# **Introduction to Text Mining**

Part IV: Basics of Empirical Methods

Henning Wachsmuth

https://cs.upb.de/css

# **Basics of Empirical Research: Learning Objectives**

#### Concepts

- The need for annotated text corpora
- Standard evaluation measures in text mining
- The most relevant basics from statistics
- The notion of empirical methods

#### **Methods**

- Development and evaluation of approaches on text corpora
- Selection of the right evaluation measure for a task
- Measuring of effectiveness in text mining
- The study of hypotheses with significance tests

#### **Outline of the Course**

- I. Overview
- II. Basics of Linguistics
- III. Text Mining using Rules
- IV. Basics of Empirical Methods
  - · What Are Empirical Methods?
  - Corpus Linguistics
  - Evaluation Measures
  - Empirical Experiments
  - · Hypothesis Testing
- V. Text Mining using Grammars
- VI. Basics of Machine Learning
- VII. Text Mining using Similarities and Clustering
- VIII. Text Mining using Classification and Regression
  - IX. Text Mining using Sequence Labeling
  - X. Practical Issues

# What Are Empirical Methods?

# **Empirical Methods**

#### What is an empirical method?

- A quantitative method based on numbers and statistics.
- Studies a question on behaviors or phenomena by analyzing data.
- Derives knowledge from experience rather than from theory or belief.

#### Quantitative vs. qualitative methods

- Quantitative. Characterized by objective measurements.
- Qualitative. Emphasize the understanding of human experience.

## **Descriptive and inferential statistics**

 Descriptive. Methods for summarizing and comprehending a sample or distribution of values. Used to describe phenomena.

```
4.5, 5, 6, 6.5, 6.5, 7, 7, 7, 7.5, 8 \rightarrow mean M = 6.5
```

 Inferential. Methods for drawing conclusions based on values. Used to generalize inferences beyond a given sample.

The average number is significantly higher than 5.

# **Empirical Methods**

#### **Research Questions**

#### A good research question (Bartos, 1992)

- Asks about the relationship between two or more variables.
- Is testable, i.e., it is possible to collect data to answer the question.
- Is stated clearly, in the form of a question.
- Does not pose an ethical or moral problem for implementation.
- Is specific and restricted in scope.
- Identifies exactly what is to be solved.

## Example of a poorly formulated question

"How effective is tokenization using hand-crafted decision trees?"

## **Example of a well-formulated question**

"What accuracy does the hand-crafted decision-tree tokenizer from 'Introduction to Text Mining' achieve on the test set of the English CoNLL-2003 corpus (as opposed to a tokenizer that simply splits at every whitespace)?"

# **Empirical Methods**

Text Mining and Empirical Methods

#### **Text mining (recap)**

- Aims to infer structured output information from unstructured texts.
- Uses rule-based or statistical approaches for this purpose.
- The output information produced is not always be correct.

## **Empirical methods in text mining**

All detailed below.

- Corpus linguistics. Approaches are developed and evaluated on text collections called *corpora*.
- Evaluation measures. The quality of an approach needs to be evaluated, especially of its *effectiveness*.
- Experiments. The quality is empirically evaluated on test corpora and compared to alternative approaches.
- Hypothesis testing. Methods are used to statistically "proof" the quality.

# **Corpus Linguistics**

# **Corpus Linguistics**

#### What is corpus linguistics?

• The study of language as expressed in principled collections of natural language texts, called *text corpora*.

For spoken language, also other corpora exist, of course.

- Aims to derive knowledge and rules from real-world text.
- Covers both manual and automatic analysis of text.

#### Main techniques

- Annotation. Adding annotations to a text or span of text.
- Abstraction. Mapping of annotated texts to a theory-based model.
- Analysis. Developing and evaluating methods based on a corpus.

## Need for text corpora

 Without a corpus, it's hard to develop a strong approach — and impossible to reliably evaluate it.

"It's not the one who has the best algorithm that wins.

It's who has the most data."

# **Text Corpora**

#### What is a text corpus?

 A collection of real-world texts with known properties, compiled to study a language problem.

Examples: 200,000 product reviews for sentiment analysis, 1000 news articles for part-of-speech tagging, ...

 The texts in a corpus are often annotated, at least for the problem to be studied.

Examples: Sentiment polarity of a full text, part-of-speech tags of each token, ...

## Corpora in text mining

- Text mining approaches are developed and evaluated on text corpora.
- Usually, the corpora contain annotations of the output information type to be inferred.

#### **Annotations**

#### What is an annotation?

- An annotation marks a text or a span of text as representing meta-information of a specific type.
- Can also be used to specify relations between other annotations.
- The types are specified by an annotation scheme.



Topic: "Google revenues" Genre: "News article"

#### **Annotations**

#### Ground Truth vs. Automatic Annotation

#### Manual annotation

- The annotations of a text corpus are usually created manually.
- To assess the quality of manual annotations, inter-annotator agreement is computed based on texts annotated multiple times.

Standard chance-corrected measures: Cohen's  $\kappa$ , Fleiss'  $\kappa$ , Krippendorff's  $\alpha$ , ...

#### **Ground-truth annotations**

- Manual annotations are assumed to be correct, called the ground truth.
- Text mining usually learns from ground-truth annotations.

#### **Automatic annotation**

- Technically, text mining algorithms can be seen as just adding annotations of certain types to a processed text.
- The automatic process usually aims to mimic the manual process.

#### **Annotations**

Three Ways of Obtaining Ground-Truth Annotations

#### **Expert annotation**

- Experts for the task at hand (or for linguistics, ...) manually annotate each corpus text.
- Usually achieves the best results, but often time and cost-intensive.

#### **Crowd-based annotation**

- Instead of experts, crowdsourcing is used to create manual annotation.
- Common platforms: http://mturk.com, http://upwork.com, ...
- Access to many lay annotators (cheap) or semi-experts (not too cheap).
- Distant coordination overhead; results for complex tasks unreliable.

## **Distant supervision**

- Annotations are (semi-) automatically derived from existing metadata.
- Examples: Sentiment from user ratings, entity relations from databases
- Enables large corpora, but annotations may be noisy.

# **Text Corpora**

Example: ArguAna TripAdvisor Corpus \* (Wachsmuth et al., 2014)

#### Compilation

- 2100 manually annotated hotel reviews, 300 each out of 7 locations.
- 420 each with user overall rating 1–5.
- Additional 196,865 not manually-annotated reviews.

```
body: stayed at the darling harbour holiday inn. The location was great, right there at China town, restaurants everywhere, the monorail station is also nearby. Paddy's market is like 2 mins walk. Rooms were however very small. We were given the 1st floor rooms, and we were right under the monorail track, however noise was not a problem.

Service is terrible. Staffs at the front desk were impatient, I made an enquiry about internet access from the room and the person on the phone was rude and unhelpful. Very shocking and unpleasant encounter.
```

#### **Annotation**

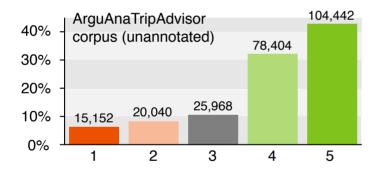
- Manual annotations. Clause-level sentiment polarity, hotel aspects.
- Distant supervision. Review-level sentiment scores from overall ratings (analog for other user ratings).

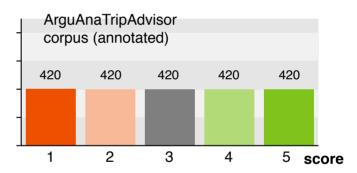
# **Text Corpora**

## Representativeness

#### Representativeness

- A corpus is representative for an output information type C, if it includes the full range of variability of texts with respect to C.
- Important for generalization, because the given corpus governs what can be learned about the associated domain.





## Representative vs. balanced distributions

- Evaluation. The distribution of texts over the values of *C* should be representative for the real distribution.
- Development. A balanced distribution, where all values are evenly represented, may be favorable (particularly for machine learning).

# **Evaluation Measures**

#### **Evaluation Measures**

#### **Evaluation measures in text mining**

- An evaluation measure quantifies the quality of an approach on a given task and corpus.
- Approaches can be ranked with respect to an evaluation measure.
- Quality is assessed in terms of effectiveness or efficiency.

#### **Effectiveness**

- The extent to which the output information of an approach is correct.
- Measures. Accuracy, precision, recall, ... (see below).
- High effectiveness is the primary goal of any text mining approach.

## **Efficiency**

- The costs of an approach in terms of the consumption of time.
- Measures. Overall run-time, mean run-time per unit, training time, ...
- Space efficiency (i.e., memory consumption) may play a role, too.
   Efficiency is beyond the scope of this course.

#### **Evaluation Measures**

#### Effectiveness

#### What is effectiveness?

 The effectiveness of a text mining approach is the extent to which its output information is correct.

#### **Evaluation of classification effectiveness**

- All tasks where instances of an output information type C are to be inferred can be evaluated as a binary classification task.
- Check for each candidate instance whether the decision of an approach to infer the instance or not matches the ground truth.

## **Evaluation of regression effectiveness**

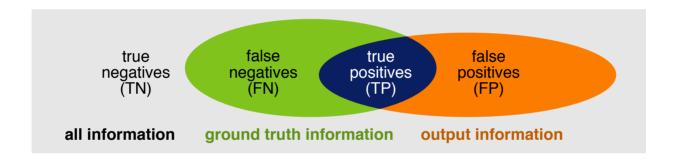
- In tasks where numeric values have to be predicted, the regression error is usually evaluated.
- Check for each value predicted for an instance by an approach how different the value is from instance's ground-truth value.

#### Classification Effectiveness

**Instance Types** 

#### Instance types of a text mining approach in a task

- Positives. The output information instances the approach has inferred.
- Negatives. All other possible instances.



## Instance types in the evaluation of the task

- True positive (TP). A positive that belongs to the ground truth.
- True negative (TN). A negative that does not belong to the ground truth.
- False negative (FN). A negative that belongs to the ground truth.
- False positive (FP). A positive that does not belong to the ground truth.

#### **Classification Effectiveness**

#### Evaluation based on the Instance Types

#### **Example: Sentiment analysis**

 Assume the sentiment of comments to videos is labeled as "positive", "negative", or "neutral".

Don't confuse these labels with the instance types above!



## Which of the following approaches is better?

- Approach 1. Classifies the first 70 of 100 comments correctly.
- Approach 2. Classifies the last 80 of the same 100 comments correctly.

## Which dataset appears to be "easier"?

- Dataset 1. 800 out of 900 comments classified correctly.
- Dataset 2. 500 out of 600 comments classified correctly.

#### True vs. false instances

 A straightforward way to answer these questions is to compare the ratios of true instances under all instances.

# **Accuracy**

## **Accuracy**

- The accuracy *A* is a measure of the correctness of an approach.
- How many classification decisions are correct?

$$A = \frac{|TP| + |TN|}{|TP| + |TN| + |FP| + |FN|}$$

## When to use accuracy?

- Accuracy is adequate when all classes are of similar importance.
- For instance, this holds for text classification tasks, such as sentiment analysis and part-of-speech tagging.

```
"The"/DT "man"/NN "sighed"/VBD "."/. "It"/PRP "'s"/VBZ "raining"/VBG ...
```

 Also, accuracy may make sense where virtually every span of a text needs to be annotated, e.g., in sentence splitting.

"The man sighed. \_ It's raining cats and dogs, he felt."

#### **Classification Effectiveness**

#### Limitations of Accuracy

## **Example: Spam detection**

- Assume 5% of the mails that your mail server lets through are spam.
- What accuracy does a spam detector have that always predicts "no spam" for these mails?



#### When not to use accuracy?

 In tasks where the positive class is rare, high accuracy can be achieved by simply inferring no information.

```
5% spam → 95% accuracy by always predicting "no spam"
```

 This includes tasks where the correct output information covers only portions of text, such as in entity recognition.

```
"Apple rocks." → Negatives: "A", "App", "Appl", "Apple ", "Apple r", ...
```

Accuracy is inadequate when true negatives are of low importance.

#### **Precision and Recall**

#### **Precision**

- The precision *P* is a measure of the exactness of an approach.
- P answers: How many of the found instances are correct?

$$P = \frac{|TP|}{|TP| + |FP|}$$



#### Recall

- The recall R is a measure of the completeness of an approach.
- R answers: How many of the correct instances have been found?

$$R = \frac{|TP|}{|TP| + |FN|}$$



#### **Observation**

True negatives not included in formulas.

#### **Precision and Recall**

#### **Implications**

## **Example: Spam detection (revisited)**

- Assume 5% of the mails that your mail server lets through are spam.
- What precision and recall does the "always no spam" detector have for detecting spam?



#### Idea of precision and recall

- Put the focus on a specific class (here: "spam").
- The typical case is that the true negatives are irrelevant.
- If multiple classes are important, precision and recall can be computed for each class.

## **Example: Spam detection (a last time)**

What precision and recall does an "always spam" detector have?

$$P = 0.05$$
  $R = 1.0$ 

#### **Precision and Recall**

Interplay between Precision and Recall

## Perfect precision and recall

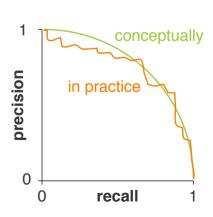
- A recall of 1.0 is mostly trivial; just assume every instance to be a TP. Only hard if there are too many instances, or if finding them is already a challenge.
- A precision of 1.0 is a bit more complicated; need to find at least one TP.

#### Precision vs. recall

- What is more important depends on the application.
- Usually, both precision and recall are to be maximized.

## Trade-off between precision and recall

- The more true positives should be found, the more likely it is to choose also false instances.
- This leads to a typical precision-recall curve.



## F<sub>1</sub>-Score

#### What is better?

- A precision of 0.51 and a recall of 0.51 (option a).
- A precision of 0.07 and a recall of 0.95 (option b).
- Often, a single effectiveness value is desired.

#### Problem with the mean

- In the above example, the mean would be the same for both options.
- But 93% of the found instances are wrong for option b.

## $F_1$ -score (aka $F_1$ -measure)

- The  $F_1$ -score is the harmonic mean of precision and recall.
- $F_1$  favors balanced over imbalanced precision and recall values.

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

Option a:  $F_1 = 0.51$ , option b:  $F_1 = 0.13$ .

## F<sub>1</sub>-Score

Generalization \*

## F<sub>β</sub>-Score

- The 1 in the F<sub>1</sub>-score in fact denotes a weighting factor.
- The general weighted harmonic mean is the  $F_{\beta}$ -score:

$$F_{\beta} = \frac{(1+\beta^2) \cdot P \cdot R}{(\beta^2 \cdot P) + R}$$

#### Problem with the weighting

- $\beta > 1$  give more weight to precision,  $\beta < 1$  gives more weight to recall.
- It is unclear how to interpret a particular choice of  $\beta$ .
- Therefore, nearly always  $\beta = 1$  is used in practice.

## F<sub>1</sub>-Score

#### Issue in Tasks with Boundary Detection

#### **Boundary errors**

 A common error in tasks where text spans need to be annotated is to choose a (slightly) wrong boundary of the span.

Entities: "First Bank of Chicago stated..." vs. "First Bank of Chicago stated..."

Sentences: "Max asked: 'What's up?'" vs. "Max asked: 'What's up?""

#### Issue with boundary errors

- Boundary errors leads to both an FP and an FN.
- Identifying nothing as a positive would increase the F<sub>1</sub>-score.

#### How to deal with boundary errors

- Different accounts for the issue have been proposed, but the standard  $F_1$  is still used in most evaluations.
- A relaxed evaluation is to consider some character overlap (e.g., >50%) instead of exact boundaries.

# Micro-Averaging and Macro-Averaging

#### **Evaluation of multi-class tasks**

- In general, each class in a multi-class task can be evaluated binarily.
- Accuracy can be computed for any number k of classes.
- Other results need to be combined with micro- or macro-averaging.

## Micro-averaged precision (recall and F<sub>1</sub>-score analog)

 Micro-averaging takes into account the number of instances per class, so larger classes get more importance.

$$Micro-P = \frac{|TP_1| + \ldots + |TP_k|}{|TP_1| + \ldots + |TP_k| + |FP_1| + \ldots + |FP_k|}$$

## Macro-averaged precision (recall and F<sub>1</sub>-score analog)

 Macro-averaging computes the mean result over all classes, so each class gets the same importance.

$$Macro-P = \frac{P_1 + \ldots + P_k}{k}$$

# Micro-Averaging and Macro-Averaging

#### **Confusion Matrix**

#### **Confusion matrix**

- Each row refers to the ground-truth instances of one of *k* classes.
- Each column refers to the classified instances of one class.
- The cell values illustrate the correct and incorrect classifications of a given approach.

| Ground truth | Classified as      |                    |  |                    |  |  |
|--------------|--------------------|--------------------|--|--------------------|--|--|
|              | Class a            | Class b            |  | Class k            |  |  |
| Class a      | $ TP_a $           | $ FP_b \cap FN_a $ |  | $ FP_k \cap FN_a $ |  |  |
| Class b      | $ FP_a \cap FN_b $ | $ TP_b $           |  | $ FP_k \cap FN_b $ |  |  |
| •••          |                    | •••                |  |                    |  |  |
| Class k      | $ FP_a \cap FN_k $ | $ FP_b \cap FN_k $ |  | $ TP_k $           |  |  |

#### **Confusion matrixes for what?**

- Used to analyze errors, to see which classes are confused with which.
- Contains all values for computing micro- and macro-averaged results.

# Micro-Averaging and Macro-Averaging

#### Computation

## **Example: Evidence classification**

 Assume an approach that classifies candidate evidence statements as being an "anecdote", "statistics", "testimony", or "none".



#### Confusion matrix of the results

| <b>Ground-truth</b> | Classified as |            |           |      |  |
|---------------------|---------------|------------|-----------|------|--|
|                     | Anecdote      | Statistics | Testimony | none |  |
| Anecdote            | 199           | 5          | 35        | 183  |  |
| Statistics          | 17            | 29         | 0         | 27   |  |
| Testimony           | 30            | 1          | 123       | 71   |  |
| None                | 118           | 7          | 36        | 1455 |  |

| Tot  | al  | Precision |
|------|-----|-----------|
| TP   | FP  | per class |
| 199  | 165 | 0.55      |
| 29   | 13  | 0.69      |
| 123  | 71  | 0.63      |
| 1455 | 281 | 0.84      |

## Micro- vs. macro-averaged precision (recall and F<sub>1</sub>-score analog)

• 
$$Micro-P = \frac{199+29+123+1455}{199+29+123+1455+165+13+71+281} = 0.77$$

• 
$$Macro-P = \frac{0.55+0.69+0.63+0.84}{4} = 0.68$$

# **Regression Effectiveness**

#### Regression task

- A regression task requires to predict numeric values for instances from a (usually but not necessarily predefined) continuous scale.
- Examples. Automatic essay grading, review rating prediction, ...

## **Example: Automatic essay grading**

• Given a set of n student essays, automatically assign each essay i a score  $y_i \in \{1, ..., 4\}$ .

The 4-point scale is the default in today's grading systems.



## **Regression errors**

- In many regression tasks, it is unlikely to predict the exact values of instances. Therefore, accuracy is not the primary measure.
- The focus is on the mean error of predicted values  $Y = (y_1, \dots, y_n)$  compared to ground-truth values  $\hat{Y} = (\hat{y_1}, \dots, \hat{y_n})$ .

# **Regression Effectiveness**

#### Types of Regression Errors

#### Mean absolute error (MAE)

- The MAE is the mean difference of predicted to ground-truth values.
- It is robust to outliers, i.e., it does not treat them specially.

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

## Mean squared error (MSE)

- The MSE is the mean squared difference of predicted to ground-truth values.
- It is specifically sensitive to outliers.

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Sometimes, also the root mean squared error (RMSE) is computed, defined as  $RMSE = \sqrt{MSE}$ .

# **Regression Effectiveness**

#### Computation

## **Example: Automatic essay grading (revisited)**

 Assume we have three automatic essay grading approaches applied to 10 essays resulting in the following scores.



|              | Essay |     |     |     |     |     |     |     |     |     |
|--------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Approach     | 1     | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
| Approach 1   | 2.6   | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 |
| Approach 2   | 1.0   | 3.2 | 2.0 | 2.1 | 3.0 | 3.1 | 2.8 | 3.1 | 1.2 | 4.0 |
| Approach 3   | 1.5   | 2.0 | 1.5 | 2.5 | 2.0 | 2.7 | 3.3 | 3.5 | 3.2 | 3.6 |
| Ground truth | 1     | 1   | 2   | 2   | 3   | 3   | 3   | 3   | 4   | 4   |

| Regression error |      |  |  |  |
|------------------|------|--|--|--|
| MAE              | MSE  |  |  |  |
| 0.88             | 1.04 |  |  |  |
| 0.55             | 1.28 |  |  |  |
| 0.58             | 0.40 |  |  |  |
| 0.00             | 0.00 |  |  |  |

## Which approach is best?

- Approach 1 trivially always predicts the mean → useless in practice.
- Approach 2 has a better MAE than approach 3, but fails with its MSE.
- Whether MAE or MSE is more important, depends on the application.
   In essay grading, outliers are particularly problematic.

#### **Evaluation of Effectiveness**

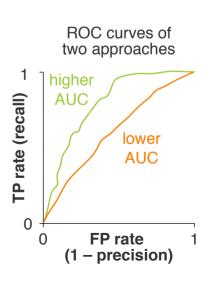
Other Measures \*

#### **Notice**

- Accuracy, precision, recall, F<sub>1</sub>-score, and mean absolute/squared error are the standard effectiveness measures.
- There are several other measures useful in particular settings.

#### Selection of other measures

- Error rate. Simply 1 accuracy.
- Labeled attachment score. Proportion of fully correctly classified tokens in syntactic parsing.
- Precision@k. Precision within the top k results of a ranking problem (also recall@k is used where it makes sense).
- Area under curve (AUC). Expected proportion
  of positives ranked before a negative, based on the
  receiver-operating characteristic (ROC) curve.



# **Empirical Experiments**

# **Empirical Experiments**

### **Empirical experiments in text mining**

- An empirical experiment tests a hypothesis based on observations.
- The focus is here on effectiveness evaluation in text mining.

### Intrinsic vs. extrinsic effectiveness evaluation

 Intrinsic. The effectiveness of an approach is directly evaluated on the task it is made for.

"What accuracy does a part-speech tagger A have on the dataset D?"

• Extrinsic. The effectiveness of an approach is evaluated by measuring how effective its output is in a *downstream task*.

"Does the ouput of A improve sentiment analysis on D'?"

### Corpus-based experiments vs. user studies

- We consider the empirical evaluation of approaches on corpora here.
- A whole different branch of experiments is related to user studies.
   Not covered in this course.

### **Datasets**

#### What is a dataset?

 A sub-corpus of a corpus that is compiled and used for developing and/or evaluating approaches to specific tasks.

### **Development and evaluation based on datasets**

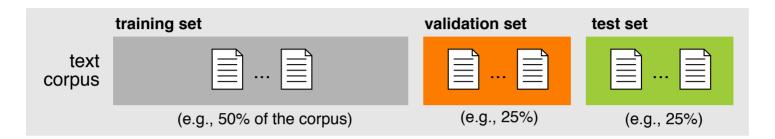
- 1. An approach is developed based on a set of training instances.
- 2. The approach is applied to a set of test instances.
- 3. The output of the approach is compared to the ground-truth of the test instances using evaluation measures.
- 4. Steps 1–3 may be iteratively repeated to improve the approach.

# **Corpus splitting**

- The split of a corpus into datasets should represent the task well.
   Out of scope here. Example: No overlap of instances from one text in different sets.
- The way a corpus is split implies how to evaluate.
- Main evaluation types. Training, validation, and test vs. cross-validation.

# Types of Evaluation

Training, Validation, and Test



### **Training set**

- Known instances used to develop or statistically learn an approach.
- The training set may be analyzed manually and automatically.

### Validation set (aka development set)

- Unknown test instances used to iteratively evaluate an approach.
- The approach is optimized on (and adapts to) the validation set.

# Test set (aka held-out set)

- Unknown test instances used for the final evaluation of an approach.
- The test set represents unseen data.

# Types of Evaluation

### **Cross-Validation**



### (Stratified) *n*-fold cross-validation

- A corpus is split into n dataset folds of equal size, usually n = 10. The split is done *stratified*, i.e., the target variable distribution is stable across folds.
- n runs. The evaluation results are averaged over n runs.
- *i*-th run. The *i*-th fold is used for evaluation (validation). All other folds are used for development (training).

### Pros and cons of cross-validation

- Often preferred when data is small, as more data is given for training.
- Cross-validation avoids potential bias in a corpus split.
- Random splitting often makes the task easier, due to corpus bias.

# **Types of Evaluation**

### **Variations**

### Repeated cross-validation

- Often, cross-validation is repeated multiple times with different folds.
- This way, coincidental effects of random splitting are accounted for.

### Leave-one-out validation

- Cross-validation where n equals the number of instances.
- This way, any potential bias in the splitting is avoided.
- But even more data is given for training, which makes a task easier.

### Cross-validation + test set

- When doing cross-validation, a held-out test set is still important.
- Otherwise, repeated development will overfit to the splitting.

### **Example: Evidence classification (revisited)**

 Assume an evidence classification approach obtains an accuracy of 60% on a given test set, how good is this?



### Selected factors that influence effectiveness

- The number of classes and their distribution in the training set.
- The class distribution in the test set.
- The heterogeneity of the test set.
- The similarity between training and test set.
- The representativeness of the test set.
- The complexity of the task.

### **Observation**

- Some factors can be controlled or quantified, but not all.
- To assess the quality of an approach, we need comparison.

### Upper Bounds and Lower Bounds

# Why comparing?

- A new approach is seen as useful if it is better than other approaches, usually measured in terms of effectiveness.
- Approaches may be compared to a gold standard and to baselines.

# **Gold standard (upper bound)**

- The gold standard represents the best possible result on a given task.
- For many tasks, the effectiveness that humans achieve is seen as best.
- For simplicity, the gold standard is often equated with the ground truth in a corpus. This means: perfect effectiveness.

# **Baseline (lower bound)**

- A baseline is an alternative approach that has been proposed before or that can easily be realized.
- A new approach should be better than all baselines.

### Types of Baselines

### **Trivial baselines**

- Approaches that can easily be derived from a given task or dataset.
- · Used to evaluate whether a new approach achieves anything.

### Standard baselines

- Approaches that are often used for related tasks.
- Used to evaluate how hard a task is.

# **Sub-approaches**

- Sub-approaches of a new approach.
- Used to analyze the impact of the different parts of an approach.

### State of the art

- The best published approaches for the addressed task (if available).
- Used to verify whether a new approach is best.

# **Exemplary Baselines**

# **Example: Evidence classification (revisited)**

 Assume an evidence classification approach obtains an accuracy of 60% on a given test set, how good is this?



### Exemplary dataset and task parameters (Al-Khatib et al., 2016)

- Four classes. "anecdote", "statistics", "testimony", "none" (majority)
- Test distribution. 18% 3% 10% 69%

### **Potential baselines**

- Trivial. Random guessing achieves an accuracy of 25%.
- Trivial. Always predicting the majority achieves 69%.
- Standard. Using the distribution of word {1, 2, 3}-grams achieves 76%.
- State of the art. The best published value is 78%. (Al-Khatib et al., 2017)

### **Implications**

### When does comparison work?

- Variations of a task may affect its complexity.
- The same task may have different complexity on different datasets.
- Only in exactly the same experiment setting, two approaches can be compared reasonably.

### **Example: Evidence classification (a last time)**

- Assume evidence classification approach A obtains an accuracy of 79%, and approach B 78% in exactly the same setting.
- Is A better than B?



### How to know that some effectiveness is better?

- Effectiveness differences may be coincidence.
- The significance of differences can be "proven" statistically.

### **Statistics**

### **Variable**

- An entity that can take on different quantitative or qualitative values.
   A variable thereby represents a distribution of values.
- Independent. A variable X that is expected to affect another variable.
- Dependent. A variable Y that is expected to be affected by others.

Other types not in the focus here: Confounders, mediators, moderators, ...

Possible causes  $X_1, \ldots, X_k \rightarrow \mathsf{Effect}\, Y$ 

### Scales of variables

- Nominal. Values that represent discrete, separate categories.
- Ordinal. Values that can be ordered/ranked by what is better.
- Interval. Values whose difference can be measured.
- Ratio. Interval values that have a "true zero".

A true zero indicates the absence of what is represented by a variable.

### Interval vs. ratio scale test

Only for ratios, it is right to say that a value is twice as high as another.

### **Statistics**

Variables and Scales

# What is independent, what is dependent?

"Does our sentiment analysis approach achieve higher accuracy with features based on part-of-speech tags than without them?"

Independent: features based on part-of-speech tags
Dependent: accuracy

### What type of scale?

- 1. Celsius temperature
- 2. Exam grades
- 3. Phone prices
- 4. Colors
- 5. Text length
  - 1. Interval 2. Ordinal 3. Ratio 4. Nominal 5. Ratio

### What is descriptive statistics?

- Measures for summarizing (samples  $\tilde{X}$  of) distributions of values X.
- Used to describe phenomena.

### Measures of central tendency

• Mean. The arithmetic average M of a sample of values X of size n. M is used for a sample,  $\mu$  for the whole distribution.

$$M = \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_i$$

• Median. The middle value Mdn of the ordered values in a sample. Even size: The value halfway between the two middle values.

$$Mdn = (\tilde{X}_{\lfloor \frac{n+1}{2} \rfloor} + \tilde{X}_{\lceil \frac{n+1}{2} \rceil}) / 2$$

Mode. The value Md with the greatest frequency in a sample.

Central Tendency and its Disperson

# When to use what tendency measure?

- Mean. For (rather) symmetrical distributions of interval/ratio values.
- Median. For ordinal values and skewed interval/ratio distributions.
- Mode. For nominal values.

# **Measures of dispersion**

Range. The distance r between minimum and maximum.

$$r = \tilde{X}_{max} - \tilde{X}_{min}$$

• Variance. The mean  $s^2$  of all values' squared differences to the mean. s is used for a sample,  $\sigma$  for the whole distribution.

biased : 
$$s^2 = \frac{1}{n} \sum_{i=1}^n (\tilde{X}_i - M)^2$$
 unbiased :  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (\tilde{X}_i - M)^2$ 

Standard deviation. The square root s of the variance.

$$s = \sqrt{s^2}$$

# Bias and Example

### Biased vs. unbiased variance

- The biased variance formula tends to underestimate the real variance of the distribution.
- For samples, the unbiased variance formula is used in statistics.

The division by n-1 instead of n corrects for the small sample size.

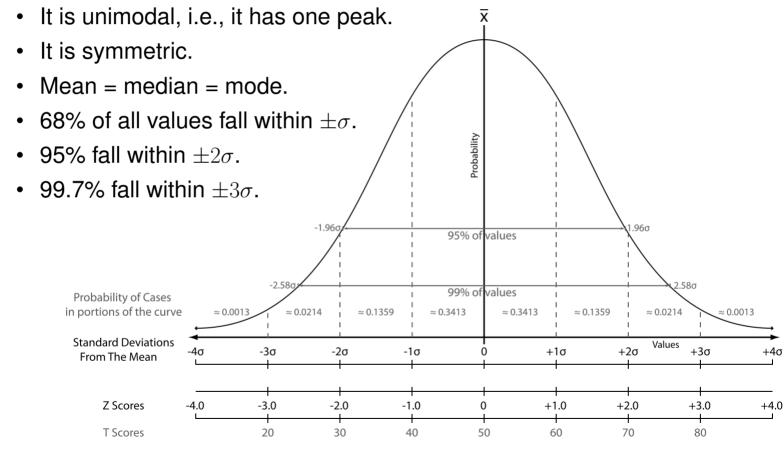
### Example for an ordered sample of 10 values

$$\tilde{X}$$
 = (1, 3, 3, 3, 5, 6, 6, 7, 10, 15)  
 $M = \frac{1}{10} \sum_{i=1}^{10} \tilde{X}_i$  = 5.9  
 $Mdn = (\tilde{X}_4 + \tilde{X}_5) / 2$  = 5.5  
 $Md = 3$  3  
 $r = \tilde{X}_{10} - \tilde{X}_1$  = 14  
 $s^2 = \frac{1}{9} \sum_{i=1}^{10} (\tilde{X}_i - M)^2$   $\approx$  15.97  
 $s = \sqrt{s^2}$   $\approx$  4.00

### Normal Distribution

### Normal distribution (aka Gaussian distribution)

The frequency distribution that follows a normal curve.



### Standard Scores

### Standard score

 Indicates how many standard deviations a value is away from the mean of a distribution X.

#### z-score

• Indicates the precise location of a value  $X_i$  within a distibution X. Positive if above the mean, negative otherwise.

$$z=rac{X_i-\mu}{\sigma}$$
 approximated as  $z=rac{ ilde{X}_i-M}{s}$ 

#### t-score

• Transforms a value  $\tilde{X}_i$  from a sample of size n into a standardized comparable form.

Usually used for small samples with less than 30 values.

$$t = \frac{\tilde{X}_i - M}{s/\sqrt{n}}$$

### Inferential Statistics

### What is inferential statistics?

- Procedures that help study hypotheses based on values.
- Used to make inferences about a distribution beyond a given sample.

# Two competing hypotheses

• Research hypothesis (H). Prediction about how a change in variables will cause changes in other variables.

"There is a statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

• Null hypothesis  $(H_0)$ . Antithesis to H.

"There is *no* statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

• If  $H_0$  is true, then any results observed in an experiment that support H are due to chance or sampling error.

### Inferential Statistics

### Hypotheses

### Two types of hypotheses

Non-directional. Specifies only that any difference is expected.

Indicates that a two-tailed test needs to be conducted.

"There is a statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

Directional. Specifies the direction of an expected difference.

Indicates that a *one-tailed test* needs to be conducted.

"The RMSE of our approach is statistically significantly lower than the RMSE reported by Persing et al. (2015)."

### A good hypothesis (Bartos, 1992)

- Is founded in a problem statement and supported by research.
- Is testable, i.e., it is possible to collect data to study the hypothesis.
- States an expected relationship between variables.
- Is phrased as simply and concisely as possible.

### Hypothesis test (aka statistical significance test)

- A statistical procedure that determines how likely it is that the results of an experiment are due to chance (or sampling error).
- Tests whether a null hypothesis  $H_0$  can be rejected (and hence, H can be accepted) at some chosen *significance level*.

### Significance level $\alpha$

- The accepted risk (in terms of a probability) that  $H_0$  is wrongly rejected. Usually,  $\alpha$  is set to 0.05 (default) or to 0.01.
- A choice of  $\alpha$  = 0.05 means that there is no more than 5% chance that a potential rejection of  $H_0$  is wrong.

In other words, with  $\geq$  95% confidence a potential rejection is correct.

### p-value

- The likelihood (in terms of a probability) that results are due to chance.
- If  $p \le \alpha$ ,  $H_0$  is rejected. The results are seen as statistically significant.
- If  $p > \alpha$ ,  $H_0$  cannot be rejected.

Effect size \*

# Statistical significance vs. effect size

- Significance does not state how large a difference is.
- The effect size describes the magnitude of the difference.

### Effect size measure Cohen's d

The effect size is usually computed based on the standard deviations:

$$d = \frac{M_1 - M_2}{\sqrt{\frac{s_1 + s_2}{2}}}$$

• Small effect:  $d \ge 0.2$ , medium effect:  $d \ge 0.5$ , large effect:  $d \ge 0.8$ .

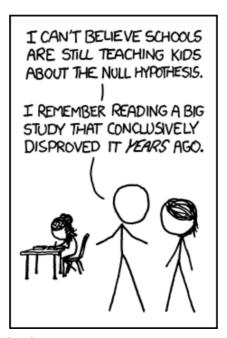
#### **Notice**

The focus is largely on significance in text mining (and in this course).

Testing a Hypothesis

### Four steps of hypothesis testing

- 1. Hypothesis. State H and  $H_0$ .
- 2. Significance level. Choose  $\alpha$  (always *before* the test!).
- 3. Testing. Carry out an appropriate hypothesis test to get the p-value.
- 4. Decision. Depending on  $\alpha$  and p, reject  $H_0$  or fail to reject it.



What Test to Choose

### **Hypothesis tests**

- Different tests exist that make different assumptions about the data.
- A significance test needs to be chosen that fits the data.

### Parametric vs. non-parametric tests

- Parametric. More powerful and precise, i.e., it is more likely to detect a significant effect when one truly exists.
- Non-parametric. Fewer assumptions and, thus, more often applicable.

| Parametric test                  | Non-parametric correspondent      |
|----------------------------------|-----------------------------------|
| Independent t-test               | Mann-Whitney Test                 |
| Dependent and one-sample t-test  | Wilcoxon Signed-Rank Test         |
| One way, between group ANOVA     | Kruskal-Wallis                    |
| One way, repeated measures ANOVA | Friedman Test                     |
| Factorial ANOVA                  | _                                 |
| MANOVA                           | _                                 |
| Pearson                          | Spearman, Kendall's $	au, \chi^2$ |
| Bivariate regression             | <u> </u>                          |

# Assumptions

### Assumptions of all significance tests

- Sampling. The sample is a random sample from the distribution.

  Notice: In text mining, each "instance" of a sample usually consists of multiple texts.
- Values. The values within each variable are independent.

# **Assumption of all parametric tests**

- Scale. The dependent variable has an interval or ratio scale.
- Distribution. The given distributions are normally distributed.

  Tested by checking histograms or by using normality tests, e.g., the Shapiro-Wilk test.
- Variance. Distributions that are compared have the same variances.
   Tested using Levene's Test, Bartlett's test, or scatterplots and Box's M.

# **Test-specific assumptions**

- In addition, specific tests may have specific assumptions.
- Depending on which are met, an appropriate test is chosen.

### What is the student's *t*-test?

- A parametric statistical significance test for small samples ( $\sim n \leq$  30).
- Computes a t-score from which significance can be derived.
- Types. Independent t-test, one-sample t-test, dependent t-test.

The term *student* was simply used as a pseudonym by the inventor.

### **Test-specific assumptions**

- The independent variable has a nominal scale.
- t-tests are robust over moderate violations of the normality assumption.

#### One-tailed vs. two-tailed

- One-tailed. Test whether one value is higher or lower than another one.
- Two-tailed. Test whether two values are different from each other.

### One sample vs. paired samples

- One sample. A sample mean is compared to a known value.
- Paired samples. Two sample means are compared to each other.

### t-Score

### t-distribution

- Variation of the normal distribution for small sample sizes.
- Dependent on the *degrees of freedom (DoF)* in an experiment.

  Put simply, DoF is the number of potential variations in the computation of a value.
- Statistics tools, such as *R*, can compute *t*-distributions.
- Otherwise, tables exist with the significance confidences of t-values.

https://en.wikipedia.org/wiki/Student%27s\_t-distribution

|     | 95%   | 97.5% | 99%   | 99.5% | 99.9% | 99.95% | One-tailed |
|-----|-------|-------|-------|-------|-------|--------|------------|
| DoF | 90%   | 95%   | 98%   | 99%   | 99.8% | 99.9%  | Two-tailed |
| 3   | 2.353 | 3.182 | 4.541 | 5.841 | 10.21 | 12.92  |            |
| 4   | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610  |            |
|     |       |       |       |       |       |        |            |

### How to use the table

- Compare t-score with value at given DoF and  $\alpha$  ( = 1 confidence).
- If t-score > value, then  $H_0$  can be rejected. Otherwise not.

One-Sample *t*-Test

# One-sample *t*-test

- Compares the mean M of a sample  $\tilde{X}$  of size n from a distribution X to a known distribution mean  $\mu$ .
- n-1 degrees of freedom (since the n-th value is implied by M).

# **Example research question**

"Does our essay grader improve over the best result reported so far?"

 $H_0$ . "The RMSE of our approach is not statistically significantly lower than the RMSE reported by Persing et al. (2015)."

### **Process**

- 1. Compute the mean M of all sample values X.
- 2. Compute the variance:  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (\tilde{X}_i M)^2$
- 3. Compute the standard deviation of the distribution of means:  $s_M = \sqrt{\frac{s^2}{n}}$  Also called *standard error*. Division by n normalizes into the t-distribution.
- 4. Compute the *t*-score:  $t = \frac{M-\mu}{S_M}$

# Dependent *t*-Test

### **Dependent** *t*-test (aka paired-sample test)

- Compares two samples  $\tilde{X}, \tilde{X}'$  of size n from the same distribution X, taken at different *times* (i.e., they may have changed in between).
- n-1 degrees of freedom.

# **Example research question**

"Does adding POS tags improve our sentiment analysis approach?"

 $H_0$ . "The accuracy of our approach is not statistically significantly higher with POS tags than without POS tags."

### **Process**

- 1. Compute each difference  $\Delta_i = \tilde{X}_i \tilde{X}'_i$  between the paired samples.
- 2. Compute the mean M of all differences  $\Delta$ .
- 3. Compute the variance:  $s^2 = \frac{1}{n-1} \sum_{i=1}^n (\Delta_i M)^2$
- 4. Compute the standard error:  $s_M = \sqrt{\frac{s^2}{n}}$
- 5. Compute the *t*-score:  $t = \frac{M-0}{S_M} = \frac{M}{S_M}$

Independent *t*-Test

# Independent t-test

- Compares two independent samples  $\tilde{X}, \tilde{X}'$  of size n from the same distribution X.
- $2 \cdot (n-1) = 2n-2$  degrees of freedom.

# **Example research question**

"Are the predicted essay grades different from the gold standard?"

 $H_0$ . "There is no statistically significant difference between the gold standard scores and the scores predicted by the approach."

### **Process**

- 1. Compute the means M, M' of all sample values of  $\tilde{X}, \tilde{X}'$ .
- 2. Compute the variances:  $s_1^2 = \sum_{i=1}^n \frac{(\tilde{X}_i M)^2}{n-1}$ ,  $s_2^2 = \sum_{i=1}^n \frac{(\tilde{X}_i' M')^2}{n-1}$
- 3. Compute the standard error:  $S_M = \sqrt{\frac{s_1^2 + s_2^2}{2}} \cdot \sqrt{\frac{2}{n}}$
- 4. Compute the *t*-score:  $t = \frac{M-M'}{S_M}$

Example: One-Tailed One-Sample *t*-Test

# "The essay grading approach achieves a lower RMSE than 0.244"

1. State hypotheses and define significance level.

H: RMSE 
$$-0.244 < 0$$
  $H_0$ : RMSE  $-0.244 > 0$   $\alpha = 0.05$ 

2. Given a sample (say, n = 5), compute RMSE values.

$$\tilde{X} = (0.226, 0.213, 0.200, 0.268, 0.225)$$

3. Compute sample mean, variance, and standard error.

$$M = \frac{1}{5} \cdot (0.226 + 0.213 + 0.200 + 0.268 + 0.225) = 0.226$$

$$s^{2} = \frac{(0.226 - 0.226)^{2} + (0.213 - 0.226)^{2} + (0.200 - 0.226)^{2} + (0.268 - 0.226)^{2} + (0.225 - 0.226)^{2}}{4} = 0.00065$$

$$s_{M} = \sqrt{\frac{0.00065}{5}} = 0.0114$$

4. Compute *t*-score and make decision.

 $t = \frac{0.244 - 0.226}{0.0114} = 1.579$  4 DoFs critical t-value from table is 2.132.

 $\rightarrow$  1.579 < 2.132, so  $H_0$  cannot be rejected.

### **Alternatives**

### What to do if the *t*-test assumptions are not met?

- Test-specific assumption. Find other parametric test that is applicable.
- Assumptions of parametric tests. Find applicable non-parametric test.
   A common case is that the given values are not normally distributed.
- Assumptions of all significance tests. Hypotheses cannot be tested.

# Example: Wilcoxon Signed-Rank Test \*

- Non-parametric alternative to dependent t-test, for small sample sizes.
- Requires randomly chosen, independent paired samples, dependent variable with interval or ratio scale.
- Does not require a normal distribution.
- Computes a z-score based on a ranking of the differences of the pairs.
   The value can also be checked against a reference table.



# **Summary**

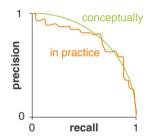
### **Empirical methods**

- Text mining uses empirical methods for linguistic tasks.
- An annotated text corpus represents the data of a task.
- Approaches are developed and evaluated on corpora.



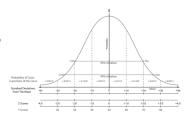
### **Evaluation measures**

- Text mining is usually evaluated for its effectiveness.
- Measures: Accuracy, precision, recall, F<sub>1</sub>-score, ...
- Effectiveness is measured in experiments on datasets.



# Comparison

- Need to compare approaches to reasonable baselines.
- Descriptive and inferential statistics play a role.
- Significance tests check whether a result is better.



### References

### Some content taken from

- Andrew Ng (2018). Machine Learning. Lecture slides from the Stanford Coursera course. https://www.coursera.org/learn/machine-learning.
- Daniel Jurafsky and Christopher D. Manning (2016). Natural Language Processing. Lecture slides from the Stanford Coursera course. https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html.
- Amanda J. Rockinson-Szapkiw (2013). Statistics Guide. http://amandaszapkiw.com/elearning/statistics-guide/downloads/Statistics-Guide.pdf
- Henning Wachsmuth (2015): Text Analysis Pipelines Towards Ad-hoc Large-scale Text Mining. LNCS 9383, Springer.
- Ian H. Witten and Eibe Frank (2005): Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition.