Introduction to Text Mining

Part VI: Basics of Machine Learning

Henning Wachsmuth

https://cs.upb.de/css

Text Mining VI Basics of Machine Learning

© Wachsmuth 2020 1

Basics of Machine Learning: Learning Objectives

Concepts

- Basic concepts of machine learning
- What problems can/should be addressed with machine learning
- The role of machine learning in text mining

Methods

- Feature representation and pattern generalization
- Supervised and unsupervised learning
- Selected existing machine learning algorithms
- How to approach a task with machine learning

Notice

- This part will not explain how machine learning works in all detail.
- Rather, it teaches how to apply machine learning to approach text mining tasks.

Outline of the Course

- I. Overview
- II. Basics of Linguistics
- III. Text Mining using Rules
- IV. Basics of Empirical Methods
- V. Text Mining using Grammars
- VI. Basics of Machine Learning
 - What Is Machine Learning?
 - Machine Learning in Text Mining
 - Supervised Learning
 - Unsupervised Learning
 - Variations of Machine Learning
 - Application of Machine Learning
- VII. Text Mining using Unsupervised Learning
- VIII. Text Mining using Supervised Learning
 - IX. Practical Issues

What Is Machine Learning?

Examples of Learning Tasks

Car Purchase Decision Making *

?

Question

• What criteria form the basis of a decision?

Examples of Learning Tasks

Autonomous Driving *

Examples of Learning Tasks

Named Entity Recognition

Example: Part of a person entity?

- 1. "Washington was born into slavery on the farm of James Burroughs."
- 2. "Blair arrived in Washington D.C. for what may be his last state visit."
- 3. "In June, Washington passed a primary seatbelt law."

Considered Feature		Candidate 1	Candidate 2	Candidate 3
Previous token	Token	\perp	"in"	66 33 3
	Capitalization	\perp	true	\perp
	POS tag	\perp	IN	COMMA
	Phrase type	\perp	B-PP	\perp
This token	Token	"Washington"	"Washington"	"Washington"
	Capitalization	true	true	true
	POS tag	NP	NP	NP
	Phrase tag	B-NP	I-PP	B-NP
	• • •			
Next token	Token	"was"	"D.C."	"passed"
	Capitalization	false	true	false
	POS tag	VBD	NP	VBD
	Phrase type	B-VP	PP	I-VP

What is machine learning? (Samuel, 1959)

• Machine learning describes the ability of an algorithm to learn without being explicitly programmed.

An algorithm is said to learn... (Mitchell, 1997)

- ... from experience
- ... with respect to a given prediction task
- ... and some performance measure,
- ... if its performance on the task increases with the experience.

Example

Example: Spam detection

- Suppose your mail tool learns to detect spam based on monitoring which mails you do or do not mark as spam.
- Experience, task, and performance measure? •

Classifying emails as spam or no spam.

Watching you label emails as spam or no spam.

Fraction of emails correctly classified as spam/no spam. \rightarrow Performance measure

Spam detection with machine learning

- Infinitely many ways exist how spam (and no-spam) may look like. •
- But many spam (and no-spam) emails have common features. ٠
- This is where machine learning may be useful. •

 	lack
7	Iasn

- \rightarrow Experience

Prediction Tasks

What is a (prediction) task?

- A real-world problem that can be solved by a target function $\gamma: O \rightarrow C$.
- Input. Objects o_1, o_2, \ldots of some real-world concept O.
- Output. Information c_1, c_2, \ldots of some target variable *C* to solve the task. The values of *C* are either all nominal or all real-valued.

(Ideal) Target function γ

- Interprets any object $o \in O$ to infer $\gamma(o)$, where $\gamma(o)$ is some $c \in C$. Operationalized by a human or some other (possibly unknown) real-world mechanism.
- Machine learning aims at prediction tasks where γ is unknown. This includes most text mining tasks, also those that can be tackled well with rules.

Prediction using machine learning

• Machine learning finds statistical patterns in examples of the input (and output) that are relevant to infer a target variable *C*.

Machine Learning Model

Machine learning models

- A machine learning model *y* : *X* → *C* is a mapping from formalized input instances *X* to an output target variable *C*.
- y generalizes found patterns in X to approximate the target function γ . Machine learning seeks for the optimal y with respect to some performance measure.

Model vs. target function

- γ and y differ in the complexity and representation of their domain.
- Complexity. Objects *o* ∈ *O* are abstracted into vectors x ∈ X using some mapping function *α*, x = *α*(*o*).
- Representation. $y(\mathbf{x})$ is the formalized counterpart of $\gamma(o)$.

From Target Function to Model (1 out of 2)

Characterization of the real-world domain

- *O* is a set of objects, *C* is a target variable.
- $\gamma: O \to C$ is the ideal target function for O.
- Task. Given some $o \in O$, determine its class or value $\gamma(o) \in C$.

Example: Spam detection

- *O* is a set of emails, $C = \{$ "spam", "no spam" $\}$.
- γ is a human expert on spam.
- Task. Given an email, is it spam or not?

Acquisition of training data

- 1. Collect real-world pairs of the form $(o_i, \gamma(o_i))$ with $o_i \in O, \gamma(o_i) \in C$.
- 2. Abstract each object o_i into a vector $\mathbf{x}^{(i)} = \alpha(o_i)$.
- 3. Create instances $(\mathbf{x}^{(i)}, c(\mathbf{x}^{(i)}))$, where $c(\mathbf{x}^{(i)}) \equiv \gamma(o_i)$ is the ground truth.

From Target Function to Model (2 out of 2)

Characterization of the model domain

- X is a set of vectors (often called the *feature space*), C as before.
- $c: X \to C$ is the ideal predictor for X.
- $\{(\mathbf{x}^{(1)}, c(\mathbf{x}^{(1)})), \dots, (\mathbf{x}^{(n)}, c(\mathbf{x}^{(n)}))\} \subseteq X \times C \text{ is a set of instances.}$

Example: Spam detection

- X represents the frequencies of known words.
- C as before: "spam" and "no spam".
- *c* is unknown.

Training in machine learning

- Approximate the ideal classifier c (implicitly underlying all instances) by a model $y: X \to C$, $\mathbf{x} \mapsto y(\mathbf{x})$.
- Apply statistics and learning algorithms to optimize the fitting of *c* by *y* with respect to a given performance measure.

Overview of the Concepts

Notation

- γ Unknown ideal target function for real-world objects.
- α (Feature) Mapping function.
- *c* Unknown ideal predictor for vectors from the feature space.
- *y* Machine learning model to be learned.
- $c \approx y$ c is approximated by y (based on a set of instances).

Learning Types and Algorithms

Learning types

- Machine learning differs in terms of what kind of patterns are learned as well as to what kind of data it is applied to.
- Major types. Supervised and unsupervised learning.

They are most important for text mining and in the focus of this course.

Major types in a nutshell

- Supervised. Derive a model from patterns in annotated training data (where the ground truth is known).
- Unsupervised. Derive model from unannotated data (no ground truth).

Learning algorithms

- Algorithms of one type mainly differ in terms of what patterns can be found, how they are represented, and how models are optimized.
- We focus here on selecting and applying algorithms suitable for a task. Some algorithms are discussed in detail in later lecture parts.

Machine learning problems in text mining

- Task. Predict the output information for a given text (or span of text).
- Experience. Texts, possibly annotated for some target variable C.
- Performance measure. Usually, an effectiveness metric.

Output information

- Text labels and scores, such as topic, sentiment, and grades.
- Span annotations, such as tokens and entities.
- Span classifications, such as entity types and part-of-speech tags.
- Relations between annotations, such as entity relations.

Combinations of such types are also possible.

Two-way relationship

- The output of text mining serves as the input to machine learning, e.g., to train a text classifier.
- Text mining often uses machine learning to produce output information.

Data Mining

What is data mining?

- The inference of new (or "hidden") output information of specified types from typically huge amounts of input data.
- Data mining hence deals with prediction tasks.

Data mining in a nutshell

- Representation. Map data to instances of a defined representation. Data mining approaches mostly require input data in some *structured* form.
- Machine learning. Find statistical patterns in the instances that are relevant to the prediction task (aka *training*).
- Generalization. Apply the found patterns to infer new information from unseen data (aka *prediction*).

Data mining vs. machine learning

- Data mining puts the output into the view, machine learning the method.
- Machine learning is the technical basis of data mining applications.

Data Mining Process

The data mining process

Text mining is a specific type of data mining

- Input data. A text corpus, i.e., a collection of texts to be processed.
- Output information. Annotations of (spans of) the texts.
- The *representation* step is what makes text mining specific.

Feature-based instance representation

• Given the task to annotate some type C, in each candidate text (span) to be annotated represents one object $o_i \in O$.

Sentiment analysis: each text is one object Entity recognition: each candidate entity is one object

- In feature-based machine learning, o_i is mapped to one *feature vector* $\mathbf{x}^{(i)}$.
- The mapping is given by a function $\alpha : O \to X$ where X is the set of all feature vectors.

Other instance representations

- Neural models. Represent features implicitly using complex functions.
- Kernels. Model instance differences based on a similarity function.

We largely restrict our view to feature-based machine learning in this course.

Features

What is a feature?

- A feature x denotes any measurable property of an input.
- An instance o_i has one value $x_i^{(i)}$ for each considered feature x_j .
- What features to consider is a design decision.

Example features in text mining

- The relative frequency of a particular word, e.g., "the" \rightarrow [0,1]
- The shape of a word, e.g., Shape \rightarrow {CAPS, CamelCase, ...}
- The existence of an entity type in a sentence, e.g., Organization → {0,1}
 ... among zillions of other features

Feature vector

- An ordered set of $m \ge 1$ features of the form $\mathbf{x} = (x_1, \dots, x_m)$. *m* varies depending on the approach, from a handful to hundreds of thousands.
- Each feature vector $\mathbf{x}^{(i)}$ contains one value $x_j^{(i)}$ for each feature $x_j \in \mathbf{x}$.

Feature Types and Scales

Feature types

• A feature type is a set of features that conceptually belong together.

Bag-of words. Relative frequency of each considered word. POS 3-grams. Relative frequency of each possible part-of-speech 3-gram.

• The features of a type are often found automatically on training data, in order to exclude useless features that might introduce noise.

Bag-of words. All words with a training set occurrence $\geq \tau$.

Scales of features

- We consider only features here with values from a real-valued scale.
- Nominal, boolean, and similar features can be transformed.

 $phrase type \rightarrow \{\text{``VP'', ``NP'', ``PP''\}} \quad \mapsto \quad \text{VP} \rightarrow \{0,1\}, \text{ NP} \rightarrow \{0,1\}, \text{ PP} \rightarrow \{0,1\}$

• Usually, the values of all features are *normalized* to the same interval.

Feature Value Normalization

What is feature value normalization?

- Value ranges of features may vary drastically.
- Normalization scales all values to a uniform range, typically [0, 1] (used here) or [-1, 1].

Why normalize?

- Machine learning works better with uniform values, due to the interplay with weights, learning rates, and similar (see below).
- At best, the whole (normalized) value range is covered for a feature.

Typical ways to normalize

- Divide by the length of the given text (e.g., in # tokens).
- Divide by the maximum value found in a training set, and cut at 1.0.
- Divide by a manually defined maximum based on expert knowledge.

The best way depends on the feature (and partly on the application).

"the" US?

1

102

42

Ω

. . .

0

 O_1

02

 O_3

 O_{4}

Feature Determination and Computation

How to determine the set of features in a vector

1. Specify using expert knowledge which feature types to consider.

(a) Bag-of-words (b) text length in # tokens

2. Where needed, process training set to get counts of candidate features.

(a) "the" \rightarrow 4242, "a" \rightarrow 2424, ..., "wooodchuck" \rightarrow 1 (b) max tokens = 120

Keep only features whose counts lie within some defined thresholds.
 (a) "the", "a", ..., "wooodchuck"
 (b) n/a

How to compute the values for each feature

1. Compute value of each feature in a vector for a given input text.

(a) "the" \rightarrow 6, "a" \rightarrow 7, . . . (b) # tokens \rightarrow 50

2. Normalize feature values.

(a) "the" \rightarrow 0.12, "a" \rightarrow 0.14, ... (b) # tokens \rightarrow 0.417

Feature Engineering

The importance of feature engineering

- The representation governs what patterns can be found during learning.
 The function *α* determines the level of abstraction between *o* and x.
- Some features generalize worse than others towards unseen data.
- Engineering features that predict a target variable *C* and generalize well is key to effective (feature-based) machine learning.

Feature engineering in text mining

- Standard features. Some types help in many tasks, e.g., bag-of-words.
- Specific features. The most discriminative types usually encode expert knowledge about the task and input.

Feature selection and dimensionality reduction

• Techniques that aim to reduce the set of considered features to improve generalizability and training efficiency.

Not covered in this course.

What is supervised (machine) learning?

- A learning algorithm builds a model y on *known* training data, i.e., pairs of a vector $\mathbf{x}^{(i)}$ and the associated output information $c(\mathbf{x}^{(i)})$.
- y can then be used to predict output information for unknown data.

Supervised classification vs. regression

- Classification. Assign a nominal class to an instance.
- Regression. Predict a numeric value for an instance.

Why "supervised"?

• The learning process is guided by instances of correct predictions.

Manifold applications in text mining

- Classification. Standard technique for any text classification task, for extracting relations between entities, and similar.
- Regression. Used to predict scores, ratings, probabilities, ...

Classification

What is classification?

• The task to assign an object to the most likely of a set of two or more predefined discrete classes.

Supervised classification

- An optimal decision boundary *y* is sought for on training vectors *X* with known classes *C*.
- The boundary decides the class of unknown instances.

Binary vs. multiple-class classification

- Binary classifiers separate the instances of two classes.
- Multiple classes are handled through multiple binary classifiers with techniques such as one-versus-all classification.

Regression

What is regression?

• The task is to assign a given object to the most likely value of a real-valued, continuous target variable.

Supervised regression

- An optimal regression function *y* is sought for on training vectors *X* with known values *C*.
- The function decides the value of unknown instances.

Linear regression models

Only constants and parameters multiplied by independent variables.

$$y(\mathbf{x}) = w_0 + w_1 \cdot x_1 + \ldots + w_m \cdot x_m$$

Optimization Process

Training

- A learning algorithm incrementally creates candidate models *y*.
- Each y assigns a weight w_j to every feature x_j.

Not all learning algorithms assign weights explicitly.

- On training data, the weights w are tested against a *loss function L*. The loss function is a cost function that reflects the performance measure.
- Based on $L(\mathbf{w})$, w is adapted to create the next model y'.
- The adaptation relies on an optimization procedure.

Hyperparameter optimization

• Many learning algorithms have *hyperparameters* that are not optimized in training. They need to be optimized against a validation set.

Optimization Procedures

Optimization procedures

- Aim to minimize the costs of a model wrt. a function *L*.
- The most common procedure is *gradient descent*. Learning algorithms usually integrate a particular procedure.

(Batch) Gradient descent

- In each step, the model is adapted to all training instances.
- Stepwise heads towards a local minimum of L until convergence.
- Guarantees to find the local minimum.

For convex model spaces, guarantees to find the *global* minimum.

Stochastic gradient descent (SGD)

- Variant that adapts the model subsequently to each single instance.
- The adaptation is repeated for some number of iterations k.
- Does not guarantee to find a local minimum, but is much faster. Particularly used in large-scale scenarios.

Text Mining VI Basics of Machine Learning

No free lunch theorem No optimization procedure is best in all cases.

Pseudocode of Stochastic Gradient Descent

Signature

• Input. Training instances *X* of the form $(\mathbf{x}, c(\mathbf{x}))$, a learning rate η , and a number of iterations *k*.

 η is a small positive constant. The higher k, the more the model will adapt to the data.

• Output. A vector w with one weight w_i for each feature $x_i \in \mathbf{x}$, $1 \le i \le n$.

$\verb+stochasticGradientDescent(List<Instance>X,double\eta,intk)$

1.	List < double > $\mathbf{w} \leftarrow$ randomInitialize(-1, 1)
2.	for int $j \leftarrow 1$ to k do
3.	for each Instance $(\mathbf{x}, c(\mathbf{x}))$ in X do // $orall \mathbf{x} \in X: \mathbf{x} _{x_0} \equiv 1$
4.	double $y(\mathbf{x}) \leftarrow \mathbf{w}^T \mathbf{x}$ = $w_0 + w_1 \cdot x_1 + \ldots + w_m \cdot x_m$ // Regression
5.	double error $\leftarrow c(\mathbf{x}) - y(\mathbf{x})$ // Cost in terms of error
6.	double $\Delta \mathbf{w} \leftarrow \eta \cdot \texttt{error} \cdot \mathbf{x}$
7.	$\mathbf{w} \leftarrow \mathbf{w} + \Delta \mathbf{w}$ // Adapt weights based on error
8.	return w

Model Optimization: Example (1 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (2 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (3 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (4 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.
Model Optimization: Example (5 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (6 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (7 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (8 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Model Optimization: Example (9 out of 9)

Learning Simple Linear Regression

• Feature space (left) and cost function (right) during training.

Note on example

- A regression model $y = w_0 + w_1 \cdot x_1$ is learned for one single feature x_1 .
- Each pair w_0, w_1 defines one candidate model.

Generalization

Generalization

- Application of the learned model *y* to unseen data, in order to infer new information.
- How well y generalizes depends on how well it fits the unknown target function γ .
- Generalization is mainly decided by the training process (see above).

Bias in training

- The training process explores a large space of models, in which several parameters are optimized.
- An important training decision is how much to bias the process wrt. the complexity of the model to be learned.

Complexity here refers to the shape of the underlying polynomial.

Generalization

Model Complexity: Underfitting and Overfitting

Simple vs. complex models

- Simple. Induce high bias to avoid noise; may underfit the input data.
- Complex. Induce low bias to fit the input data well; may capture noise. Simple models may, e.g., be linear functions, complex models high polynomials.

Underfitting (too high bias)

- A model *y* generalizes too much, not capturing all relevant properties of the training data.
- *y* is too simple and will have limited effectiveness.

Overfitting (too high variance)

- A model *y* captures both relevant and irrelevant properties of the training data.
- y is too complex and will thus not generalize well.

Generalization

Model Complexity: Optimal Fitting and Regularization

Avoiding underfitting and overfitting

- The best way to avoid both is to achieve an optimal fitting.
- Overfitting can also be countered through *regularization*.

Optimal fitting

- A model *y* perfectly approximates the complexity of the target function based on the training data.
- In general, the right complexity is unknown.

Regularization

- Regularization prevents the use of complex functions, unless they significantly reduce the prediction error.
- This is done by adding a term to the cost function that forces the feature weights to be small.

More on regularization in a later part of this course.

Overview of Supervised Learning Algorithms

Common algorithms for classification

- Naïve Bayes
- Support vector machines
- Decision trees
- Random forest
- (Artificial) Neural networks
 - ... among many others

Common algorithms for regression

- Simple linear regression
- Support vector machines
- (Artificial) Neural networks ... among many others

Ensemble methods

• Meta-algorithms that combine multiple classifiers/regressors.

Naïve Bayes and Support Vector Machines

Naïve Bayes

• Predicts the most likely class *c* using Bayes' Theorem on conditional probabilities.

$$P(c|x) = \frac{P(x|c) \cdot P(c)}{P(x)} \qquad P(c|\mathbf{x}) \propto P(x_1|c) \cdot \ldots \cdot P(x_m|c) \cdot P(c)$$

- Effective with few training data, scales well in terms of efficiency.
- Strong feature independence assumption often limits effectiveness.

Support vector machine (SVM)

- Maximizes the margin between the decision boundary and class instances in training.
- Maps instances to a higher-dimensional space where they are linear separable (*kernel trick*).

- Often effective, while not being prone to adapt to noise.
- Hyperparameter tuning tends to be time-intensive.

Decision Trees and Random Forest

Decision trees

- Each inner node tests one feature *x*, with a learned threshold. Leafs correspond to classes.
- Node ordering learned, e.g., from information gain.
- Low-impact features pruned for generalization.
- Effective when classes are just decided by featurevalue combinations (without weightings).

Random forest

- Builds several decision trees (e.g., 100) for small feature subsets.
- Majority voting to decide class c.
- Often very effective without any hyperparameter tuning.
- · Less effective if some features are dominant.

Neural Networks and Ensemble Methods

Artificial neural network (ANN)

- Weights connections between nodes, mimicking the human brain.
- Learns complex features automatically often on "raw" input (e.g., tokens).
- Conceptually, a powerful algorithm type (and the basis of deep learning).

• Effective only with much input data, and architecture needs to be tuned.

Ensemble methods

- Combination of multiple algorithms to improve effectiveness (*stacking*). Random forest is actually an integrated stacking method.
- Can be based on any learning algorithm (at least for classification).
- Other ensembles aim to reduce variance (*bagging*) or bias (*boosting*).

What is unsupervised (machine) learning?

- A model y is derived from vectors X only, without output information.
- y reveals the organization and association of input data.
- Techniques. Clustering, autoencoders, principal component analysis, ... The focus is on clustering here.

What is clustering?

• The grouping of a set of instances into a possibly but not necessarily predefined number of classes (aka *clusters*).

The meaning of a class is usually unknown in advance.

- Hard clustering. Each instance belongs to a single cluster.
- Soft clustering. Instances belong to each cluster with some weight.

Applications in text mining

• Detection of texts with similar properties, mining of topics, ...

Flat vs. Hierarchical Clustering

Types of clustering

- Flat. Group instances into a (possibly predefined) number of clusters. No associations between the clusters are specified.
- Hierarchical. Create a binary tree over all instances. Each tree node represents a cluster of a certain size.

The root covers all instances and each leaf refers to a single instance.

• Both types have certain advantages wrt. efficiency and cluster quality.

Clustering Algorithms

Unsupervised clustering

- Patterns in the instances are learned based on similarity measures.
- The resulting clusters correspond to classes.
- The resulting model can assign arbitrary instances to the clusters.

Supervised clustering?

- Sometimes, it makes sense to cluster instances with known classes. For instance, when classes shall be subdivided — or just for evaluation.
- Clusters can then be evaluated in terms of their *purity*, i.e., the fraction of instances whose class equals the majority class.

Clustering algorithms

- Iterative clustering, such as *k*-means.
- Density-based clustering, such as DBSCAN.
- Hierarchical clustering, either agglomerative or divisive.
 - ... among others.

k-means and Agglomerative Clustering

Iterative flat clustering with k-means

- Partition instances into k clusters.
- Iteratively compute *centroids* of candidate clusters and re-cluster based on centroids.

The centroid is the average of all instances in the cluster.

• *k* is chosen based on domain knowledge or through intrinsic cluster evaluation.

Agglomerative hierarchical clustering

- Incrementally create tree bottom-up, beginning with single instances.
- Merge clusters based on distances of instances to clusters.
- A flat clustering can be derived from a hierarchical one via cuts in the tree.

Example: *k*-means Flat Clustering with k = 2

Step 1: Choose *k* **instances randomly**

Example: *k*-means Flat Clustering with k = 2

Step 2: Cluster by distance to the *k* **instances**

Example: *k*-means Flat Clustering with k = 2

Step 3: Compute centroids of the *k* **clusters**

Example: *k*-means Flat Clustering with k = 2

Step 4: Cluster by distance to the *k* **centroids**

Example: *k*-means Flat Clustering with k = 2

Repeat steps 3–4 until convergence (step 3 again)

Example: *k*-means Flat Clustering with k = 2

Repeat steps 3–4 until convergence (step 4 again)

Example: *k*-means Flat Clustering with k = 2

Convergence!

Example: Agglomerative Hierarchical Clustering

Step 1: Assign each instance to individual cluster

Example: Agglomerative Hierarchical Clustering

Step 2: Combine closest pair of clusters into one cluster

Distance

Example: Agglomerative Hierarchical Clustering

Repeat step 2 until only one cluster remains

Distance

Example: Agglomerative Hierarchical Clustering

Repeat step 2 until only one cluster remains

Distance

Example: Agglomerative Hierarchical Clustering

Repeat step 2 until only one cluster remains

Example: Agglomerative Hierarchical Clustering

Repeat step 2 until only one cluster remains

Example: Agglomerative Hierarchical Clustering

Repeat step 2 until only one cluster remains

Example: Agglomerative Hierarchical Clustering

The dendrogram on the right shows the final hierarchical clustering!

Comparison of Major Learning Types

Learning processes

- Supervised. The process is guided by an external "teacher".
- Unsupervised. The process is self-organized (no "teacher"). ٠

Optimization criterion

- Supervised. The criterion relates to a target function of a task/domain. The goal is to approximate the function best possible.
- Unsupervised. The criterion is usually task- and domain-independent. •

Learning techniques Technique **Prediction Goal** Clustering Groups Many prediction tasks can be tackled Classification Group membership with different techniques. Regression "Missing" values E.g., classification \sim regression + thresholding.

 Still, for most prediction tasks, there is a most reasonable "first choice". Mostly dependent on prediction goal and available data.

Example Supervised and Unsupervised Learning Problems

How to tackle these problems?

- 1. Predict the number of iPhones that will be sold over the next year.
- 2. Decide for each mail account whether it has been hacked (1) or not (0).
 - (a) Both as classification problems.
 - (b) #1 as a classification problem, #2 as a regression problem. \rightarrow Not reasonable
 - (c) #1 as a regression problem, #2 as a classification problem. \rightarrow Correct
 - (d) Both as regression problems.

Which should be tackled with unsupervised learning?

- 1. Given files in two folders ("public", "private"), learn to distinguish them. \rightarrow No
- 2. Given a set of Twitter posts, group them into sets about the same event. \rightarrow Yes
- 3. Given a database of user profiles, discover market segments, and \rightarrow Yes assign new users to market segments.
- 4. Given political texts labeled to have a left, neutral, or right ideology, $\rightarrow No$ classify ideology for new texts.

 \rightarrow Not reasonable

 \rightarrow Possible

Variations of Supervised Learning *

Sequence labeling

- Classifies each instance in a sequence of instances.
- The goal is to find the optimal sequence of classes.
- Idea. Exploit information about dependencies between instances.

"The"/DT "play"/NN "was"/VBD "great"/JJ "."/.

Semi-supervised learning

- Targets tasks where much data is available, but little training data.
- Idea. Derive patterns from training data, then find similar patterns in unannotated data to get more training data.

"Microsoft is based in Seattle.", "Apple is based in Cupertino." \rightarrow <NP> is based in <NP>

Self-supervised learning

• Idea. Generate training data automatically. Works if output information can be computed, such as time measurements.
Variations of Machine Learning

Selected Other Learning Types

Reinforcement learning

- Learn, adapt, or optimize a behavior to maximize own benefit, based on feedback provided by the environment.
- Example. Agents negotiating in online auctions.

Recommender systems

- Predict missing values of entities based on values of similar entities.
- Example. Suggesting products, movies, ...

One-class classification and outlier detection

- Learn to classify without having an anyhow representative sample of one class.
- Example. Detecting fraud or anomalies.

User	Item 1	Item 2	Item 3
Max	1	1	?
Linda	?	0	0
Tim	1	0	?
Sue	1	1	1

Learning-based text mining in practice

- Machine learning serves as a technique to approach a given task.
- Learning algorithms are rarely implemented newly.
- Rather, a suitable algorithm from an existing library is applied.

Selected libraries and toolkits

- Python. scikit-learn, v0.23, http://scikit-learn.org/stable/
- Java. Weka Machine Learning Project, v3.8, cs.waikato.ac.nz/ml/weka

Development of a learning-based text mining approach

• The following high-level process is common, both conceptually and operationally.

The process may be iterative, i.e., steps back may be possible.

Task Corpus Text Feature Machine Approa Task acquisition analysis engineering learning Approa	Task
---	------

Development Process, Steps 1 and 2

Corpus acquisition

- 1. Acquire or build a corpus suitable to study the task.
- 2. If needed, convert the corpus to a reasonable format.
- 3. If not given, split the corpus into training and test datasets.

Step 2 and possibly Step 3 require proprietary code.

Text analysis

- 1. Preprocess all corpus texts with existing text analysis algorithms, in order to obtain more information that can be used in features.
- 2. Derive instances from the data; sometimes, the definition of negative instances is not trivial.

Different text analysis frameworks exist. The derivation may require proprietary code.

Development Process, Steps 3 and 4

Feature engineering

- 1. Identify and implement potentially helpful feature types on training set.
- 2. Determine concrete features of types on training set.
- 3. Compute feature vectors for each instance from all datasets.

Usually requires a lot of proprietary (but widely reusable) code.

Machine learning

- 1. Choose a learning algorithm suitable for the data and task.
- 2. Automatically train the algorithm on the training set.
- 3. Evaluate algorithm against a validation set, optimize hyperparameters.
- 4. In the very last run, evaluate against a test set.

Can be done from code using libraries, or in stand-alone tools.

Text Mining VI Basics of Machine Learning

Conclusion

Summary

Machine learning

- Aims to learn target functions for prediction tasks.
- Infers models from statistical patterns in data.
- Models can be used to approach prediction tasks.

Machine learning within data mining

- Instances are usually represented by features.
- Machine learning optimizes feature weights.
- Learned models are generalized to new data.

Text mining using machine learning

- Focus on supervised and unsupervised learning.
- Existing algorithms are applied to approach tasks.
- The decisive step is feature engineering.

Wachsmuth 2020

79

References

Much content and many examples taken from

- Andrew Ng (2018). Machine Learning. Lecture slides from the Stanford Coursera course. https://www.coursera.org/learn/machine-learning.
- Benno Stein and Theodor Lettmann (2010). Machine Learning. Lecture Slides. https://webis.de/lecturenotes/slides.html#machine-learning
- Henning Wachsmuth (2015): Text Analysis Pipelines Towards Ad-hoc Large-scale Text Mining. LNCS 9383, Springer.
- Ian H. Witten and Eibe Frank (2005): Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition.