to households to buy
automobiles, to fund
college education and also
to entrepreneurs.

the second issue that
Obama brings up and I
think one that needs to be
looked at very, very
carefully is he talks about
creating a new lending fund 46.29%

Numerous Commercial
lenders look at your
personal net worth because
they will only lend you the
requested amount that is
either equal to or greater
than you Personal Net Net
Worth.

commercial lenders. Look
at your personal network
because they will only lend
you their requested amount
that is either equal to or
greater than your personal
network.

25.81%

5https://cloud.google.com/speech-to-text/
6https://aws.amazon.com/transcribe/
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From Manual Annotation From AWS Transcribe Word-Error Rate (WER)
So we’ve been having a lot
of discussion across
companies of really I think
exciting stuff where we
may be able to tie
companies’ efforts together
that will have a big effect
on the environment as well
as stanch some of the
financial problems.

And so we’ve had a lot of
discussions across
companies really. We may
be able to tie company’s
efforts together that will I
think exciting stuff. have a
big effect on the
environment as well as
uh,to tackle some of the
financial problems.

38.64%

A couple weeks back a
couple of journalists posted
that they got these
invitations from Activision
for what was called the
Soundial festival.They had
all these band names on it
but none of the band names
seemed familiar to anybody.

a couple of weeks back. A
bunch of journalists posted
online that they got these
invitations from Activision
for what was called The
Sound I’ll Festival. And
they had all these band
names on it, but none of
the band names seem
familiar to anybody.

17.07%

Table 4.1: Sample sentences transcribed manually vs via AWS Transcribe, with Word-Error
Rate

4.4.1 Preparing Transcriptions from AWS Transcribe

To Transcribe the video files from CMU-MOSEI, we made use of two services from AWS. One is
the AWS Transcribe itself, the other being the S3. All the individual files were initially uploaded
onto the S3 buckets which are essentially containers for any Multimedia items. Then using the
S3-URL for each item, one could make use of any service in the AWS eco-system that involves
the usage of the said Multimedia items of any form.

While initially, we understood that a form of Batch-processing could be present to streamline
the process of pulling individual files from S3 buckets and onto the AWS Transcribe, any efforts
made were not useful since the S3-URLs were unique for an item. Moreover, the Transcribe
process lists only the recent 100 transcription jobs, and any jobs before that became inaccessible.
This meant that these jobs would have to be done manually one by one. It became very clear
that given the time constraints, we would not be able to transcribe the entire set of 2467 video
files.

With this new development, we aimed to reach a fifth of the whole dataset, and accordingly,
504 videos were transcribed. These 504 video files were selected randomly and care was taken
to keep them topically as diverse as the unlabeled data set used in sections 4.2 and 4.3. After
this, we move on to the next stage of preprocessing.

While obtaining the individual transcriptions, we noticed there were many instances of times-
tamp mismatch when compared against manually transcripted counterparts of the videos. With
the manual transcripted files from the CMU-MOSEI being the gold standard, to perform any
kind of evaluation down the line, we would need to then align these instances first. For this, we
incorporated a semi-automatic process involving three stages. In the first stage, we programmat-
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ically tried to align instances that found a timespan match with the gold standard instances,
In the second stage, we considered the starting word and ending word of each sentence, and
barring any repeated occurrence of the end word, we put together all the instances in between
to be a part of a single sentence. In the last stage, we manually inspected the individual file
output after these two stages and aligned the remaining sentences manually.

After this, as part of the last step, we prepared two sets of unlabeled samples, the first one
to be used as pseudo-labeled samples for further iterations of training for the model and the
second one used for evaluation. The first set comprised 4103 sentence samples and the second
one, 1825 samples.

4.4.2 Semi-Supervised Modeling for E2E-ABSA
After processing transcriptions from AWS, we also create another set of manual transcriptions
for the AWS transcribed counterpart, which means that both set contain the same sentences
but each from a different source. We do this for two main reasons. First, to account for the now
modified training samples from the runs made as in sections 4.2.1 and 4.2.2. Second, to compare
the recorded E2E-ABSA performances from the erroneous sentences with the gold standard ones.

We then utilize the Self-Training and Tri-Training methods discussed before. There would
be two runs made for a single implementation. To give an example, for Self-Training, we train
the model for multiple iterations until it terminates, as explained before. But now, it is run once
with the AWS transcribed sentences and once with the gold standard ones, as unlabeled data.
But similar to the earlier implementations, we record the model’s performance against the test
set of labeled samples for every 100 training steps. Additionally, we also make the model predict
on another set of 1825 samples at the end of every iteration. This would be used for Sentiment
evaluation. Each run of a single implementation is continued for up to 3000 training steps.
The same procedure is followed for Tri-Training implementations as well. We make separate
trials with both the REST and LAPTOP being the labeled data for training. The results are
presented in section 5.4.
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In this section, we lay out further settings for the above approaches, we also present the results
for the same. In the first section, we discuss the experiments for the baseline models along
with their results. In the next section, we present the corresponding results with the two
Semi-supervised approaches. We also give out comparisons for the result. We then discuss the
E2E-ABSA results for different domains and give out domain-level results. Finally, we lay out
the E2E-ABSA results across erroneous transcriptions and in some specific settings.

5.1 Experiments for Baseline Model

For the baseline experiments, we train the model, once with a different ABSA layer against both
the REST and LAPTOP consisting of 1799 and 2741 samples respectively. The model is trained
for 3000 training steps for each implementation and is saved for evaluation after every 100 steps.
After 1000 steps of training, for every 100 training steps, the model is evaluated against both
the dev set and the test set and the performance metrics are recorded.

For training, we set the batch size to 16 for REST and 24 for LAPTOP. The learning rate
is set to 2e-5. We also use the adam optimizer which is set to 1e-8.

In Tables 5.1 and 5.2, we lay out the results for baseline experiments. The evaluation is done
on the test set and we present the respective values for the checkpoint that results in the best
Macro-F1 score since Macro-F1 is the primary metric considered.

Models Macro-f1 Micro-f1 Precision Recall
BERT + Linear 0.4459 0.6476 0.6556 0.6398
BERT + GRU 0.4181 0.6612 0.6650 0.6576
BERT + SAN 0.5711 0.7158 0.7147 0.7170
BERT + TFM 0.3989 0.6323 0.6535 0.6125

Table 5.1: Baseline results on the Test set of REST
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Models Macro-f1 Micro-f1 Precision Recall
BERT + Linear 0.5672 0.6105 0.6273 0.5946
BERT + GRU 0.5524 0.6107 0.6244 0.5978
BERT + SAN 0.5637 0.6189 0.6244 0.6136
BERT + TFM 0.5541 0.6100 0.6262 0.5946

Table 5.2: Baseline results on the Test set of LAPTOP

5.2 Experiments with Semi-Supervised Approaches

In this section, we look into the runs made with the two Semi-supervised methods. In the first
sub-section, we discuss the experimental settings for the Self-Training method. We then discuss
the results following the method. In the next sub-section, we then present the experimental
settings for the Tri-Training method along with the results.

5.2.1 E2E-ABSA with Self-Training

Similar to the baseline setting, in the Self-Training approach, we train the model for 3000 training
steps for each iteration. We use the set containing 19961 sentence samples as the unlabeled data.

As explained in the section 4.2.1, with Self-Training, the model predicts the unlabeled sam-
ples at every iteration, starting with the complete unlabeled set at the zeroth iteration. A
fraction of these predictions that contains the E2E-ABSA tag would then be added as pseudo-
labeled samples, to the next iteration of training. Also, at this re-training stage, the model that
yields the best Macro-F1 score at the previous iteration is selected. This model is then re-trained
with the addition of these pseudo-labeled samples. This procedure is carried out to a maximum
of 20 iterations or at an iteration that produces less than 30 pseudo-labeled samples. Also, at
the end of every iteration, just before re-training, the model is tested against the test set of
labeled data i.e, the test set of REST and LAPTOP (separate runs), to record the performance.
We use the scores obtained from these evaluations as a basis to measure the effectiveness of
Self-Training methods for the E2E-ABSA task.

Figures 5.1 and 5.2 give a snapshot of the performances of various models through the
iterations. Each recorded value is against the test set and is the highest Macro-F1 score for that
iteration, considering all the 30 checkpoints of training that make up an iteration. For REST,
shown in figure 5.1, the performances were at their best at initial iterations and there is a clear
decline after the first iteration. There is another decline after iterations three or four and the
performances plateau after the eighth. But the performances with LAPTOP, shown in figure
5.2 were mostly uniform throughout iterations. There was still some deterioration in value with
some model runs (with BERT-GRU and BERT-Linear), but the downturn was not very steep.
Some of the best performances were from the later iterations (especially with BERT-SAN and
BERT-TFM).

Tables 5.3 and 5.4 compare the results between the baseline models and that of Self-Training.
For the results with Self-Training, we recognize the checkpoint that yields the maximum Macro-
F1 score, considering all the iterations of an implementation. We also present the iteration at
which the values were recorded in a separate column.
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Figure 5.1: Model Performance with Self-Training across all iterations, with REST

Figure 5.2: Model Performance with Self-Training across all iterations, with LAPTOP
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Models Iteration Macro-f1 Micro-f1 Precision Recall
B

as
el

in
e BERT + Linear – 0.4459 0.6476 0.6556 0.6398

BERT + GRU – 0.4181 0.6612 0.6650 0.6576
BERT + SAN – 0.5711 0.7158 0.7147 0.7170
BERT + TFM – 0.3989 0.6323 0.6535 0.6125

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 0.3947 0.6361 0.6598 0.6141

BERT + GRU 4 0.4057 0.6469 0.6443 0.6495
BERT + SAN 1 0.4847 0.6757 0.7264 0.6318
BERT + TFM 1 0.5324 0.6974 0.6908 0.7041

Table 5.3: Comparison between the Baseline results with the Self-Training counterparts,
with REST.

Models Iteration Macro-f1 Micro-f1 Precision Recall

B
as

el
in

e BERT + Linear – 0.5672 0.6105 0.6273 0.5946
BERT + GRU – 0.5524 0.6107 0.6244 0.5978
BERT + SAN – 0.5637 0.6189 0.6244 0.6136
BERT + TFM – 0.5541 0.6100 0.6262 0.5946

Se
lf-

Tr
ai

ni
ng BERT + Linear 3 0.5411 0.5893 0.6162 0.5647

BERT + GRU 1 0.5333 0.5845 0.5970 0.5726
BERT + SAN 2 0.5559 0.6040 0.6261 0.5836
BERT + TFM 10 0.5635 0.6094 0.6267 0.5931

Table 5.4: Comparison between the Baseline results with the Self-Training counterparts,
with LAPTOP.

As can be seen from the tables, only the BERT+TFM runs improved the results over baseline.
This holds to both REST and LAPTOP. But there was a decline in performance with all the
other models.

5.2.2 E2E-ABSA with Tri-Training

Under this method, we conducted four different runs with both the REST and LAPTOP, each
with a combination of three models of the available four. We call each of these runs a single
implementation. Hence, there were four different implementations to both REST and LAPTOP.
Each of these implementations contained two phases, the priming phase where we initialize all
three models and use them to predict the whole unlabeled set, and the update phase where we
prepare pseudo-labeled samples for re-training and if the individual models are eligible for it,
we perform the training.

38



Chapter 5. Experiments, Results and Analysis

As part of the unlabeled data set, we again leveraged the 19961 samples curated from 2467
manually transcribed documents. Training (or re-training) is conducted for 3000 training steps,
to keep the comparisons consistent.

In the update phase, we initially prepare an appropriate number of pseudo-labeled samples
for each model. After the initialized model is re-trained with the addition of these samples, we
then test the models with the test set of the original labeled data to record the performance of
the updated model. The checkpoint that yields the best Macro-F1 score would then be chosen
for error measurement and for predicting the unlabeled set again. It is vital to state two things.
First, The error measurement is done to check whether the updated model’s classification error
is better than its previous iteration. And if it is, it is allowed to continue execution. If not,
the whole implementation comes to an end. The method to calculate this is detailed in section
4.2.2. Here, it is important to state that the error for all three models should have to be lesser
than its error from the previous iteration, otherwise there is no update possible since, for any
model, it’s error calculation itself is dependent on the other two models. Hence, the termination
of a single implementation is dependent on the error rate of all three models. Second, while the
whole unlabeled set is employed for prediction, we ultimately sample a few of them, to keep the
error rate as low as possible.

For consistency, we keep the other hyper parameters the same as in previous experiments.
Figure 5.3 to 5.10 gives the snapshot of all the implementations. Figure 5.3 to 5.6 gives

the outlook for runs with REST. Figure 5.7 to 5.10 gives the outlook for runs with LAPTOP.
For REST, all implementations terminated at the end of the second iteration, as can be seen.
However, for LAPTOP, every implementation terminated just after the first iteration. Because
of this, it allows us to have a closer look at the model performance at every 100 steps of training.

Figure 5.3: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-TFM, and BERT-SAN and with REST

From the figures 5.3 to 5.6, it is clear that unlike the runs with Self-Training, the second
iteration of every model led to an overall improvement over the first iteration. This conforms
to the key idea of Tri-Training that there is a controlled addition of pseudo-labeled samples for
re-training.
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Figure 5.4: Model Performances with Tri-Training across different training steps,
with BERT-Linear, BERT-TFM, and BERT-SAN and with REST

Figure 5.5: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-Linear, and BERT-SAN and with REST

It can also be seen that the model performances improved over the baseline results and
the self-training counterparts. This can be seen from Tables 5.5 and 5.6 that gives an overall
comparison of all methods. The values presented for the Tri-Training are the best Macro-F1
values for that individual model considering all the Tri-Training implementations it was part of.
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Figure 5.6: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-TFM, and BERT-Linear and with REST

Figure 5.7: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-TFM, and BERT-Linear and with LAPTOP

In the table, we also present the iteration info and all the models involved in the correspond-
ing implementation.
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Figure 5.8: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-Linear, and BERT-SAN and with LAPTOP

Figure 5.9: Model Performances with Tri-Training across different training steps,
with BERT-Linear, BERT-TFM, and BERT-SAN and with LAPTOP
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Figure 5.10: Model Performances with Tri-Training across different training steps,
with BERT-GRU, BERT-TFM, and BERT-SAN and with LAPTOP

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

B
as

el
in

e BERT + Linear – – 0.4459 0.6476 0.6556 0.6398
BERT + GRU – – 0.4181 0.6612 0.6650 0.6576
BERT + SAN – – 0.5711 0.7158 0.7147 0.7170
BERT + TFM – – 0.3989 0.6323 0.6535 0.6125

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.3947 0.6361 0.6598 0.6141

BERT + GRU 4 – 0.4057 0.6469 0.6443 0.6495
BERT + SAN 1 – 0.4847 0.6757 0.7264 0.6318
BERT + TFM 1 – 0.5324 0.6974 0.6908 0.7041

Tr
i-T

ra
in

in
g BERT + Linear 2 san-tfm-linear 0.5591 0.7011 0.7183 0.6849

BERT + GRU 2 gru-tfm-linear 0.5041 0.6970 0.7081 0.6865
BERT + SAN 2 san-gru-tfm 0.5497 0.7055 0.7331 0.6800
BERT + TFM 1 san-tfm-linear 0.4791 0.6816 0.7095 0.6559

Table 5.5: Comparison between the Baseline results, and their Self-Training, and Tri-Training
counterparts, with REST.
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Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

B
as

el
in

e BERT + Linear – – 0.5672 0.6105 0.6273 0.5946
BERT + GRU – – 0.5524 0.6107 0.6244 0.5978
BERT + SAN – – 0.5637 0.6189 0.6244 0.6136
BERT + TFM – – 0.5541 0.6100 0.6262 0.5946

Se
lf-

Tr
ai

ni
ng BERT + Linear 3 – 0.5411 0.5893 0.6162 0.5647

BERT + GRU 1 – 0.5333 0.5845 0.5970 0.5726
BERT + SAN 2 – 0.5559 0.6040 0.6261 0.5836
BERT + TFM 10 – 0.5635 0.6094 0.6267 0.5931

Tr
i-T

ra
in

in
g BERT + Linear 1 san-tfm-linear 0.5515 0.6058 0.6453 0.5710

BERT + GRU 1 gru-tfm-san 0.4924 0.5680 0.6120 0.5300
BERT + SAN 1 san-linear-tfm 0.5674 0.6052 0.6521 0.5647
BERT + TFM 1 gru-tfm-san 0.5772 0.6237 0.6448 0.6041

Table 5.6: Comparison between the Baseline results, and their Self-Training, and Tri-Training
counterparts, with LAPTOP.

5.3 E2E-ABSA across Domains
In the first part of this section, we present additional info and results for the procedure of
classifying domains. In the next part, we discuss the experiments and present the results of
E2E-ABSA for each of these domains.

5.3.1 Domain Segregation using Topic Modeling
As explained in section 4.3.1, we employed Topic Modeling for the distribution of domains.
Specifically, we used Latent Dirichlet Allocation (LDA) for this purpose. Out of 2467 documents
in total, the LDA model was trained with a corpus consisting of 1727 documents and was tasked
to distribute the rest of 740 documents into multiple domains. We identify these 740 documents
that are classified into topics as domains.

We then made use of gensim’s LDAMulticore implementation of LDA and ran it against both
the bag of words corpus and TF-IDF vectors. We ran the model against the number of topics
set to between 4 and 20 to evaluate coherence values in all settings. Other hyperparameters
such as alpha and eta were varied by a factor of 0.10 in the range of 0.01 to 1. Other values for
alpha included the ’symmetric’ and ’asymmetric’ and for eta, the value ’symmetric’. These were
interchanged one after the other in each run and for every run, we also simultaneously checked
the coherence score cv. We made use of gensim’s CoherenceModel implementation to get the
coherence score.

Among the results we obtained from the model, the one with 5 topics had a reasonable
document distribution and a coherence score of 0.43. The other hyperparameters in this setting
were:
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• alpha = 0.81

• eta = symmetric

• random_state = 100

• chunksize = 10

• passes = 10

The distribution of 740 documents among 5 topics or, in our case, 5 domains were: 175-138-
220-104-103, in that order. The topic to words distribution for the individual topics can be seen
in the table 5.7.

Topic Word distribution
Topic-1 0.007 × state + 0.007 × work + 0.007 × school + 0.006 × united+

0.006 × states + 0.006 × country + 0.006 × world + 0.005 × countries

Topic-2 0.032 × movie + 0.02 × stutter + 0.012 × kind + 0.008 × story + 0.008 × mean +
0.008 × pretty + 0.008 × love + 0.008 × basically

Topic-3 0.011 × business + 0.01 × money + 0.008 × company + 0.008 × talking + 0.007 ×
speech + 0.006 × financial + 0.006 × loan + 0.005 × patrick

Topic-4 0.01 × video + 0.007 × online + 0.007 × marketing + 0.006 × consumers +
0.006 × course + 0.006 × experience + 0.006 × time + 0.005 × that

Topic-5 0.007 × jesus + 0.006 × world + 0.006 × health + 0.006 × water + 0.006 × body +
0.006 × customer + 0.006 × change + 0.006 × view

Table 5.7: Topic to words distribution. Here the numerical values indicate the probability of
the corresponding word for the respective topic. The words themselves are arranged in the
decreasing order of the probabilities.

from the above table 5.7 and a close inspection of a few documents for each domain, we
could closely associate each domain with the following concepts:

• Domain-1 ≈ Common topics such as school/work/politics etc.

• Domain-2 ≈ Movie reviews/ Tv series reviews/ stories.

• Domain-3 ≈ Financial/Business.

• Domain-4 ≈ Marketing/Promotion

• Domain-5 ≈ Other Misc.

5.3.2 E2E-ABSA across Domains

In this section, we briefly present the outlook for both the Self-Training and Tri-Training methods
for cross-domain evaluation. We then finally present the results of these evaluations for all the
domains.
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With Self-Training and Tri-Training

Out of the 740 documents classified into five different domains, we derived 8250 sentence samples
in total. The composition of sentence samples for each of the five domains is given in section
4.3.2.

Also, as previously outlined in the sections 4.3.2 and 4.3.3, we use these sentence samples
from each domain for prediction at the end of every iteration. This is analogous to both the
Self-Training and Tri-Training implementations. Only that, in the case of the latter, we make
every model that is part of the implementation predict these sentences. The rest of the settings
remain intact for consistency.

For evaluation of the predictions, since the sentence samples were part of the unlabeled set
that contained sentiment and emotion labels, we could leverage only the former for sentiment
evaluation. Evaluation for aspect terms, however, is done with the help of additional annotations.
With the techniques used to evaluate sentiment and aspect words already presented in sections
3.3.1 and 3.3.2, we present the results in the next section.

Evaluation on Sentiment

Section 3.3.1 presents in detail about the sentiment labels available as part of CMU-MOSEI. We
also explain how we leverage these labels for sentiment evaluation. It is important to mention
that during aligning the computational sequences from CMU-MOSEI i.e., the CMU_MOSEI_
Labels and the CMU_MOSEI_TimestampedWords, we lost many sentences and their labels.
After alignment, when we tried to access labels for the combined set of 8250 sentence samples
from 5 domains, we only managed to obtain them for 3693 samples.

Also, in section Section 3.3.1, we also presented the logic to compare the predictions made
for sentiment by the model and the label from CMU-MOSEI, both of which were in a different
format. We evaluate the predictions made on samples belonging to different domains based on
this semi-automatic logic.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.4683 0.7048 0.7049 0.7049

BERT + GRU 1 – 0.4673 0.7383 0.7383 0.7383
BERT + SAN 4 – 0.4770 0.7164 0.7164 0.7164
BERT + TFM 1 – 0.4726 0.7350 0.7351 0.7351

Tr
i-T

ra
in

in
g

BERT + Linear 1 san-tfm-linear,
gru-tfm-linear,
linear-gru-san

0.4683 0.7049 0.7049 0.7049

BERT + GRU 1 gru-tfm-san 0.4839 0.7673 0.7674 0.7674
BERT + SAN 1 san-tfm-linear 0.4592 0.7031 0.7031 0.7031
BERT + TFM 1 gru-tfm-linear 0.4572 0.6961 0.6961 0.6961

Table 5.8: Comparison between the Self-Training and Tri-Training results on Sentiment, with
REST. Evaluation is done with all domains combined.

With the above arrangement, we then present the results for both the Self-Training and Tri-
Training implementations in tables 5.8 and 5.9. Here the presented results are for all domains
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Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall
Se

lf-
Tr

ai
ni

ng BERT + Linear 6 – 0.5298 0.5684 0.5684 0.5684
BERT + GRU 5 – 0.5149 0.5585 0.5585 0.5585
BERT + SAN 6 – 0.5529 0.6114 0.6114 0.6114
BERT + TFM 6 – 0.5438 0.5724 0.5725 0.5725

Tr
i-T

ra
in

in
g BERT + Linear 1 san-tfm-linear 0.5248 0.5421 0.5421 0.5421

BERT + GRU 1 gru-linear-san 0.5077 0.5245 0.5245 0.5245
BERT + SAN 1 san-tfm-linear 0.5609 0.5858 0.5858 0.5858
BERT + TFM 1 san-tfm-linear 0.5362 0.5601 0.5601 0.5601

Table 5.9: Comparison between the Self-Training and Tri-Training results on Sentiment, with
LAPTOP. Evaluation is done for all domains combined.

together combined. Again, we also give the iterations at which the individual models scored
such performances in a separate column. In the case of Tri-training, the models involved in the
implementation are also included in a separate column.

The results for experiments with LAPTOP generally outscored the REST in terms of Macro-
F1. But the Micro-F1 scores for experiments with REST were far superior to that of LAPTOP.
We can associate two reasons for this behavior: First, this could partially be due to the compar-
atively lesser number of samples in REST, and second, there were class imbalances concerning
the sentiment in the samples. Table 5.23 gives an account for the same. The imbalances are
more prominent with REST than the LAPTOP. Since Micro-F1 generally accounts for this class
imbalance and because REST has more of this, it comes off with a relatively better score. It is
for the same reason the Macro-F1 scores suffer due to the contributions from all classes (in this
case the sentiments) being treated equally.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.4522 0.6776 0.6776 0.6776

BERT + GRU 1 – 0.565 0.7721 0.7721 0.7721
BERT + SAN 3 – 0.5073 0.7835 0.7835 0.7835
BERT + TFM 1 – 0.4994 0.7344 0.7344 0.7344

Tr
i-T

ra
in

in
g BERT + Linear 2 san-tfm-linear 0.5807 0.8695 0.8695 0.8695

BERT + GRU 1 gru-tfm-san 0.512 0.7994 0.7994 0.7994
BERT + SAN 2 san-gru-linear 0.6443 0.8888 0.8888 0.8888
BERT + TFM 1 san-tfm-linear 0.4486 0.6841 0.6841 0.6841

Table 5.10: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the REST and Domain-1.
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We also present the results for Domain-1 in tables 5.10 and 5.11. As can be seen from the
tables, the results from the models trained with REST generalized better to Domain-1, in terms
of sentiment. This is reasonable since the samples from Domain-1, are roughly more relatable to
that of REST since most samples from LAPTOP were either specifically talking about a whole
product or a certain facet of it but usually containing domain-specific jargon. This meant that
LAPTOP might not generalize well with jargon for topics like politics, work, etc., present in
Domain-1.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 3 – 0.5531 0.5652 0.5652 0.5652

BERT + GRU 3 – 0.5569 0.5607 0.5607 0.5607
BERT + SAN 3 – 0.5695 0.6146 0.6146 0.6146
BERT + TFM 11 – 0.5362 0.5736 0.5736 0.5736

Tr
i-T

ra
in

in
g BERT + Linear 1 san-gru-linear 0.4558 0.5277 0.5277 0.5277

BERT + GRU 1 gru-linear-san 0.487 0.4285 0.4285 0.4285
BERT + SAN 1 san-gru-linear,

san-tfm-linear
0.5234 0.5714 0.5714 0.5714

BERT + TFM 1 san-tfm-linear 0.4958 0.4827 0.4827 0.4827

Table 5.11: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the LAPTOP and Domain-1.

Results for Domain-2 are in tables 5.12 and 5.13. Unlike the results for Domain-1, the runs
with LAPTOP resulted in a better Macro-F1 score than that of REST.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.4661 0.6817 0.6817 0.6817

BERT + GRU 2 – 0.4621 0.6806 0.6806 0.6806
BERT + SAN 5 – 0.4677 0.7053 0.7053 0.7053
BERT + TFM 4 – 0.4963 0.7394 0.7394 0.7394

Tr
i-T

ra
in

in
g

BERT + Linear 1 san-tfm-linear,
gru-tfm-linear,
linear-gru-san

0.4661 0.6817 0.6817 0.6817

BERT + GRU 1 gru-tfm-linear 0.4364 0.6904 0.6904 0.6904
BERT + SAN 2 san-gru-linear 0.484 0.846 0.846 0.846
BERT + TFM 1 gru-tfm-linear 0.4421 0.6736 0.6736 0.6736

Table 5.12: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the REST and Domain-2.
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Samples from Domain-2 had the most movie review samples out of all domains. These review
samples specifically spoke about a certain aspect of a movie/show that we think might have
related more to the component-specific samples from LAPTOP than the REST.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.5851 0.5740 0.5740 0.5740

BERT + GRU 1 – 0.5276 0.5199 0.5199 0.5199
BERT + SAN 1 – 0.6108 0.6348 0.6349 0.6349
BERT + TFM 3 – 0.5945 0.6181 0.6181 0.6181

Tr
i-T

ra
in

in
g BERT + Linear 1 gru-tfm-linear 0.7555 0.6666 0.6666 0.6666

BERT + GRU 1 gru-san-linear 0.7662 0.7499 0.7499 0.7499
BERT + SAN 1 san-tfm-linear 0.7643 0.7692 0.7692 0.7692
BERT + TFM 1 gru-tfm-linear 0.7488 0.7777 0.7777 0.7777

Table 5.13: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the LAPTOP and Domain-2.

Tables 5.14 and 5.15 correspond to the sentiment results for Domain-3. The results to this
domain were the best in all of our cross-domain analysis evaluations. In terms of Macro-F1, the
results were mostly similar with both the REST and LAPTOP. However, the Micro-F1 results
were extremely better with REST.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.4863 0.7412 0.7412 0.7412

BERT + GRU 1 – 0.4868 0.7739 0.7739 0.7739
BERT + SAN 3 – 0.5363 0.7949 0.7949 0.7949
BERT + TFM 1 – 0.5225 0.8108 0.8108 0.8108

Tr
i-T

ra
in

in
g BERT + Linear 1 linear-gru-san 0.5636 0.8709 0.8709 0.8709

BERT + GRU 1 gru-tfm-san 0.6570 0.9523 0.9523 0.9523
BERT + SAN 1 san-gru-linear 0.5248 0.7701 0.7701 0.7701
BERT + TFM 1 san-tfm-linear 0.5892 0.9443 0.9443 0.9443

Table 5.14: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the REST and Domain-3.
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The samples from Domain-3 mostly consisted of themes such as investing, stocks, and other
financial-themed concepts. We see that samples from REST generalize well with these samples,
in terms of sentiment.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 2 – 0.5366 0.55 0.55 0.55

BERT + GRU 8 – 0.5287 0.5787 0.5787 0.5787
BERT + SAN 4 – 0.5717 0.6064 0.6064 0.6064
BERT + TFM 5 – 0.5704 0.5917 0.5917 0.5917

Tr
i-T

ra
in

in
g BERT + Linear 1 linear-gru-san 0.5421 0.5833 0.5833 0.5833

BERT + GRU 1 gru-linear-san 0.5962 0.6451 0.6451 0.6451
BERT + SAN 1 san-tfm-linear 0.6242 0.6779 0.6779 0.6779
BERT + TFM 1 san-tfm-linear 0.6230 0.6462 0.6463 0.6463

Table 5.15: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the LAPTOP and Domain-3.

Results for Domain-4 are presented in tables 5.16 and 5.17. Domain-4 mostly contained
samples from the area of Marketing, self-promotion, product promotions, etc. These samples
related most to the LAPTOP than the REST, in terms of sentiment. We think that some of
the product-related promotions were similar in nature to the samples from LAPTOP and hence
the results.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 20 – 0.4399 0.6948 0.6948 0.6948

BERT + GRU 1 – 0.4894 0.7659 0.7659 0.7659
BERT + SAN 11 – 0.4709 0.7268 0.7268 0.7268
BERT + TFM 2 – 0.4674 0.7641 0.7641 0.7641

Tr
i-T

ra
in

in
g BERT + Linear 2 san-tfm-linear 0.5078 0.7993 0.7998 0.7998

BERT + GRU 1 gru-tfm-san 0.4888 0.7499 0.7499 0.7499
BERT + SAN 1 san-tfm-gru 0.4466 0.7113 0.7113 0.7113
BERT + TFM 1 gru-tfm-linear 0.4592 0.7107 0.7107 0.7107

Table 5.16: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the REST and Domain-4.
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Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall
Se

lf-
Tr

ai
ni

ng BERT + Linear 7 – 0.5718 0.6428 0.6428 0.6428
BERT + GRU 4 – 0.6160 0.6233 0.6233 0.6233
BERT + SAN 10 – 0.6273 0.6774 0.6774 0.6774
BERT + TFM 7 – 0.6411 0.6568 0.6568 0.6568

Tr
i-T

ra
in

in
g BERT + Linear 1 san-gru-linear 0.625 0.6135 0.6135 0.6135

BERT + GRU 1 gru-linear-san 0.5269 0.5172 0.5172 0.5172
BERT + SAN 1 san-tfm-linear 0.6502 0.6169 0.6170 0.6170
BERT + TFM 1 gru-tfm-linear 0.7752 0.7045 0.7045 0.7045

Table 5.17: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the LAPTOP and Domain-4.

Finally, 5.18 and 5.19 presents the results for Domain-5. The samples from this domain
included all the other themes not found in Domain-1 to Domain-4. In that sense, the specificity
of this domain to a certain concept was comparatively lesser than the others. This could explain
the comparatively lower values with both REST and LAPTOP. But the Micro-F1, precision,
and recall values with REST were superior to that of LAPTOP.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 1 – 0.4693 0.7009 0.7009 0.7009

BERT + GRU 1 – 0.4153 0.6730 0.6730 0.6730
BERT + SAN 4 – 0.4888 0.6750 0.6750 0.6750
BERT + TFM 4 – 0.4659 0.7091 0.7091 0.7091

Tr
i-T

ra
in

in
g BERT + Linear 1 san-tfm-linear,

gru-tfm-linear
0.4693 0.7009 0.7009 0.7009

BERT + GRU 1 gru-tfm-linear 0.4555 0.6328 0.6328 0.6328
BERT + SAN 1 san-gru-linear 0.4627 0.7173 0.7173 0.7173
BERT + TFM 1 gru-tfm-san 0.4882 0.7599 0.7599 0.7599

Table 5.18: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the REST and Domain-5.
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Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

Se
lf-

Tr
ai

ni
ng BERT + Linear 7 – 0.4983 0.5403 0.5404 0.5404

BERT + GRU 5 – 0.5280 0.5746 0.5746 0.5746
BERT + SAN 8 – 0.5294 0.5802 0.5802 0.5802
BERT + TFM 13 – 0.5139 0.5392 0.5392 0.5392

Tr
i-T

ra
in

in
g BERT + Linear 1 san-tfm-linear 0.4393 0.4726 0.4727 0.4727

BERT + GRU 1 gru-tfm-linear 0.4358 0.4999 0.4999 0.4999
BERT + SAN 1 san-tfm-linear 0.4436 0.4716 0.4716 0.4716
BERT + TFM 1 gru-tfm-san,

linear-tfm-san
0.4241 0.5073 0.5073 0.5073

Table 5.19: Comparison between the results of Self-Training and Tri-Training, on the Sentiment,
with the LAPTOP and Domain-5.

Evaluation on Aspect

In section 3.3.2, we laid out the need for additional annotations to undergo this evaluation.
We also presented the guidelines that the annotators were presented for the annotation process.
Since it was impossible to annotate all 8250 samples, we sampled a set of 200 samples that were
shared with the annotators. We hence evaluate the model’s prediction on these select samples
and since these were very few in number, we only present the evaluation results on the aspect
for all domains combined.

For annotation, the annotators identified possible aspect words on the samples. Additionally,
we also asked the annotators to provide the sentiment info along the aspect words. While this
sentiment info is not used for evaluation (as it is already realized with true labels in the previous
section), we use them to infer the distribution of aspect words to these sentiments (more on this
later).

Models Iteration F1 Precision Recall

w
ith

R
ES

T BERT + Linear 11 0.1651 0.2812 0.1169
BERT + GRU 12 0.1238 0.2857 0.079
BERT + SAN 15 0.1579 0.2432 0.1169
BERT + TFM 17 0.167 0.2903 0.1169

w
ith

LA
PT

O
P

BERT + Linear 15 0.1495 0.2666 0.1039
BERT + GRU 13 0.1766 0.36 0.117
BERT + SAN 10 0.16 0.3478 0.1039
BERT + TFM 8 0.1348 0.4286 0.08

Table 5.20: Results for the evaluation of Aspect, with Self-Training, and both REST and
LAPTOP.
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Table 5.20 gives the results of aspect evaluation on REST and LAPTOP, with Self-Training.
Table 5.21 gives the results corresponding to Tri-Training runs. The results presented are the
best results out of all three annotation sets used. The results for other annotations contained
F1 values in the range of 0.08 to 0.1 for Self-Training. In the case of Tri-Training, the values
were in the range of 0.05 to 0.07. Hence, we just mention this and provide values corresponding
to relatively better scores.

Models Iteration Models h1 − h2 − h3 F1 Precision Recall

w
ith

R
ES

T

BERT + Linear 1 san-tfm-linear,
gru-tfm-linear,
linear-gru-san

0.082 0.2353 0.05

BERT + GRU 2 gru-tfm-linear 0.056 0.4286 0.03
BERT + SAN 1 san-tfm-gru 0.069 0.3 0.0389
BERT + TFM 1 gru-tfm-san 0.063 0.158 0.039

w
ith

LA
PT

O
P BERT + Linear 1 san-tfm-linear 0.063 0.158 0.039

BERT + GRU 1 gru-linear-tfm 0.082 0.2353 0.05
BERT + SAN 1 san-tfm-linear 0.1 0.99 0.05
BERT + TFM 1 san-tfm-linear,

gru-tfm-linear
0.092 0.5714 0.05

Table 5.21: Results for the evaluation of Aspect, with Tri-Training, and both REST and
LAPTOP.

With results being subpar and indicating scope for improvement, a closer inspection of the
sample annotations and predictions yielded the following observations:

The predictions were most successful in instances of positive aspect words but failed in most
occasions of neutral aspect words. This behavior was in line with the predictions made on the
test set of REST (and LAPTOP) where the selection of aspect words was most successful when
the underlying sentiments were in the absolutes i.e, positive or negative.

There were two reasons for this. The first reason concerns the distribution of sentiment on
the 200 samples tasked with annotating aspect words. Since the annotators were also tasked
to denote their opinion on the sentiment associated to the aspect words, we could conduct a
detailed analysis of the distribution of sentiment in their annotations.

Out of 200 samples submitted to the annotators, While Annotator 1 found 66 samples to be
containing at least a single aspect word, Annotator 2 and Annotator 3 found 49 and 28 samples
to be containing aspect words. The table 5.22 shows the distribution of the aspect words to the
sentiment in all these annotations.

From the table, it can be seen that most of the aspect words were marked with the neutral
sentiment and there were almost no negative marked aspect words found in the samples.

The second reason concerns the number of labeled samples with neutral sentiment for REST
and LAPTOP. The distribution is given in the table 5.23. For LAPTOP, the number of aspect
words with neutral sentiment is relatively lower by almost half when compared to either of the
other sentiments. For REST, this number is much lower.

Hence, we believe that the combination of relatively fewer neutral sentiment samples in
the original training set and the subsequent presence of a higher number of neutral sentiment
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Annotators Number of samples
containing Aspect words

Distribution of number
of Aspect words
for Sentiment

NEU POS NEG
Annotator-1 66 75 5 0
Annotator-2 49 36 24 2
Annotator-3 28 25 4 2

Table 5.22: Distribution of Sentiment to the Aspect words for samples employed for Aspect
evaluation.

Train Set Number of samples
containing Aspect words

Distribution of number
of Aspect words for Sentiment
NEU POS NEG

REST 1114 77 1644 543
LAPTOP 1308 666 1222 1142

Table 5.23: Distribution of Sentiment to the Aspect words, for the Original labeled data.

samples in the annotations of the unlabeled set was one of the reasons for the results.
Additionally, we tried to uncover the agreement between all three annotations and found that

the opinions were diverse too. From table 5.22, it can be seen that Annotator 1 and Annotator
2 found aspect words for 66 and 49 samples respectively. But, the opinions were in-agreement
for only 25 samples. In terms of aspect words, they agreed on 28 aspect words in total. Between
Annotator 2 and Annotator 3 the agreement found was only on 6 samples and 6 aspect words.
And finally, between Annotator 1 and Annotator 3, the agreement was made on 10 samples and
aspect words in total. This also indicates the varied nature of opinions themselves.

5.4 E2E-ABSA across Erroneous Transcriptions
Section 4.4.2 explains in detail the procedure for this section. We conduct two separate runs for
a single implementation. As unlabeled data, the same implementation uses AWS transcribed
samples in one run and in another, uses the manually transcribed (gold standard) counterparts.
This holds for both the Self-Training runs as well as of Tri-Training. As part of unlabeled data
for training, we prepared a set of 4106 samples. As part of the evaluation for sentiment, we
prepared another set of 1825 samples. Both of these were from CMU-MOSEI. To evaluate the
direct consequence of using either the AWS transcribed samples or the gold standard samples
as the unlabeled set, we also conduct the E2E-ABSA evaluation on the test set of the labeled
data.

On the whole, however, the above study is done twice, once with both the REST and
LAPTOP.

We first present the direct E2E-ABSA results with the runs made incorporating the AWS
transcribed samples and gold standard samples as the unlabeled data, in section 5.4.1. We then
discuss the results for the evaluation of sentiment under two scenarios:

• In section 5.4.2, Sentiment evaluation for instances that were erroneous compared to the
gold standard samples, compared.
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• In section 5.4.3,Sentiment evaluation under only the spontaneous speech instances, com-
pared with both the AWS transcribed and the gold standard samples.

5.4.1 E2E-ABSA across AWS Transcriptions and Gold Standard
In this section, we present the E2E-ABSA results for both the Self-Training and Tri-Training
implementations with both the AWS transcribed samples and the gold standard samples incor-
porated as unlabeled samples. The results were carried out on the test set of the labeled data
of REST (on tables 5.24 and 5.26) and LAPTOP(5.25 and 5.27)

Models Iteration Macro-f1 Micro-f1 Precision Recall

w
ith

AW
S BERT + Linear 1 0.5127 0.6661 0.6854 0.6479

BERT + GRU 1 0.5675 0.7122 0.7122 0.7122
BERT + SAN 3 0.5760 0.7084 0.7084 0.7084
BERT + TFM 2 0.5952 0.7115 0.7367 0.6881

go
ld

st
an

da
rd BERT + Linear 2 0.5214 0.6957 0.6985 0.6929

BERT + GRU 4 0.5538 0.7012 0.6862 0.7170
BERT + SAN 1 0.5780 0.7098 0.7241 0.6961
BERT + TFM 1 0.5981 0.7040 0.7122 0.6961

Table 5.24: Comparison between the E2E-ABSA results for samples from AWS Transcribe and
gold standard, with Self-Training and REST.

Models Iteration Macro-f1 Micro-f1 Precision Recall

w
ith

AW
S BERT + Linear 4 0.5754 0.6125 0.6315 0.5946

BERT + GRU 1 0.5875 0.6257 0.6238 0.6278
BERT + SAN 6 0.5817 0.6291 0.6509 0.6088
BERT + TFM 2 0.5816 0.6302 0.6515 0.6104

go
ld

st
an

da
rd BERT + Linear 4 0.5844 0.6202 0.6373 0.6041

BERT + GRU 2 0.5958 0.6344 0.6480 0.6215
BERT + SAN 4 0.5897 0.6350 0.6714 0.6025
BERT + TFM 2 0.5877 0.6269 0.6591 0.5978

Table 5.25: Comparison between the E2E-ABSA results for samples from AWS Transcribe and
gold standard, with Self-Training and LAPTOP.

As can be seen from the above tables, the results with Self-Training and from the AWS
transcriptions were very close to the gold standard ones. The results with gold standard labels
were slightly better overall, but the differences were not so stark. We can even see that in some
cases, surprisingly, the results ended up being better with the AWS Transcriptions.
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But in Tri-Training runs, the AWS transcribed ones were better than the gold standard ones.
The results are given in tables 5.26 and 5.27.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

w
ith

AW
S BERT + Linear 2 san-linear-gru 0.5650 0.7018 0.6979 0.7058

BERT + GRU 2 san-tfm-gru 0.5691 0.7233 0.7280 0.7186
BERT + SAN 2 san-tfm-gru 0.5967 0.7262 0.7274 0.7251
BERT + TFM 1 san-tfm-gru 0.6074 0.7293 0.7421 0.7170

go
ld

st
an

da
rd BERT + Linear 2 linear-tfm-gru 0.5764 0.7151 0.7351 0.6961

BERT + GRU 2 san-linear-gru 0.5587 0.7082 0.7043 0.7122
BERT + SAN 2 san-tfm-gru 0.5987 0.7274 0.7364 0.7186
BERT + TFM 1 san-tfm-gru 0.5999 0.7123 0.6986 0.7267

Table 5.26: Comparison between the E2E-ABSA results for samples from AWS Transcribe and
gold standard, with Tri-Training and REST.

One reason for this could be that even though the word error rates between the transcripted
samples and the gold standard ones were significant enough to be noticeable, it could be seen
that the major notion of the samples was somewhat still retained. This could be because the
major contributors to the word error rate were the errors in the subject and/or object words,
and, in some cases, the articles and prepositions present in the samples. While this meant that
there was still noticeable errors in transcription, the majority of it did not take away the impact
on deduction of the inherent sentiment while testing on the labeled data.

Another interesting observation is the surprisingly better results when compared with the
Self-Training and Tri-Training experiments run as part of the sections 4.2.1 and 4.2.2, the results
of which were in the tables 5.5 and 5.6.

Models Iteration Models h1 − h2 − h3 Macro-f1 Micro-f1 Precision Recall

w
ith

AW
S BERT + Linear 1 linear-gru-tfm 0.5819 0.6233 0.6421 0.6057

BERT + GRU 2 san-gru-tfm 0.5952 0.6416 0.6494 0.6341
BERT + SAN 2 linear-san-tfm 0.5810 0.6253 0.6673 0.5883
BERT + TFM 1 linear-san-tfm 0.6004 0.6441 0.6579 0.6309

go
ld

st
an

da
rd BERT + Linear 2 linear-gru-tfm 0.5958 0.6333 0.6598 0.6088

BERT + GRU 1 linear-gru-tfm 0.5781 0.6235 0.6391 0.6088
BERT + SAN 1 san-tfm-gru 0.5809 0.6291 0.6620 0.5994
BERT + TFM 1 linear-gru-tfm 0.5976 0.6393 0.6791 0.6041

Table 5.27: Comparison between the E2E-ABSA results for samples from AWS Transcribe and
gold standard, with Tri-Training and LAPTOP.

We think that the experiments in this study, supplemented by approximately one-fifth of
the original unlabeled data size had a constructive outcome. A controlled supply of pseudo-
labeled samples resulting in better results could be one of the overall main consequences of
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this whole work. The experiments of this study and the comparison between Tri-Training and
Self-Training runs for E2E-ABSA (as in tables 5.5 and 5.6), the former which incorporates this
notion of controlled addition of training samples are an excellent demonstration of the same.

5.4.2 Evaluating Sentiment with Erroneous Transcriptions

As part of this task, we compare the sentiment inference from the Semi-supervised models both
with the AWS transcripted data and the gold standard ones. For this task, we only consider
those samples that were erroneous when compared to the gold standard ones, with the other
samples excluded from the study. The main aim is to inspect if there is any significant change
in inferencing sentiment when the underlying textual info differs from its original counterpart.

with Self-Training with AWS Transcribe with Gold Standard
Models Iteration Macro-f1 Iteration Macro-f1 Percentage Difference

w
ith

R
ES

T BERT + Linear 5 0.324 10 0.3166 2.31%
BERT + GRU 3 0.3718 11 0.3526 5.3%
BERT + SAN 16 0.3627 2 0.3247 11.06%
BERT + TFM 10 0.3511 5 0.3095 12.59%

w
ith

LA
PT

O
P

BERT + Linear 6 0.5487 2 0.5633 -2.63%
BERT + GRU 12 0.5613 9 0.4670 18.34%
BERT + SAN 2 0.5481 14 0.5513 -0.58%
BERT + TFM 10 0.5296 1 0.6332 -17.82%

Table 5.28: Results for the evaluation on sentiment, for erroneous samples from AWS Transcribe
and the gold standard, with Self-Training.

Out of the 151 test files containing 1825 samples, we found that there were errors in samples
from 115 files. However, not all of the samples from these files were erroneous. We found that
1232 samples contained at least a single error. Since labels were missing for numerous samples
from CMU-MOSEI, we ended up obtaining only 275 samples that could be evaluated.

Tables 5.28 and 5.29 gives a look at the results. The former presents the results with
Self-Training, and the latter, with Tri-Training implementations. For clarity, we give only the
highest Macro-F1 scores obtained in the individual runs while omitting the other metrics. Other
metadata info such as iteration and in the case of Tri-Training, the individual models used are
also presented. We also present the percentage difference between the results to denote the
magnitude of the difference. The percentages are from the perspective of the AWS samples
since they are the focus of this study.

As can be seen from the tables, the results with Self-Training surprisingly have the runs
with AWS transcribed samples outscoring the gold standard counterparts. For Tri-Training
implementations, however, the runs involving the gold standard samples were better than the
AWS ones.
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with Tri-Training with AWS Transcribe with Gold Standard
Models Iteration Models h1 − h2 − h3 Macro-f1 Iteration Models h1 − h2 − h3 Macro-f1 Percentage Difference

w
ith

R
ES

T BERT + Linear 2 san-linear-tfm 0.2947 3 san-linear-tfm 0.3333 -12.29%
BERT + GRU 3 gru-linear-tfm 0.2962 3 san-gru-tfm 0.3888 -27.04%
BERT + SAN 1 san-gru-tfm 0.3553 1 san-gru-tfm 0.3587 -0.95%
BERT + TFM 1 gru-linear-tfm 0.3324 2 san-gru-tfm 0.3333 -0.27%

w
ith

LA
PT

O
P

BERT + Linear 2 san-linear-tfm 0.5970 1 linear-gru-tfm 0.7312 -20.21%
BERT + GRU 2 san-gru-tfm 0.6785 1 san-gru-tfm 0.7714 -12.81%
BERT + SAN 1 san-linear-tfm 0.6499 1 san-linear-gru 0.6111 6.15%
BERT + TFM 1 linear-gru-tfm 0.4841 1 san-linear-tfm 0.5238 -7.87%

Table 5.29: Results for the evaluation on sentiment, for erroneous samples from AWS Transcribe
and the gold standard, with Tri-Training

5.4.3 Evaluating Sentiment on Spontaneous instances
In this study, we try to evaluate the sentiment for AWS transcripted samples and the gold
standard ones in the setting of spontaneous speech instances.

Some videos from CMU-MOSEI are scripted as the person delivering a speech reads off
of a manuscript. But it also contains videos where the user presents his views spontaneously.
Here, the instances usually contain repetition, hesitation, or faltering between their delivery. We
intend to investigate whether the inherent sentiment in those deliveries could still be determined.
Along with these, we also conduct experiments from the transcripts obtained from AWS for such
instances.

with Self-Training with AWS Transcribe with Gold Standard
Models Iteration Macro-f1 Iteration Macro-f1 Percentage Difference

w
ith

R
ES

T BERT + Linear 7 0.3644 7 0.3139 14.89%
BERT + GRU 9 0.3434 2 0.3889 -12.43%
BERT + SAN 13 0.3936 11 0.3314 17.16%
BERT + TFM 1 0.3889 9 0.3308 16.15%

w
ith

LA
PT

O
P

BERT + Linear 15 0.5714 15 0.6194 -8.06%
BERT + GRU 12 0.6166 2 0.5116 18.16%
BERT + SAN 6 0.5288 4 0.5608 -5.87%
BERT + TFM 14 0.5238 1 0.5167 1.36%

Table 5.30: Results for the evaluation on sentiment, for the spontaneous speech samples from
AWS Transcribe and the gold standard, with Self-Training.

For this, we first identify such samples. Since the unlabeled set for this study involved 4125
sentence samples for training and 1825 samples for test, this allowed us to examine every sentence
sample out of the 1825 samples. Also, since these were from 151 videos, we skimmed through
these videos to identify those that contained such speech instances. Out of 151 videos, we
found 72 videos and 667 samples in total containing such instances. But during cross-examining
sentiment labels for them, we found that the labels were only available in 32 videos and for 77
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samples. we use these samples as the test set for sentiment evaluation.
Table 5.30 presents results with Self-Training implementations, while table 5.31 presents the

results with Tri-Training. Similar to the previous section, the runs with Self-Training saw the
ones with AWS Transcriptions outscoring its counterpart. For Tri-Training runs shown below,
the ones with the gold standard transcriptions had better results.

with Tri-Training with AWS Transcribe with Gold Standard
Models Iteration Models h1 − h2 − h3 Macro-f1 Iteration Models h1 − h2 − h3 Macro-f1 Percentage Difference

w
ith

R
ES

T BERT + Linear 3 gru-linear-tfm 0.4449 1 gru-linear-tfm 0.6666 -39.89%
BERT + GRU 1 gru-linear-tfm 0.3532 2 gru-linear-tfm 0.4091 -14.66%
BERT + SAN 2 san-linear-tfm 0.3333 1 san-gru-tfm 0.5185 -43.48%
BERT + TFM 2 gru-linear-tfm 0.3571 2 san-linear-tfm 0.3333 6.89%

w
ith

LA
PT

O
P

BERT + Linear 2 san-linear-tfm 0.511 1 linear-gru-tfm 0.6296 -20.79%
BERT + GRU 2 san-gru-tfm 0.4888 1 san-gru-tfm 0.5237 -6.89%
BERT + SAN 2 san-linear-tfm 0.4539 1 san-linear-gru 0.4993 -9.53%
BERT + TFM 1 san-linear-tfm 0.3 1 san-linear-tfm 0.4126 -31.60%

Table 5.31: Results for the evaluation on sentiment, for spontaneous speech samples from AWS
Transcribe and the gold standard, with Tri-Training.
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Conclusion
6

In our work on "Cross-domain Aspect-based Sentiment Analysis with Multimodal Sources", we
investigated the effectiveness of Semi-supervised approaches to the Aspect-based Sentiment
Analysis problem. We tackle the Aspect-based Sentiment Analysis as an E2E-ABSA problem
which is a sequence labeling task tagging individual words for the possible aspect and sentiments.

First, to implement the baseline for our work, we created a computational model based on
BERT. Specifically, we fine-tune the model bert-base-uncased with additional layers added to it
to perform the task of sequence labeling. For this downstream task of labeling, we leveraged the
work of Li et al. (2019c).

We then utilize two Semi-supervised methods, namely the Self-Training, and the Tri-Training,
and then investigate their effectiveness to the E2E-ABSA. With Self-Training, the labeled data
from the restaurant domain (REST), and the model BERT+TFM, we achieved the Macro-F1
increment of 0.1335 over the corresponding baseline. With Tri-Training and REST, we had two
models, the BERT+Linear and BERT+GRU improving upon the respective baseline models
by a Macro-F1 factor of 0.1132 and 0.086 respectively. These improvements with Tri-Training
were also better than the scores from their respective Self-Training runs. These results show a
constructive outcome for the application of Semi-supervised methods to the E2E-ABSA problem.

As part of the next research task, we investigated cross-domain analysis of the E2E-ABSA.
With this evaluation being one of the key reasons to employ Self-Training and Tri-Training in
our work, we segregated a part of unlabeled data into five domains. The predictions of Semi-
supervised models on these samples are evaluated separately against the sentiment and aspect.
The evaluation against sentiment had its best results with the samples belonging to Domain-3
(with the best Micro-F1 score of 0.95), while, the results for Domain-1, Domain-2, and Domain-4
were slightly lower (with the best Micro-F1 scores being 0.89, 0.85 and 0.8 respectively). The
results for aspect detection, however, performed worse and while evaluating for performance
across domains, the best results were had with the models from Self-Training runs. The best
results were from the BERT+TFM model for REST and the BERT+GRU model for LAPTOP
(with the F1 scores of 0.1666 and 0.1764 respectively). Even though the evaluation of aspect
words was done on a small sample of 200 sentences, we conclude that the models work better
in detecting sentiment than the aspect words, and in the case of the latter, there is scope for
improvement.

For the third research task involving the evaluation of E2E-ABSA in the setting of erroneous
transcriptions and spontaneous speech instances, we obtained transcriptions from an external
Automatic Speech Recognition system. For this, we made use of Amazon Web Service’s (AWS)
Transcribe. On conducting concurrent experiments for E2E-ABSA but employing unlabeled
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samples from the AWS in one run and the gold standard in another, we then compared their
results. The results from Self-Training had on more occasions, experiments conducted with gold
standard samples outscoring the AWS transcribed counterpart. But the Tri-Training experi-
ments had the runs from AWS transcribed samples accomplish better than the gold standard
on more trials. We conclude here that even though there were considerable error rates when
data samples were transcribed from an external system, it still retained the essential notion to
derive sentiments and hence the lack of relatively lower results.

We then compared the inferences of sentiment on samples containing erroneous transcrip-
tions alone. With Self-Training, the results from the AWS transcriptions, although erroneous,
outscored the ones from the gold standard samples. But, with Tri-Training, the results with
gold standard samples were better overall.

In the final part of the third research task, we evaluated sentiment on instances of sponta-
neous speech containing hesitation, pauses, and repetition. Here, the runs with Self-Training
saw the ones with AWS Transcriptions outscoring its counterpart. For Tri-Training runs, the
ones with the gold standard transcriptions had better results.

To conclude, through our study we found that there is scope for improving the E2E-ABSA
performance with the application of Semi-supervised methods. While the Self-Training method
has fewer advantages, the Tri-Training implementations led to improvements on more occasions
than not. We also found that the domain adaptation from these methods was achievable, with
room for improvement in the aspect detection front. Finally, the experiment results on erroneous
transcriptions did not lead to an inferior E2E-ABSA performance although the inference of
sentiment alone would work better with just the Self-Training method.

6.1 Future works
In our work, along with inspecting the effectiveness of Semi-supervised learning, we also in-
vestigated the domain adaptation capabilities of these methods. With the reasonably good
performance of the classical Tri-Training method, an investigation into its variants such as Tri-
training with Disagreement (Søgaard, 2010), and Asymmetric Tri-Training (Saito et al., 2017)
could be noteworthy. Also, with the neutral sentiment-heavy samples of CMU-MOSEI, exper-
iments with sentiment-balanced labeled data might lead to promising results, both in terms of
detecting sentiment and aspect terms.
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