
EvoLearner: Learning Description Logics with
Evolutionary Algorithms

Stefan Heindorf, Lukas Blübaum, Nick Düsterhus, Till Werner, Varun Nandkumar Golani,

Caglar Demir, Axel-Cyrille Ngonga Ngomo

DICE Group, Department of Computer Science, Paderborn University, Paderborn, Germany

{heindorf, caglar.demir, axel.ngonga}@upb.de, {lukasbl, nduester, wtill, vngolani}@mail.upb.de

ABSTRACT

Classifying nodes in knowledge graphs is an important task, e.g.,

for predicting missing types of entities, predicting which molecules

cause cancer, or predicting which drugs are promising treatment

candidates. While black-box models often achieve high predictive

performance, they are only post-hoc and locally explainable and

do not allow the learned model to be easily enriched with domain

knowledge. Towards this end, learning description logic concepts

from positive and negative examples has been proposed. However,

learning such concepts often takes a long time and state-of-the-

art approaches provide limited support for literal data values, al-

though they are crucial for many applications. In this paper, we

propose EvoLearner—an evolutionary approach to learn concepts

in ALCQ(D), which is the attributive language with comple-

ment (ALC) paired with qualified cardinality restrictions (Q) and

data properties (D). We contribute a novel initialization method

for the initial population: starting from positive examples, we per-

form biased random walks and translate them to description logic

concepts. Moreover, we improve support for data properties bymax-

imizing information gain when deciding where to split the data.

We show that our approach significantly outperforms the state of

the art on the benchmarking framework SML-Bench for structured

machine learning. Our ablation study confirms that this is due to

our novel initialization method and support for data properties.

CCS CONCEPTS

• Computing methodologies→ Description logics; Genetic pro-

gramming; Inductive logic learning; Rule learning; Machine learning.

KEYWORDS

Description Logics, Evolutionary Algorithms, Machine Learning

ACM Reference Format:

Stefan Heindorf, Lukas Blübaum, Nick Düsterhus, Till Werner, Varun Nand-

kumar Golani, Caglar Demir, Axel-Cyrille NgongaNgomo. 2022. EvoLearner:

Learning Description Logics with Evolutionary Algorithms. In Proceedings

of the ACMWeb Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,

Lyon, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3485447.3511925

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3511925

1 INTRODUCTION

While deep learning has become popular over the last decade, its

predictions are hardly explainable to humans, and attempts of peek-

ing into the “black box” often focus on local explainability rather

than global explainability, i.e., on single predictions rather than the

model as a whole [15]. However, when classifying nodes in knowl-

edge graphs, e.g., predicting the type of entities, predicting which

molecules cause cancer, or predicting which drugs are promising

treatment candidates, it is often desirable to understand the model

as a whole. This enables experts to double-check the model’s plau-

sibility and adapt the learned rules to reflect domain knowledge.

Toward this end, interpretable models based on description logics

have been proposed [24, 48, 50]. Concepts in description logics can

be directly mapped to OWL class expressions allowing to make

use of the rich data ecosystem centered around the Web Ontology

Language, OWL, the W3C standard at the core of the Semantic

Web [19, 27]. Tools for verbalizing OWL class expressions in nat-

ural language are readily available to explain the expressions to

users [30, 31, 37]. OWL class expressions can be applied to web-

based knowledge graphs such as DBpedia [1], Wikidata [49], and

YAGO [45], as well as to semantic data on websites, e.g., in the

schema.org ontology [18] for type prediction [cf. 38, 52], product

classification [53], and discovery and querying of web APIs [29, 51].

State-of-the-art approaches for concept learning are based on

inductive logic programming with refinement operators [11, 24, 26]:

Starting from the most general concept ⊤ (also known as Thing),
they refine the concept iteratively. For example, a concept is re-

placed by a subconcept or bymultiple subconcepts joined via logical

operators such as disjunction, conjunction or negation. In these

approaches, the generation of candidate concepts is almost exclu-

sively based on the ontology, and positive and negatives examples

are only used to evaluate the generated concepts. In case of large

ontologies, these approaches lead to a combinatorial explosion and

many generated concepts never appear in the instance data lead-

ing to an unnecessarily large search space. For example, in the

DBpedia ontology, a person can have over 100 different proper-

ties and ILP approaches would try all of them including combina-

tions thereof. However, most of these properties (and combinations

thereof) rarely occur in the instance data, e.g., it is seldom stated

whether a person is left-handed or right-handed (object property

“handedness”) and neither is their hip size (data property “hip size”).

Moreover, many knowledge bases contain large amounts of data

properties connecting entities to literals, such as numeric values,

which are crucial for good predictions. However, most state-of-

the-art approaches for concept learning neglect data properties.

Only DL-Learner [26] and SPaCEL [48] have some rudimentary

support: DL-Learner divides the value range of a data property

https://doi.org/10.1145/3485447.3511925
https://doi.org/10.1145/3485447.3511925
https://doi.org/10.1145/3485447.3511925

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Heindorf et al.

into bins containing approximately the same number of examples;

SPaCEL considers all thresholds in a brute-force manner. Neither

approach takes the distribution of positive and negative examples

into account, resulting in suboptimal thresholds or long runtimes.

DL-FOIL [11] does not support data properties at all.

In this work, we speed up and improve concept learning using

a bottom-up approach, dubbed EvoLearner, that is based on ran-

dom walks and evolutionary algorithms. Instead of refining the

top concept ⊤, we start at the instance data by initializing the ini-

tial population of the evolutionary algorithm with biased random

walks starting from the positive instances in the knowledge graph.

We further refine the initial candidates by means of crossover and

mutation operations. For data properties, we determine splits to

maximize information gain in a way inspired by decision trees [39].

Our approach significantly outperforms the state-of-the-art ap-

proaches CELOE [24] (top-down), Aleph [33] (bottom-up) and SPa-

CEL [47] (hybrid) on 7 of 9 datasets available in the SML-Bench

benchmarking framework [50]. Our ablation study shows that both

our random-walk initialization and support for data properties

significantly contribute to our strong performance. Investigating

predictive performance as a function of available runtime shows

that EvoLearner outperforms CELOE and SPaCEL at all time points.

In the following, we briefly discuss related work in Section 2

before introducing our EvoLearner in Section 3. Section 4 evaluates

our approach and Section 5 discusses its strength and weaknesses.

Section 6 concludes the paper.

2 RELATEDWORK

Most state-of-the-art approaches [24, 26, 47] for class expression

learning employ inductive logic programming (ILP) with refine-

ment operators. The first ILP approaches GOLEM [32, 34], Pro-

GOLEM [36], and Aleph [33] employed upward refinement op-

erators by means of least generalization. However, as Badea and

Nienhuys-Cheng [3] argue, they generate overly specific concepts

that tend to overfit. Hence, they propose tackling the problem

by downward refinement operators with subsequent approaches

improving the downward refinement operators by means of heuris-

tics [25, 26] and parallelization [47]. The latest approaches, DL-

FOIL [11] and SPaCEL [48], employ a hybrid approach of upward

and downward refinements. DL-FOIL, however, assumes the ex-

istence of a “perfect” concept covering exactly all positive and

negative instances, which is hardly possible in realistic scenarios

and causes the algorithm not to terminate. SPaCEL overcomes this

problem by combining many partial descriptions. Our approach,

EvoLearner, finds shorter concepts that are more likely to general-

ize, and in cases without a perfect solution, our approach terminates

with a good approximation. In our evaluation, we show that Ev-

oLearner outperforms SPaCEL on most datasets.

While most ILP approaches employ refinement operators, there

have been some attempts in the direction of evolutionary algo-

rithms. Reiser and Riddle [40] showed that the ability of evolution-

ary approaches to search in a global space, allowing to escape local

minima, can lead to an improvement over ILP algorithms. To our

knowledge, Lehmann [23] was the first to apply evolutionary al-

gorithms to the task of concept learning in description logic. He

combined standard genetic programming (GP) approaches with

Table 1: Description logic constructs supported by EvoLearn-

er. For their semantics, we refer to Lehmann et al. [26].

Syntax Construct

ALC

𝑟 abstract role

𝑏 Boolean concrete role

𝑑 numeric concrete role

¬𝐶 negation

𝐶 ⊔𝐶 union

𝐶 ⊓𝐶 intersection

∃𝑟 .𝐶 existential restriction

∀𝑟 .𝐶 universal restriction

Syntax Construct

Q

≤ 𝑛 𝑟 .𝐶 max. cardinality restriction

≥ 𝑛 𝑟 .𝐶 min. cardinality restriction

(D)

𝑑 ≤ 𝑣 max. numeric restriction (𝑣 ∈ R)
𝑑 ≥ 𝑣 min. numeric restriction (𝑣 ∈ R)
𝑏 = true Boolean value restriction

𝑏 = false Boolean value restriction

genetic refinement operators. For evaluation, he employs a single,

small dataset comparing his genetic refinement approach to a stan-

dard GP approach. However, we were not able to reproduce his

reported results, and in a pilot study, we found that our evolution-

ary approach works better with standard GP operators than with

genetic refinements. Divina [8] gives an overview of evolution-

ary concept learning in first-order logic. In contrast, we specialize

in description logics and contribute a sophisticated initialization

strategy based on random walks [14, 44].

3 EVOLUTIONARY CONCEPT LEARNING

In this section, we give a brief introduction to description logics and

define the task of concept learning before introducing our novel

approach EvoLearner for this task. We represent description logic

concepts as abstract syntax trees which form the individuals of the

evolutionary algorithms. The initial population of individuals is

obtained via biased random walks originating from the positive

examples. Subsequently, the population evolves from generation

to generation by (1) generating offspring via crossover operations,

(2) subjecting some of the offspring to mutations, and (3) selecting

the fittest individuals. Data properties are handled similarly to

classical decision trees by maximizing information gain [39].

Description Logics. Description logics [21] are widely used to

express rules in knowledge bases, e.g., to express which instances

belong to a class. These rules are represented by logical expressions

such as the union 𝐴 ⊔ 𝐵, intersection 𝐴 ⊓ 𝐵, and negation ¬𝐴 of

concepts 𝐴 and 𝐵. While different description logics offer different

trade-offs between expressiveness and reasoning complexity, in

this paper, we employ the description logic ALCQ(D) because it
contains the basic logical operators of all description logics (ALC)
as well as cardinality restrictions (Q) and support for data prop-

erties (D), which we found to be important for many real-world

applications. Table 1 gives an overview of the different constructs.

Task: Concept Learning in Description Logics. We define the task

of concept learning following Lehmann and Hitzler [26]. Let K =

(T ,A) be a knowledge base where T refers to the terminological

box (TBox) expressed in ALCQ(D) and A refers to the assertion

box (ABox). The ABox describes conceptual facts 𝐶 (𝑥) where 𝑥 ∈
𝑁𝐼 is an instance,

1
relational facts 𝑟 (𝑥,𝑦) with 𝑥,𝑦 ∈ 𝑁𝐼 , Boolean

1
In this paper, we refer to description logic individuals as instances in order to distin-

guish them from evolutionary individuals which represent description logic concepts.

EvoLearner: Learning Description Logics with Evolutionary Algorithms WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

⊓

⊔

∃married

Brother

∃hasSibling

Parent

Female

Figure 1: Tree representation of the concept Female ⊓
((∃hasSibling.Parent) ⊔ (∃married.Brother)) from the Fam-

ily dataset.

facts 𝑏 (𝑥,𝑦) with 𝑥 ∈ 𝑁𝐼 and 𝑦 ∈ {true, false}, and numeric facts

𝑑 (𝑥,𝑦) with 𝑥 ∈ 𝑁𝐼 and 𝑦 ∈ R. Given a knowledge baseK , positive

examples 𝐸+ ⊆ 𝑁𝐼 , and negative examples 𝐸− ⊆ 𝑁𝐼 , the objective

is to find a concept 𝐶 in ALCQ(D) that covers as many of the

positive examples as possible while covering as few of the negative

examples as possible. In the ideal case, together withK′
:= K∪{𝐶},

it should follow that K′ |= 𝐶 (𝑒+) for all 𝑒+ ∈ 𝐸+ and K′ ̸ |= 𝐶 (𝑒−)
for all 𝑒− ∈ 𝐸− , i.e., the concept 𝐶 provides an explanation for the

positive examples but not for the negative examples. Note that it is

not always possible to perfectly cover all positives and negatives

in practice due to noisy training data with 𝐸+ ∩ 𝐸− ≠ ∅. Moreover,

the perfect solution {𝑒+
1
} ∧ . . . ∧ {𝑒+𝑛 } ∧ ¬{𝑒−

1
} ∧ . . . ∧ ¬{𝑒−𝑚} is

often undesirable as it might not generalize to new, unseen data.

Hence, the performance is measured with traditional metrics such

as accuracy and 𝐹1-measure [50].

Reasoning and Graph Representation of Knowledge Base. Follow-

ing Lehmann et al. [25, 26], we assume the knowledge base K to

be static during concept learning and we employ a two-step rea-

soning process: (1) We employ the OWL reasoner Pellet to derive

the instances of named classes and the relationships between them.

The resulting graph allows to (approximately) answer all instance

checks. (2) Following a closed-world assumption, queries are evalu-

ated by set operations between instances of named classes.

Tree Representation of Concepts. As is common in genetic pro-

gramming, concepts are represented as trees: inner nodes represent

operators and leaves represent terminals, which can be atomic con-

cepts in case of object properties and numbers and Booleans in case

of data properties. Figure 1 shows an example.

3.1 Initialization via Biased RandomWalks

We specifically tailored population initialization to concept learn-

ing to find good solutions as fast as possible, and we show that

our method based on biased random walks significantly outper-

forms standard initialization methods for genetic programming,

like Grow, Full, and RampedHalfHalf [20]. We seed the initial

population of the evolutionary algorithm as follows: starting from

a positive example in the knowledge graph, we perform a biased

random walk and convert it to a concept which we add to the initial

population. In this context, biased means that different outgoing

Instances

Types

Person 1Male

Grandfather
Father

Person 2

married

Mother

Female

Person 3
hasSibling

Female

Parent

. . .

. . .

Person 4
hasParent

Person 5

hasChild

Child

Male

. . .
. . .

Figure 2: Initialization of population: generating a concept

via biased random walk (blue) originating from the chosen

positive example (green).

edges are taken non-uniformly with a certain probability. Each

generated concept consists of an atomic concept and sequences of

role restrictions to describe its type and properties, respectively.

Our algorithms are available as pseudocode in the appendix in

Section 7.4.

In the following, we describe our steps informally and illus-

trate them with the example shown in Figure 2 from the Family

dataset [41]. Given positive and negative examples, the goal is to

learn the concept of an Uncle:

Male ⊓ ((∃married.∃hasSibling.Parent) ⊔
(∃hasSibling.Parent)) (1)

The positive example we use to build an individual is Person 1.

Input and Precomputation. Given a knowledge base K and posi-

tive examples 𝐸+, we count all their types and super types: for each
example 𝑒 ∈ 𝐸+, we increment the count ct [𝑡] for (super) type 𝑡
except for Thing.2

(1) Select an example and one of its types: Uniformly randomly

pick an example 𝑒+ ∈ 𝐸+. Then select one of its types 𝑡 , where
each of its types is weighted according to its precomputed

counts ct [𝑡]. In a pilot study, we experimented with sampling

the types uniformly randomly. However, weighting the types

by their relative frequency performed slightly better. In our

example, Person 1 with its type Male is picked.

Example: Male

(2) Randomly select up to maxT outgoing triples of 𝑒+, where
maxT is a hyperparameter : Let 𝑅 = {𝑟 | K |= 𝑟 (𝑒+, ·)} be the
set of outgoing relations of 𝑒+:3

• Uniformly randomly select up to maxT relations 𝑟 from

𝑅 without replacement (duplicate relations are not con-

sidered to increase variety). For each selected relation 𝑟 ,

uniformly randomly choose an object 𝑜 , yielding the triple

𝑟 (𝑒+, 𝑜).
2
In other words, ct [𝐶] expresses the number of instances of an atomic concept𝐶 .

3
These are either object or data properties but not “type relations” since in description

logics, the class of instances is expressed in the form of𝐶 (𝑥) rather than by means of

relations 𝑟 .

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Heindorf et al.

• If less than maxT triples 𝑟 (𝑒+, 𝑜) have been selected so

far, uniformly randomly choose further triples 𝑟 (𝑒+, 𝑜)
regardless of 𝑟 until eithermaxT triples have been selected

or all outgoing triples of 𝑒+ have been selected.

Having selected up to maxT triples 𝑟 (𝑒+, 𝑜), their relations
are added to the concept with either a union or an intersec-

tion, each with 50% probability, as follows:

• In case 𝑟 is an object property, the relation is added as an

existential restriction.

• In case 𝑟 is a Boolean concrete role, the relation is added as

a value restriction 𝑟 = 𝑜 , where 𝑜 ∈ {true, false} represents
the actual value found in the graph

• In case 𝑟 is a numeric concrete role, the split 𝑣𝑖 closest to 𝑜

is selected from a precomputed set of potential splits (see

Section 3.2). Then the value restriction 𝑟 ≤ 𝑣𝑖 is added if

𝑜 ≤ 𝑣𝑖 and the value restriction 𝑟 ≥ 𝑣𝑖 otherwise.

We experimented with different values for maxT and chose

maxT := 2 because smaller values performed significantly

worse in terms of 𝐹1-measure, and larger values did not

improve 𝐹1 but tended to increase concept length (Table 9).

In our example, we walked along the married relation to

Person 2 and along the hasChild yielding the following

incomplete concept with placeholders (. . .):

Example: Male ⊓ (∃married . . . ⊓ ∃hasChild . . .)
(3) Complete incomplete subconcepts. For each incomplete sub-

concept𝐶 with a placeholder, let 𝑜 be the entity in the knowl-

edge graph corresponding to the placeholder.

• With a 50% chance, the subconcept 𝐶 is extended by an-

other triple as in Step 2.

• Finally, subconcept𝐶 is completed by uniformly randomly

selecting a type of 𝑜 . If 𝑜 does not have a specific type, the

top concept ⊤ (a.k.a. Thing) is selected.
In our example, the married-subconcept is extended by an-

other relation and a type, whereas the hasChild-subconcept
is extended only by a type:

Example: Male ⊓ ((∃married.∃hasSibling.Parent) ⊓
(∃hasChild.Child))

Steps 1–3 generate one concept, i.e., one evolutionary individ-

ual, and are repeated until the specified population size of the

evolutionary algorithm is reached. Since the initialization is ran-

dom, one positive example can serve as the starting point of mul-

tiple concepts. Our objective is not to find a perfect solution im-

mediately, but to start with a diverse population providing good

crossover material. As can be seen in the generated example solu-

tion, the part ∃hasChild.Child is not part of the desired con-

cept of an Uncle, see Solution (1), whereas the second part is:

∃married.∃hasSibling.Parent. Apart from starting at positive

examples, we also experimented with starting at negative examples

and negating the concept; however, this did not improve 𝐹1-measure.

The runtime of our method scales linearly with the population size,

and in all our experiments with population sizes up to 1, 000 individ-

uals, the initialization took less than two seconds. Atomic concepts

and relations not selected to be part of the initial population can

be introduced later by our mutation operator, which deletes and

inserts new concepts (see Section 3.3).

3.2 Data Properties

To overcome the problems of suboptimal data property thresholds

and long runtimes outlined in Section 1, we adopt the idea of infor-

mation gain [39], originally proposed for decision tree induction,

and transfer it to concept learning: when generating value restric-

tions of the form 𝑑 ≤ 𝑣 and 𝑑 ≥ 𝑣 , where 𝑑 is a numeric concrete

role and 𝑣 is a threshold (see Table 1), we determine 𝑣 as to maximize

information gain. Our evaluation results show that this approach

significantly improves the performance.

Given a data property 𝑑 from the knowledge base K and a set 𝐸

of positive and negative examples, the split maximizing informa-

tion gain is computed following Quinlan [39]: Let 𝑉 𝐸
𝑑

= {𝑣 |K |=
𝑑 (𝑒, 𝑣) ∧ 𝑒 ∈ 𝐸} be the set of all values for the data property 𝑑 and

examples 𝐸. We sort all values 𝑣𝑖 ∈ 𝑉 𝐸
𝑑
, and for each pair of adjacent

values (𝑣𝑖 , 𝑣𝑖+1), we compute the pair’s mean 𝑣𝑖 = (𝑣𝑖 + 𝑣𝑖+1)/2 for

consideration as a potential split with information gain

IG(𝐸, 𝑣𝑖) = 𝐻 (𝐸) − 𝐻 (𝐸 |𝑣𝑖) = 𝐻 (𝐸) −
(
|𝐸𝐿 |
|𝐸 | 𝐻 (𝐸𝐿) +

|𝐸𝑅 |
|𝐸 | 𝐻 (𝐸𝑅)

)
, (2)

where 𝐸𝐿
𝑖

= {𝑒 | (K |= 𝑑 (𝑒,𝑢)) ∧ 𝑒 ∈ 𝐸 ∧ 𝑢 ≤ 𝑣𝑖 } and 𝐸𝑅
𝑖

=

{𝑒 | (K |= 𝑑 (𝑒,𝑢)) ∧ 𝑒 ∈ 𝐸 ∧ 𝑢 > 𝑣𝑖 } are the two sets produced

by splitting 𝐸 on 𝑣𝑖 . In the formula, 𝐻 refers to the entropy

𝐻 (𝐸) = −
∑︁

𝑐∈{+,−}
Pr(𝐸 = 𝑐) log Pr(𝐸 = 𝑐) , (3)

with Pr(𝐸 = 𝑐) denoting the fraction of positive/negatives examples

in 𝐸; for example, with 4 positive and 3 negative examples, 𝐻 (𝐸) =
−4/7 log(4/7) − 3/7 log(3/7). As proven by Fayyad and Irani [12],

if all examples with values 𝑣𝑖 and 𝑣𝑖+1 belong to the same class, a

split between the two values cannot lead to a partition maximizing

information gain. Hence, at most min(|𝐸+ |, |𝐸− |) < |𝐸 | splits need
to be tried, yielding a runtime of 𝑂 (|𝐸 | · log |𝐸 |) due to the sorting.

When computing the graph representation of the knowledge

base (see beginning of Section 3), we precompute up to𝑘 splits 𝑣𝑖 per

data property. We do so in a greedy fashion and take interactions

between data properties into account as follows: We start with the

set 𝐸 = 𝐸− ∪ 𝐸+ of positive and negative examples, and for each

data property 𝑑 we compute the split 𝑣𝑖 maximizing information

gain along with its sets 𝐸𝐿
𝑖
and 𝐸𝑅

𝑖
which we add to a list of example

sets. Once we have computed the best split for each data property,

we sort the list of example sets according to entropy in descending

order. Then for each data property 𝑑 and for each example set 𝐸 in

the list, we compute the split that maximizes information gain. The

process terminates once we have found 𝑘 splits per data property or

there are less than𝑘 splits per property. Intuitively, our computation

is equivalent to computing one decision tree for each data property

and traversing these decision trees in a breadth-first search from

tree level to tree level, where each level is traversed in the order of

decreasing entropy until we have found 𝑘 splits per data property.

In our experiments, we chose 𝑘 = 10, and the whole computation

of splits took less than a second for all learning problems. In future

work, further non-precomputed splits might be obtained on the fly.

Within our approach, we add the precomputed splits to our

graph representation of the knowledge base and employ them at

two points: (1) during the initialization phase described in Sec-

tion 3.1, when a numeric property is selected, we select the closest

split to the actual value of the data property; (2) during the mutation

EvoLearner: Learning Description Logics with Evolutionary Algorithms WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

described in Section 3.3, when a new subtree is randomly generated,

a random split from the precomputed splits is selected. For Boolean

value restrictions, we pick the actual data value in the initialization

and the mutation operator randomly picks a value true or false; for

cardinality restrictions, we pick a value {1, 2, . . . , 𝑁 } where 𝑁 is

a hyperparameter, which was set to 5 in our experiments. In fu-

ture work, this hyperparameter might be determined automatically

based on the underlying data and it might vary from property to

property.

3.3 Selection, Crossover, and Mutation

Starting from an initial population of evolutionary individuals repre-

sented as concept trees, selection, crossover, andmutation operators

randomly generate new offspring based on their parents (algorithm

eaSimple[2]).
To select the fittest individuals, a tournament selection is per-

formed in a first pass over the population (selTournament): Let 𝑛
be the population size. Then 𝑛 tournaments are performed, where

in each tournament a small number of individuals 𝑘 is chosen

uniformly randomly with replacement and the fittest individual

among them is selected. In a second pass over the population, a

crossover operator combines the information of two parents gen-

erating two descendants. In a third pass, a mutation operator ran-

domly modifies single individuals. In our experiments, we employ

one-point crossover (cxOnePoint) and the uniform mutation oper-

ation (mutUniform).4 The one-point crossover operator randomly

chooses a cut point (i.e., a node in the parse tree) in both individ-

uals and swaps the subtrees below the cut points. The mutation

operation uniformly randomly selects a node in the tree and re-

places it with a randomly generated tree: the tree is generated

with the RampedHalfHalf method with height 1 to 3 [20]. Follow-

ing Koza [20], we employ a tournament size of 𝑘 = 7 and apply the

crossover operation to two consecutive individuals in a population

with 90% probability and the mutation operation with 10% prob-

ability. In a pilot study, we experimented with further crossover

operators (e.g., cxOnePointLeafBiased), mutation operators (e.g.,

mutShrink, mutNodeReplacement, mutInsert, Table 8), and prob-

abilities. Many combinations yielded good results and our chosen

combination only slightly outperformed other combinations we

tried. The whole process is called a generation and is repeated until

the maximum number of generations is reached or a timeout occurs.

The population size stays constant.

3.4 Fitness Function and Bloat Control

We measure the fitness of each evolutionary individual, i.e., each

concept 𝐶 , in terms of accuracy on the positive and negative exam-

ples in the training set. Accuracy is defined as the ratio of correct

predictions among all predictions

accuracy(𝐶) = |𝐸+ ∩ 𝑅(𝐶) | + |𝐸− \ 𝑅(𝐶) |
|𝐸+ | + |𝐸− | , (4)

with 𝑅(𝐶) denoting the individuals retrieved for concept 𝐶 via our

graph representation. To control bloat, i.e., overly long concepts that

do not generalize to new, unseen data, we apply linear parametric

4
https://deap.readthedocs.io/en/master/api/tools.html

Table 2: Overview of the datasets in terms of number of in-

stances (𝑁𝐼), axioms, atomic concepts, properties, expressive-

ness and positive and negative examples (𝐸+, 𝐸−). The statis-
tics were obtained with Protégé.

Instances Axioms Atomic Object Data Expres- |𝐸+ | |𝐸− |
Dataset Concepts Prop. Prop. siveness

Carcinogenesis 22,372 74,566 142 4 15 ALC(D) 162 136

Family 202 1,829 18 4 0 ALC 38 38

Hepatitis 6,812 79,935 14 5 12 ALE(D) 206 294

Lymphography 148 2,193 49 0 0 AL 81 67

Mammographic 975 6,808 19 3 2 AL(D) 445 516

Mutagenesis 14,145 62,066 86 5 6 AL(D) 13 29

NCTRER 10,209 103,070 37 9 50 ALCI(D) 131 93

Premier League 11,319 2,153,818 9 13 202 ALEH(D) 40 41

Pyrimidine 74 2,080 1 0 27 AL(D) 20 20

parsimony pressure [28] yielding the fitness function

fitness(𝐶) := accuracy(𝐶) · 𝑥 − length(𝐶) , (5)

where the length(𝐶) of an individual denotes the number of nodes in

the tree (e.g., length 7 in Figure 1) and where 𝑥 is a weighting factor

that can be set as a hyperparameter. In a pilot study, as per Luke and

Panait [28], we experimented with different values for 𝑥 between

1,024 and 8,192 and decided to use 𝑥 = 2, 048. We obtained similar

results for a wide range of values. However, smaller values slightly

decreased performance in terms of 𝐹1-measure. Larger values were

only beneficial for few datasets and learning problems.

In addition, we set a static depth limit 𝑑 for the tree depth of

individuals since bloat control often performs better if combined

with such a limit [28]. In our experiments, we set 𝑑 = 17 as previ-

ously done in the literature [20, 28]. We also experimented with

other bloat control methods such as proportional and double tour-

nament [28] without significant improvements.

4 EVALUATION

After introducing our evaluation setup in Section 4.1, we compare

our approach with state-of-the-art approaches in Section 4.2. In

Sections 4.3 and 4.4, we perform an ablation analysis to identify the

components that contribute most towards our high performance.

Section 4.5 studies the performance based on dataset characteristics.

How the learned concepts evolve from generation to generation is

exemplified in Section 4.6, and Section 4.7 investigates performance

as a function of runtime.

4.1 Evaluation Setup

Our evaluation was performed with SML-Bench [50], a benchmark-

ing framework for structured machine learning.

Datasets and Learning Problems. Table 2 gives an overview of

the nine datasets we employ for our evaluation. In contrast to

SML-Bench’s original configuration [50], we added the Family

dataset [24], which is provided as part of DL-Learner and often

used to evaluate structured machine learning approaches [48]. Per

dataset, the SML-Bench framework provides one learning prob-

lem, i.e., one set of positive and negative examples. For the Family

dataset, the concept of an Uncle is to be learned.

https://deap.readthedocs.io/en/master/api/tools.html

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Heindorf et al.

Baselines. We compare our novel approach EvoLearner with four

baselines: DL-Learner (CELOE), DL-Learner (OCEL), Aleph, and

SPaCEL. Except for SPaCEL, all approaches are part of the SML-

Bench framework [50]. CELOE and OCEL employ inductive logic

programming with downward refinement operators with different

heuristics. Aleph serves as an example of a bottom-up approach [33].

SPaCEL [48] employs a hybrid approach of upward and downward

refinements. We also experimented with DL-FOIL [10, 11, 42]; how-

ever, it assumes the existence of a perfect solution, which covers all

positive examples and none of the negative examples. Since almost

none of the SML-Bench learning problems have such a perfect so-

lution with a reasonable length, DL-FOIL did not terminate and we

excluded it from our experiments. Additionally, we experimented

with Metagol [35]. However, Metagol did not terminate within our

timeout for any of the datasets, corroborating previous findings that

it has problems with larger datasets and that finding a suitable set

of metarules for each dataset is a challenging, unsolved task [4, 9].

Hence, we excluded it from our experiments.

Hyperparameters. As outlined in Section 3, we employ a popu-

lation size of 800 with 200 generations, a tournament size of 7, a

crossover probability of 90%, a mutation probability of 10%, and a

static depth limit of 17.

Cross-validation and Evaluation Metrics. As SML-Bench [50], we

employ 10-fold cross-validation, i.e., all positive and negative ex-

amples for each learning problem are randomly shuffled and split

into 10 folds. In each round, the examples of one fold are used

as the validation set and the other folds are used as the training

set. Finally, the performance on all validation folds is averaged. As

commonly done [50], we evaluate the predictive performance of

the approaches in terms of accuracy and 𝐹1-measure, and the ex-

plainability in terms of concept length [48]. Following SML-Bench,

we employ a timeout of 5 minutes per fold.

Reproducibility. To ensure the reproducibility of our experiments,

the code underlying our research is publicly available.
5
It enables

those who wish to follow up on our work to replicate the plots

and performance values reported. We implemented EvoLearner in

Python 3.6.9 with the evolutionary framework DEAP [13] 1.3.1 and

the ontology framework Owlready2 [22] 0.29. For evaluation, we

employ SML-Bench [50] 0.3.0, DL-Learner [24] 1.4.0, and the latest

version of SPaCEL [48]. Our experiments were run on a machine

with 32 GB memory and an Intel Core i7-9750H with 2.6 GHz.

4.2 Evaluation of EvoLearner

Table 3 evaluates our EvoLearner approach on the benchmarking

datasets and compares it with state-of-the-art baselines. Our ap-

proach outperforms each of the baselines on at least 7 out of 9

datasets in terms of accuracy and 𝐹1-measure. In each of the 8 pair-

wise comparisons of EvoLearner with a baseline according to 𝐹1-

measure or accuracy, we can reject the null hypothesis that both

approaches are equally good with 𝑝 < 0.05 (according to the non-

parametric Wilcoxon signed-rank test). Looking at the lengths of

learned concepts, we find that our approach generates much shorter

concepts than SPaCEL and slightly longer concepts than CELOE

5
https://github.com/dice-group/EvoLearner

Table 3: Evaluation results of EvoLearner and four state-of-

the-art baselines in terms of accuracy, 𝑭1-measure, and con-

cept length obtained via 10-fold cross-validation on 9 learn-

ing problems with a maximum execution time of 5 min-

utes per fold. In addition to the mean value, we report the

folds’ standard deviation. EvoLearner is initialized via ran-

dom walks and supports data properties. The results of Evo-

Learner and SPaCEL are averaged over 3 runs since they

contain randomness.

Accuracy

EvoLearner DL-Learner DL-Learner Aleph SPaCEL

Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.64 ± 0.16 0.55 ± 0.02 no results 0.48 ± 0.10 0.51 ± 0.10

Family 1.00 ± 0.01 0.97 ± 0.05 1.00 ± 0.00 — 0.97 ± 0.08

Hepatitis 0.82 ± 0.06 0.49 ± 0.06 no results 0.67 ± 0.05 no results

Lymphography 0.81 ± 0.12 0.70 ± 0.15 0.85 ± 0.09 0.83 ± 0.10 0.71 ± 0.14

Mammographic 0.83 ± 0.05 0.49 ± 0.02 0.82 ± 0.04 0.65 ± 0.04 0.70 ± 0.05

Mutagenesis 1.00 ± 0.00 0.94 ± 0.13 timeout 0.72 ± 0.25 1.00 ± 0.00

NCTRER 1.00 ± 0.00 0.59 ± 0.03 0.94 ± 0.06 0.72 ± 0.14 1.00 ± 0.00

Premier League 1.00 ± 0.00 0.99 ± 0.04 0.85 ± 0.01 0.95 ± 0.09 0.98 ± 0.04

Pyrimidine 0.90 ± 0.15 0.82 ± 0.17 0.85 ± 0.24 0.95 ± 0.16 0.87 ± 0.24

𝑭1-measure

EvoLearner DL-Learner DL-Learner Aleph SPaCEL

Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 0.70 ± 0.12 0.71 ± 0.01 no results 0.46 ± 0.12 0.60 ± 0.08

Family 1.00 ± 0.01 0.98 ± 0.05 1.00 ± 0.00 — 0.97 ± 0.11

Hepatitis 0.79 ± 0.08 0.61 ± 0.03 no results 0.38 ± 0.12 no results

Lymphography 0.84 ± 0.09 0.78 ± 0.10 0.85 ± 0.10 0.84 ± 0.09 0.75 ± 0.13

Mammographic 0.81 ± 0.06 0.64 ± 0.01 0.78 ± 0.08 0.48 ± 0.08 0.64 ± 0.06

Mutagenesis 1.00 ± 0.00 0.93 ± 0.14 timeout 0.43 ± 0.47 1.00 ± 0.00

NCTRER 1.00 ± 0.00 0.74 ± 0.01 0.94 ± 0.06 0.71 ± 0.18 1.00 ± 0.00

Premier League 1.00 ± 0.00 0.99 ± 0.04 0.81 ± 0.13 0.94 ± 0.11 0.98 ± 0.04

Pyrimidine 0.91 ± 0.14 0.84 ± 0.15 0.84 ± 0.22 0.90 ± 0.32 0.86 ± 0.29

Concept Length

EvoLearner DL-Learner DL-Learner SPaCEL

Learn. Problem (ours) (CELOE) (OCEL)

Carcinogenesis 23.47 ± 4.10 3.90 ± 0.32 no results 1093.30 ± 82.39

Family 10.87 ± 1.90 9.00 ± 0.00 13.20 ± 0.63 15.57 ± 1.68

Hepatitis 19.77 ± 7.16 4.30 ± 0.95 no results no results

Lymphography 14.37 ± 7.31 9.40 ± 0.70 11.20 ± 2.10 172.30 ± 48.32

Mammographic 20.43 ± 4.03 7.00 ± 0.00 8.00 ± 0.00 1547.13 ± 76.04

Mutagenesis 3.00 ± 0.00 3.00 ± 0.00 timeout 3.00 ± 0.00

NCTRER 3.00 ± 0.00 3.70 ± 1.16 7.00 ± 0.00 3.00 ± 0.00

Premier League 7.00 ± 0.00 9.00 ± 0.00 5.00 ± 0.00 20.03 ± 3.75

Pyrimidine 11.40 ± 1.61 10.60 ± 1.26 6.60 ± 1.26 19.67 ± 4.49

and OCEL on most datasets. A manual inspection revealed that

SPaCEL generates overly verbose expressions withmany redundant

and unnecessary parts, whereas CELOE’s and OCEL’s concepts are

often incomplete. In the following, we show example solutions

found by EvoLearner for the Premier League and Carcinogenesis

learning problems. In case of Premier League, the objective is to

find descriptions of soccer goalkeepers based on their statistics; for

example, the concept of a goalkeeper can be characterized by the

number of shots on the target conceded. In case of Carcinogenesis,

molecules causing cancer can be characterized by certain chemical

structures. Another example is the solution (1) found by EvoLearner

for the Uncle problem.

https://github.com/dice-group/EvoLearner

EvoLearner: Learning Description Logics with Evolutionary Algorithms WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 4: 𝑭1-measure of 10-fold cross-validation of different

configurations of EvoLearner. Note that the datasets Family
and Lymphography do not contain data properties.

EvoLearner Without Without Without

Learning Problem (ours) Rand. Walk Init. Data Properties Both

Carcinogenesis 0.70 ± 0.12 0.60 ± 0.21 0.63 ± 0.13 0.62 ± 0.13

Family 1.00 ± 0.01 0.87 ± 0.13 — 0.86 ± 0.14

Hepatitis 0.79 ± 0.08 0.67 ± 0.15 0.46 ± 0.14 0.47 ± 0.13

Lymphography 0.84 ± 0.09 0.83 ± 0.11 — 0.83 ± 0.09

Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.77 ± 0.07 0.75 ± 0.06

Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 0.44 ± 0.48 0.50 ± 0.51

NCTRER 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.05 0.75 ± 0.05

Premier League 1.00 ± 0.00 0.98 ± 0.04 0.50 ± 0.23 0.50 ± 0.22

Pyrimidine 0.91 ± 0.14 0.83 ± 0.22 0.67 ± 0.00 0.67 ± 0.00

Premier League:

Player ⊓ ∃has_action.(shots_on_target_conceded ≥ 2)
Carcinogenesis:

(drosophila_slrl = true) ⊔ (amesTestPositive = true) ⊔
(≥ 4 hasStructure.Halide) ⊔ (chromaberr = false)

4.3 Initialization and Data Properties

To investigate the cause of EvoLearner’s high performance, we

perform an ablation study and investigate the following variants

of EvoLearner: (1) without random walk initialization, (2) with-

out data properties, and (3) without both. Instead of our random

walk initialization, we employ the rampedHalfHalf initialization

method with a maximal depth of 6, which combines the Full and

Grow methods and has been found to be one of the best default

initialization methods [20].

Table 4 shows that both our novel initialization method and

our support for data properties lead to an increase in performance

on almost all datasets. For tackling the Hepatitis, Mammographic,

Mutagenesis, NCTRER and Pyrimidine learning problems, sufficient

support for data properties and cardinality restrictions is crucial.

Unsurprisingly, on the Lymphography dataset, which does not con-

tain any properties, neither our initialization nor support for data

properties could boost performance. On Mutagenesis and NCTRER,

we achieve an 𝐹1-measure of 1.00 with and without our initializa-

tion technique since the optimal solution only requires finding the

suitable value for one data property.

4.4 Variants of Biased RandomWalks

We examined why the biased randomwalk method for initialization

works so well by experimenting with different variants thereof:

leaving out type or path information (see Section 3.1). In the first

variant, we omitted Step (1) from the random walk method, so we

did not select a type during the initialization and only selected

the paths afterward. For the second variant, we omitted Step (2)

and Step (3) so the resulting concepts in the initial population

only consisted of the selected type in Step (1). Table 5 shows that

both type and path information are important to get the highest

performance. However, path information was more important than

type information, especially for Hepatitis and Pyrimidine. Note that

the variant without types still outperforms the variant without

random walks and the variant without paths is about as good.

Table 5: 𝑭1-measure of 10-fold cross-validation of different

variants of the random walk initialization. Note that Lym-
phography only contains types but no properties.

Rand. Walk Init. Without Without Without

Learn. Probl. (EvoLearner) Paths Types Rand. Walk Init.

Carcinogenesis 0.70 ± 0.12 0.61 ± 0.20 0.65 ± 0.17 0.60 ± 0.21

Family 1.00 ± 0.01 0.86 ± 0.14 0.90 ± 0.16 0.87 ± 0.13

Hepatitis 0.79 ± 0.08 0.66 ± 0.16 0.76 ± 0.13 0.67 ± 0.15

Lymphography 0.84 ± 0.09 0.84 ± 0.09 — 0.83 ± 0.11

Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.81 ± 0.07 0.78 ± 0.08

Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

NCTRER 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Premier League 1.00 ± 0.00 0.98 ± 0.05 1.00 ± 0.00 0.98 ± 0.04

Pyrimidine 0.91 ± 0.14 0.82 ± 0.21 0.87 ± 0.21 0.83 ± 0.22

0510 30 60 120 180 240 300

0.5

0.75

1.0

EvoLearner

SPaCEL

DL-Learner (CELOE)
Aleph

Thing

seconds

F 1
-m

ea
su

re

Figure 3: Average 𝑭1-measure depending on runtime over all

datasets exceptHepatitis and Family since not all approaches

yielded results for them.

4.5 Dataset Characteristics

Weobserved that our randomwalk/bottom-up initialization starting

at the ABox tends to be particularly good for datasets whose solu-

tions require long class expressions and for datasets that contain

many object properties in the TBox (Table 2 shows the number of

object properties, Table 3 [bottom] the concept lengths, and Table 3

[top] the performance). This can be explained as follows: Top-down

approaches randomly refining the top concept ⊤ have a hard time

finding sensible concepts by chance if the class expressions are long

and the TBox contains many object properties due to combinatorial

explosion. On the other hand, our bottom-up initialization based on

random walks only yields combinations of object properties that do

appear in the ABox. As shown in Table 4, this effect is particularly

pronounced on the datasets Carcinogenesis, Family and Hepatitis.

4.6 Example of Emerging Concepts

Table 6 provides an example of emerging concepts from generation

to generation on the Uncle learning problem. From each genera-

tion’s population, the best concept according to the fitness function

is shown. It can be seen that up to generation 11, concepts become

more accurate on the training set while also becoming longer. Af-

terwards, concepts maintain their good accuracy while becoming

shorter. The best concept is reached after 29 generations. This pat-

tern of growing and shrinking concepts is typical and we observed

it for many datasets and learning problems.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Heindorf et al.

Table 6: Emerging concepts for the Uncle learning problem.

Train Test

Gen. Concept Len. Acc. F1 Acc. F1

1 Brother ⊔ ∃married.Sister 5 0.941 0.944 0.875 0.889

9 Male ⊓ ((∃married.∃hasSibling.Daughter) ⊔ (∃hasSibling.∃hasChild.(≤ 1 hasParent.Male))) 16 0.970 0.969 0.750 0.667

11 Male ⊓ ((∃hasSibling.∃hasChild.(≤ 1 hasParent.Daughter)) ⊔ (∃married.∃hasSibling.∃hasChild(≤ 2 hasParent.Male))) 21 1.000 1.000 1.000 1.000

18 Male ⊓ ((∃hasSibling.∃hasChild.Child) ⊔ (∃married.∃hasSibling.∃hasChild.Child)) 15 1.000 1.000 1.000 1.000

23 Male ⊓ ((∃hasSibling.∃hasChild.Child) ⊔ (∃married.∃hasSibling.Parent)) 13 1.000 1.000 1.000 1.000

29 Male ⊓ ((∃hasSibling.Parent) ⊔ (∃married.∃hasSibling.Parent)) 11 1.000 1.000 1.000 1.000

4.7 Effectiveness Depending on Runtime

In Figure 3, we examine the relationship between performance

and runtime. The time for loading the datasets is not taken into

account. For EvoLearner, the time starts right before the calculation

of the splits and the random-walk initialization; for SPaCEL and

CELOE, time starts after the initialization of the search and before

the start of the refinements; for Aleph, time starts immediately as

per SML-Bench. After the random-walk initialization, EvoLearner

achieves an 𝐹1-measure of 0.83 averaged over all datasets. This

number increases to 0.88 after the evolutionary algorithm has run

for 5 seconds. Except for Carcinogenesis, EvoLearner reaches 200

generations within the first 60 seconds, with further generations

hardly increasing performance. A manual analysis revealed that for

NCTRER and Mutagenesis, our initialization almost always gener-

ated an individual with the correct data property and split within

the initial population. SPaCEL and CELOE initially predict Thing,
yielding an 𝐹1-measure of 0.65. SPaCEL finishes in under a sec-

ond for most datasets, except for Carcinogenesis, Lymphography

andMammographic. Therefore, performance hardly improves after-

wards. CELOE struggles to improve on Carcinogenesis, Lymphog-

raphy, Mammographic, Mutagenesis and NCTRER. On Pyrimidine,

the performance of CELOE even decreases over time due to overfit-

ting. The jump between 2 and 3 minutes is due to an increase in

𝐹1-measure on Premier League. Aleph does not provide partial solu-

tions, and the jumps of average performance correspond to Aleph’s

solution to NCTRER after about 10 seconds and Aleph’s solution to

Carcinogenesis and Premier League after about 40 seconds.

5 DISCUSSION

Open-world vs. Closed-world Reasoning. Closed-world reason-

ers [21] assume every fact not explicitly stated to be true to be

actually false. Open-world reasoners keep unspecified information

open and require a logical consequence to be true in all conceivable

states of the world. In this work, we employ a closed-world rea-

soner for the following reasons: (1) Our baseline systems employ

closed-world reasoning. (2) Closed-world reasoners may be less

surprising to new users
6
[43]. (3) Closed-world reasoners are a lot

faster, allowing the evaluation of many more concepts in the same

amount of time. Our code can be adapted to employ an open-world

reasoner, which is available as part of the Owlready2 library [22].

6
https://spinrdf.org/shacl-and-owl.html

Datatypes. Our current implementation supports Booleans as

well as numbers including double values and integers. Extending

this to dates is straightforward as dates can be sorted, and thresholds

can be computed in the same way as for numbers. An extension to

strings can be realized by treating them as atomic concepts.

Initialization of Baselines. Our initialization strategy is specifi-

cally tailored towards evolutionary algorithms and our crossover

and mutation operators. Applying our initialization strategy to our

baselines would lead to a significantly smaller search space since

concepts that are more general than our initial concepts would not

be found by downward refinement operators. We leave it to future

work to develop novel initialization strategies specifically tailored

to inductive logic programming with refinement operators.

6 CONCLUSION

In this paper, we introduce EvoLearner, an approach to learn de-

scription logic concepts with evolutionary algorithms. In particular,

our contributions are twofold: (1) a novel initialization method

based on biased random walks, and (2) support for data proper-

ties, which maximizes information gain. Our results show that

EvoLearner significantly outperforms the state of the art, and our

ablation study confirms that this can be attributed to our initializa-

tion and support for data properties. An analysis of performance

over runtime indicates that we find equally good concepts faster

than the state of the art, and our approach often keeps improving

when other approaches are already stagnating.

In future work, we will explore ways to combine our approach

with knowledge graph embeddings [5, 6] and reinforcement learn-

ing [7], e.g., guiding the crossover and mutation in a promising

direction. Moreover, we will further increase the expressiveness of

our approach towards OWL 2 Full, i.e., SROIQ(D). Applications
may include fact checking [46] and vandalism detection [16, 17].

ACKNOWLEDGMENTS

This work has been supported by the German Federal Ministry

for Economic Affairs and Energy (BMWi) within the project RAKI

under the grant no 01MD19012B and by the German Federal Min-

istry of Education and Research (BMBF) within the project DAIKIRI

under the grant no 01IS19085B. We are grateful to Pamela Heidi

Douglas for editing the manuscript.

https://spinrdf.org/shacl-and-owl.html

EvoLearner: Learning Description Logics with Evolutionary Algorithms WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES

[1] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In

ISWC/ASWC. Springer, 722–735.

[2] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. 2018. Evolutionary

computation 1: Basic algorithms and operators. CRC press.

[3] Liviu Badea and Shan-Hwei Nienhuys-Cheng. 2000. A Refinement Operator for

Description Logics. In ILP. Springer, 40–59.

[4] Andrew Cropper and Sebastijan Dumancic. 2020. Inductive logic programming

at 30: a new introduction. CoRR abs/2008.07912 (2020).

[5] Caglar Demir, Diego Moussallem, Stefan Heindorf, and Axel-Cyrille Ngonga

Ngomo. 2021. Convolutional Hypercomplex Embeddings for Link Prediction. In

ACML. PMLR, 656–671.

[6] Caglar Demir and Axel-Cyrille Ngonga Ngomo. 2021. Convolutional Complex

Knowledge Graph Embeddings. In ESWC. Springer, 409–424.

[7] Caglar Demir and Axel-Cyrille Ngonga Ngomo. 2021. DRILL- Deep

Reinforcement Learning for Refinement Operators in ALC. CoRR abs/2106.15373

(2021).

[8] Federico Divina. 2006. Evolutionary concept learning in First Order Logic: An

overview. AI Commun. 19, 1 (2006), 13–33.

[9] Sebastijan Dumancic, Alberto García-Durán, and Mathias Niepert. 2019. A

Comparative Study of Distributional and Symbolic Paradigms for Relational

Learning. In IJCAI. 6088–6094.

[10] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. 2008. DL-FOIL Concept

Learning in Description Logics. In ILP. Springer, 107–121.

[11] Nicola Fanizzi, Giuseppe Rizzo, Claudia d’Amato, and Floriana Esposito. 2018.

DLFoil: Class expression learning revisited. In European Knowledge Acquisition

Workshop. Springer, 98–113.

[12] Usama M Fayyad and Keki B Irani. 1992. On the handling of continuous-valued

attributes in decision tree generation. Machine learning 8, 1 (1992), 87–102.

[13] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. 2012. DEAP: evolutionary algorithms made easy.

J. Mach. Learn. Res. 13 (2012), 2171–2175.

[14] Agata Fronczak and Piotr Fronczak. 2009. Biased random walks in complex

networks: The role of local navigation rules. Physical Review E 80, 1 (2009),

016107.

[15] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca

Giannotti, and Dino Pedreschi. 2019. A Survey of Methods for Explaining Black

Box Models. ACM Comput. Surv. 51, 5 (2019), 93:1–93:42.

[16] Stefan Heindorf, Martin Potthast, Benno Stein, and Gregor Engels. 2016.

Vandalism Detection in Wikidata. In CIKM. ACM, 327–336.

[17] Stefan Heindorf, Yan Scholten, Gregor Engels, and Martin Potthast. 2019.

Debiasing Vandalism Detection Models at Wikidata. InWWW. ACM, 670–680.

[18] André Hernich, Carsten Lutz, Ana Ozaki, and Frank Wolter. 2015. Schema.org as

a Description Logic. In IJCAI. AAAI Press, 3048–3054.

[19] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de

Melo, Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto

Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres,

Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen

Staab, and Antoine Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv.

54, 4 (2021), 71:1–71:37.

[20] John R. Koza. 1992. Genetic programming: On the programming of computers by

means of natural selection. MIT Press.

[21] Markus Krötzsch, Frantisek Simancik, and Ian Horrocks. 2012. A Description

Logic Primer. CoRR abs/1201.4089 (2012).

[22] Jean-Baptiste Lamy. 2017. Owlready: Ontology-oriented programming in

Python with automatic classification and high level constructs for biomedical

ontologies. Artificial Intelligence in Medicine 80 (2017), 11–28.

[23] Jens Lehmann. 2007. Hybrid Learning of Ontology Classes. In MLDM. Springer,

883–898.

[24] Jens Lehmann. 2009. DL-Learner: Learning Concepts in Description Logics. J.

Mach. Learn. Res. 10 (2009), 2639–2642.

[25] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. 2011. Class

expression learning for ontology engineering. J. Web Semant. 9, 1 (2011), 71–81.

[26] Jens Lehmann and Pascal Hitzler. 2010. Concept learning in description logics

using refinement operators. Mach. Learn. 78, 1-2 (2010), 203–250.

[27] Jiaqi Li, Xuan Wu, Chang Lu, Wenxing Deng, and Yizheng Zhao. 2021.

Computing Views of OWL Ontologies for the Semantic Web. In WWW. ACM /

IW3C2, 2624–2635.

[28] Sean Luke and Liviu Panait. 2006. A Comparison of Bloat Control Methods for

Genetic Programming. Evol. Comput. 14, 3 (2006), 309–344.

[29] Franck Michel, Catherine Faron-Zucker, Olivier Corby, and Fabien Gandon. 2019.

Enabling Automatic Discovery and Querying of Web APIs at Web Scale using

Linked Data Standards. In WWW (Companion Volume). ACM, 883–892.

[30] Diego Moussallem, Dwaraknath Gnaneshwar, Thiago Castro Ferreira, and

Axel-Cyrille Ngonga Ngomo. 2020. NABU - Multilingual Graph-Based Neural

RDF Verbalizer. In ISWC. Springer, 420–437.

[31] Diego Moussallem, René Speck, and Axel-Cyrille Ngonga Ngomo. 2020.

Generating Explanations in Natural Language from Knowledge Graphs. In

Knowledge Graphs for eXplainable Artificial Intelligence. Studies on the Semantic

Web, Vol. 47. 213–241.

[32] Stephen Muggleton. 1991. Inductive Logic Programming. New Gener. Comput. 8,

4 (1991), 295–318.

[33] Stephen Muggleton. 1995. Inverse Entailment and Progol. New Gener. Comput.

13, 3&4 (1995), 245–286.

[34] Stephen Muggleton and Cao Feng. 1990. Efficient Induction of Logic Programs.

In ALT. Springer/Ohmsha, 368–381.

[35] Stephen Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza

Tamaddoni-Nezhad. 2013. Meta-interpretive learning: application to

grammatical inference. Machine Learning 94 (2013), 25–49.

[36] Stephen Muggleton, José Carlos Almeida Santos, and Alireza

Tamaddoni-Nezhad. 2009. ProGolem: A System Based on Relative Minimal

Generalisation. In ILP. Springer, 131–148.

[37] Axel-Cyrille Ngonga Ngomo, Diego Moussallem, and Lorenz Bühmann. 2019. A

Holistic Natural Language Generation Framework for the Semantic Web. In

RANLP. 819–828.

[38] Heiko Paulheim and Christian Bizer. 2013. Type Inference on Noisy RDF Data.

In ISWC, Vol. 8218. Springer, 510–525.

[39] J. Ross Quinlan. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (1986),

81–106.

[40] Philip GK Reiser and Patricia J Riddle. 1999. Evolution of logic programs:

part-of-speech tagging. In Cat. No. 99TH8406, Vol. 2. IEEE, 1338–1345.

[41] Bradley L. Richards and Raymond J. Mooney. 1995. Automated Refinement of

First-Order Horn-Clause Domain Theories. Mach. Learn. 19, 2 (1995), 95–131.

[42] Giuseppe Rizzo, Nicola Fanizzi, and Claudia d’Amato. 2020. Class expression

induction as concept space exploration: From DL-Foil to DL-Focl. Future Gener.

Comput. Syst. 108 (2020), 256–272.

[43] Alan Ruttenberg, Jonathan Rees, and Joanne Luciano. 2005. Experience Using

OWL DL for the Exchange of Biological Pathway Information. In OWLED

(CEUR Workshop Proceedings, Vol. 188).

[44] Roberta Sinatra, Jesús Gómez-Gardenes, Renaud Lambiotte, Vincenzo Nicosia,

and Vito Latora. 2011. Maximal-entropy random walks in complex networks

with limited information. Physical Review E 83, 3 (2011), 030103.

[45] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core

of semantic knowledge. In WWW. ACM, 697–706.

[46] Zafar Habeeb Syed, Michael Röder, and Axel-Cyrille Ngonga Ngomo. 2019.

Unsupervised Discovery of Corroborative Paths for Fact Validation. In ISWC.

Springer, 630–646.

[47] An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. 2012. An

Approach to Parallel Class Expression Learning. In RuleML. Springer, 302–316.

[48] An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. 2017.

Parallel Symmetric Class Expression Learning. J. Mach. Learn. Res. 18 (2017),

64:1–64:34.

[49] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative

knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[50] Patrick Westphal, Lorenz Bühmann, Simon Bin, Hajira Jabeen, and Jens

Lehmann. 2019. SML-Bench - A benchmarking framework for structured

machine learning. Semantic Web 10, 2 (2019), 231–245.

[51] Dennis Wolters, Stefan Heindorf, Jonas Kirchhoff, and Gregor Engels. 2017.

Linking Services to Websites by Leveraging Semantic Data. In ICWS. IEEE,

668–675.

[52] Hamada M. Zahera, Stefan Heindorf, and Axel-Cyrille Ngonga Ngomo. 2021.

ASSET: A Semi-supervised Approach for Entity Typing in Knowledge Graphs.

In K-CAP. ACM, 261–264.

[53] Ziqi Zhang and Monica Lestari Paramita. 2019. Product Classification Using

Microdata Annotations. In ISWC, Vol. 11778. Springer, 716–732.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Heindorf et al.

7 APPENDIX

In the following, we show the results of additional experiments we

performed regarding initialization methods, mutation operators,

and hyperparameters. Moreover, we provide pseudocode for our

random walk initialization and our calculation of splitting values

for data properties.

7.1 Comparison of Initialization Methods

In Table 7, we compare our random walk initialization to three

widely used initialization methods [20]: Grow, Full, and Ramped-

HalfHalf. Grow generates trees where leaves can have different

depths, Full generates trees where all leaves have the same depth,

and RampedHalfHalf generates half of a population’s individuals

with the Grow or Full method. We observe that the performance

of the three methods is similar, with Full having a slight edge,

while our random walk initialization performs significantly better.

We hypothesize that this can be attributed to the fact that our gen-

erated class expressions, i.e., combinations of atomic concepts and

operators, do actually appear in the instance data while the other

three methods generate random/artificial combinations unrelated

to the instance data. Manual spot checks confirmed our hypothesis.

7.2 Comparison of Mutation Operators

Table 8 compares the performance of different mutation operators

which are part of the DEAP framework [13]: mutUniform, mut-
Shrink, mutNodeReplacement and mutInsert. mutUniform uni-

formly randomly selects a node in the tree and replaces it by a

randomly generated tree as described in Section 3.3; mutShrink
randomly selects two nodes in the tree which are on a path from the

root to a leaf and replaces the subtree induced by the higher node

by the subtree induced by the lower node. mutNodeReplacement
randomly replaces a single node in the tree by a single random

node; mutInsert randomly selects an inner node, replaces it with

a random inner node, and adds the original subtree induced by the

node as a child.

While the differences are small on most datasets, mutUniform
performs much better than other approaches on Hepatitis. We at-

tribute this to the fact that mutUniform introduces new constructs,

like universal restrictions, negations, and cardinality restrictions,

which mutShrink does not. Similarly, mutNodeReplacement and

mutInsert can only introduce them to a limited extent by replacing

or adding single nodes. These constructs seem to be particularly im-

portant for the Hepatitis dataset where almost all the good solutions

contain them. In case of Lymphography, mutUniform learns long
class expressions with training scores exceeding 0.9 (not shown

in tables) which cannot be matched on test data (0.84 in Table 8),

hinting at slight overfitting.

7.3 Comparison of maxT Settings

The hyperparameter𝑚𝑎𝑥𝑇 considers the number of outgoing triples

of positive examples (c.f., Section 3.1 and Section 7.4). Table 9 evalu-

ates different values of the𝑚𝑎𝑥𝑇 parameter. It shows that a value of

two is needed since setting𝑚𝑎𝑥𝑇 := 1 yielded worse 𝐹1-measures.

However, increasing the parameter beyond𝑚𝑎𝑥𝑇 := 2 did not sig-

nificantly increase the 𝐹1-measure and resulted in longer solutions.

Table 7: Different initialization methods in terms of 𝑭1-
measure for 10-fold cross-validation.

Learning Problem Rand. Walk Grow Full Ramped

Carcinogenesis 0.70 ± 0.12 0.61 ± 0.20 0.63 ± 0.19 0.60 ± 0.21

Family 1.00 ± 0.01 0.86 ± 0.14 0.87 ± 0.14 0.87 ± 0.13

Hepatitis 0.79 ± 0.08 0.63 ± 0.20 0.76 ± 0.14 0.67 ± 0.15

Lymphography 0.84 ± 0.09 0.83 ± 0.08 0.84 ± 0.09 0.83 ± 0.11

Mammographic 0.81 ± 0.06 0.78 ± 0.08 0.78 ± 0.08 0.78 ± 0.08

Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

NCTRER 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Premier League 1.00 ± 0.00 0.99 ± 0.04 0.98 ± 0.05 0.98 ± 0.04

Pyrimidine 0.91 ± 0.14 0.84 ± 0.22 0.84 ± 0.22 0.83 ± 0.22

Table 8: Different mutation operators in terms of 𝑭1-measure

for 10-fold cross-validation.

Learning Problem mutUniform mutShrink mutN.Repl. mutInsert

Carcinogenesis 0.70 ± 0.12 0.65 ± 0.17 0.68 ± 0.15 0.66 ± 0.14

Family 1.00 ± 0.01 0.96 ± 0.06 0.99 ± 0.02 0.97 ± 0.06

Hepatitis 0.79 ± 0.08 0.40 ± 0.21 0.53 ± 0.16 0.49 ± 0.23

Lymphography 0.84 ± 0.09 0.81 ± 0.09 0.81 ± 0.09 0.83 ± 0.09

Mammographic 0.81 ± 0.06 0.80 ± 0.07 0.81 ± 0.07 0.80 ± 0.06

Mutagenesis 1.00 ± 0.00 0.97 ± 0.11 1.00 ± 0.00 0.97 ± 0.11

NCTRER 1.00 ± 0.00 0.99 ± 0.02 1.00 ± 0.00 0.99 ± 0.02

Premier League 1.00 ± 0.00 0.98 ± 0.05 0.99 ± 0.03 0.98 ± 0.06

Pyrimidine 0.91 ± 0.14 0.91 ± 0.15 0.92 ± 0.13 0.93 ± 0.14

Table 9: Different settings for 𝒎𝒂𝒙𝑻 in terms of 𝑭1-measure

for 10-fold cross-validation.

Learning Problem maxT = 1 maxT = 2 maxT = 4 maxT = 6

Carcinogenesis 0.64 ± 0.18 0.70 ± 0.12 0.67 ± 0.14 0.68 ± 0.14

Family 0.93 ± 0.08 1.00 ± 0.01 0.98 ± 0.05 1.00 ± 0.00

Hepatitis 0.71 ± 0.15 0.79 ± 0.08 0.79 ± 0.12 0.82 ± 0.10

Lymphography 0.84 ± 0.09 0.84 ± 0.09 0.84 ± 0.09 0.84 ± 0.09

Mammographic 0.79 ± 0.08 0.81 ± 0.06 0.82 ± 0.05 0.81 ± 0.07

Mutagenesis 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

NCTRER 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Premier League 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.02 1.00 ± 0.00

Pyrimidine 0.85 ± 0.21 0.91 ± 0.14 0.91 ± 0.15 0.87 ± 0.17

7.4 Pseudocode

Algorithm 1 depicts the main loop of our randomwalk initialization.

The PopulationFromExamples method takes a set of positive ex-

amples 𝐸+ to generate the initial population. Therefore, it randomly

selects positive examples 𝑒+ ∈ 𝐸+ and calls ConceptFromExample,
which performs a biased random walk on 𝑒+ to generate a concept.

Algorithm 2 turns a role/object pair (𝑟, 𝑜) into an existential re-

striction in case of an object property. In case of a data property, it

generates a Boolean value restriction or a min/max numeric value

restriction. Algorithm 3 shows the pseudocode for the calculation

of splitting values for data properties. If not otherwise specified,

sampling in the algorithms is performed uniformly at random.

EvoLearner: Learning Description Logics with Evolutionary Algorithms WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

1 Input: Knowledge base K , Positive examples 𝐸+, Max.

adjacent triples maxT , Set of 𝑠𝑝𝑙𝑖𝑡𝑠 for each data property

2 Output: Set of concepts 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

3 Function PopulationFromExamples(K , 𝐸+,𝑚𝑎𝑥𝑇 ,

𝑠𝑝𝑙𝑖𝑡𝑠):
4 Compute the frequencies ct [𝐶] of the types (=atomic

concepts) 𝐶 of the positive examples 𝐸+

5 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = []
6 while 𝑙𝑒𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) < PopulationSize do

7 Uniformly randomly pick 𝑒+ ∈ 𝐸+

8 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (
ConceptFromExample(K, 𝑒+, ct,maxT , splits))

9 end

10 return 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

11 Input: Knowledge base K , Positive example 𝑒+, Type
frequencies ct, Max. adjacent triples maxT , Set of 𝑠𝑝𝑙𝑖𝑡𝑠 for

each data property

12 Output: Concept 𝑐𝑜𝑛𝑐

13 Function ConceptFromExample(K , 𝑒+, ct, maxT , splits):
14 Sample an atomic concept 𝐶 from {𝐶 | K |= 𝐶 (𝑒+)}

weighted by the frequencies 𝑐𝑡 // Step (1)

15 𝑐𝑜𝑛𝑐 = 𝐶

16 𝑅 = {𝑟 | K |= 𝑟 (𝑒+, ·)} // Step (2)

17 Sample up to𝑚𝑎𝑥𝑇 𝑟𝑜𝑙𝑒𝑠 from 𝑅 without replacement

18 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 = ∅
19 for each 𝑟 ∈ 𝑟𝑜𝑙𝑒𝑠 do

20 Sample 𝑜 from {𝑜 | K |= 𝑟 (𝑒+, 𝑜)}
21 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 = 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 ∪ {(𝑟, 𝑜)}
22 end

23 if |𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 | < 𝑚𝑎𝑥𝑇 then

24 𝑛𝑢𝑚 =𝑚𝑎𝑥𝑇 − |𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 |
25 Sample up to 𝑛𝑢𝑚 𝑛𝑒𝑤_𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 from

{(𝑟, 𝑜) | K |= 𝑟 (𝑒+, 𝑜) ∧ 𝑟 ∈ 𝑅} without replacement

26 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 = 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 ∪ 𝑛𝑒𝑤_𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗

27 end

28 for each (𝑟, 𝑜) ∈ 𝑟𝑜𝑙𝑒_𝑜𝑏 𝑗 do // Step (3)
29 Sample an operator 𝑜𝑝 from {⊔,⊓}
30 if 𝑡𝑦𝑝𝑒 (𝑟) = 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 or {𝑠 | K |= 𝑠 (𝑜, ·)} = ∅

or 𝑟𝑎𝑛𝑑𝑜𝑚() < 0.5 then

31 𝑐𝑜𝑛𝑐 = 𝑐𝑜𝑛𝑐 op RoleObjToConc(K , (𝑟, 𝑜), 𝑠𝑝𝑙𝑖𝑡𝑠)
32 else

33 Sample a role 𝑠 from {𝑠 | K |= 𝑠 (𝑜, ·)}
34 Sample 𝑣 from {(𝑣 | K |= 𝑠 (𝑜, 𝑣) ∧ 𝑣 ≠ 𝑒+}
35 𝑐𝑜𝑛𝑐 = 𝑐𝑜𝑛𝑐 𝑜𝑝 ∃𝑟 .RoleObjToConc(K , (𝑠, 𝑣),

𝑠𝑝𝑙𝑖𝑡𝑠)

36 end

37 end

38 return 𝑐𝑜𝑛𝑐

Algorithm 1: Generates the initial population by creating con-

cepts from positives examples via biased random walks.

1 Input: Knowledge base K , Role/Object Pair (𝑟, 𝑜), Set of
𝑠𝑝𝑙𝑖𝑡𝑠 for each data property

2 Output: Concept 𝑐𝑜𝑛𝑐

3 Function RoleObjToConc(K , (𝑟, 𝑜), 𝑠𝑝𝑙𝑖𝑡𝑠):
4 if 𝑡𝑦𝑝𝑒 (𝑜) = 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 then

5 Sample an atomic concept 𝐷 from {𝐷 | K |= 𝐷 (𝑜)},
if the set is empty take Thing

6 𝑐𝑜𝑛𝑐 = (∃𝑟 .𝐷)
7 else if 𝑡𝑦𝑝𝑒 (𝑜) = 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 then

8 𝑐𝑜𝑛𝑐 = (𝑟 = 𝑜)
9 else if 𝑡𝑦𝑝𝑒 (𝑜) = 𝑛𝑢𝑚𝑒𝑟𝑖𝑐 then

10 Find the split 𝑣 ∈ 𝑠𝑝𝑙𝑖𝑡𝑠 [𝑟] that is closest to o

11 if 𝑜 ≥ 𝑣 then

12 𝑐𝑜𝑛𝑐 = (𝑟 ≥ 𝑣)
13 else

14 𝑐𝑜𝑛𝑐 = (𝑟 ≤ 𝑣)
15 end

16 return 𝑐𝑜𝑛𝑐

Algorithm 2: Turns the role/object pair into a concept.

1 Input: Knowledge base K , Data properties 𝑃 , Number of

splits 𝑘 , Positive examples 𝐸+, Negative examples 𝐸−

2 Output: Set of 𝑠𝑝𝑙𝑖𝑡𝑠 for each data property 𝑑 ∈ 𝑃

3 Function CalculateSplits(K , 𝑃 , 𝑘 , 𝐸+, 𝐸−):
4 For each 𝑑 ∈ 𝑃 set 𝑠𝑝𝑙𝑖𝑡𝑠 [𝑑] = ∅
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 = {𝐸+ ∪ 𝐸−}
6 while 𝑃 ≠ ∅ and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 ≠ ∅ do

7 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 = ∅
8 for each 𝑑 ∈ 𝑃 do

9 for each 𝐸 ∈ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 do

10 𝑉 𝐸
𝑑

= {𝑣 | K |= 𝑑 (𝑒, 𝑣) ∧ 𝑒 ∈ 𝐸}
11 Sort 𝑉 𝐸

𝑑
in ascending order

12 𝑉 𝐸
𝑑

= {(𝑣𝑖 + 𝑣𝑖+1)/2 | 𝑖 ∈ {0, 1, . . . , |𝑉 𝐸
𝑑
| − 2}}

13 Find the best split 𝑣 ∈ 𝑉 𝐸
𝑑

on 𝐸 depending on

the information gain

14 𝑠𝑝𝑙𝑖𝑡𝑠 [𝑑] = 𝑠𝑝𝑙𝑖𝑡𝑠 [𝑑] ∪ {𝑣}
15 Let 𝐸𝐿 and 𝐸𝑅 be the sets produced by

splitting 𝐸 on 𝑣

16 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 = 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 ∪ {𝐸𝐿, 𝐸𝑅}
17 if |𝑠𝑝𝑙𝑖𝑡𝑠 [𝑑] | ≥ 𝑘 then

18 𝑃 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑑)
19 𝑏𝑟𝑒𝑎𝑘

20 end

21 end

22 end

23 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 = 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙

24 Sort 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑡𝑠 in descending order on the

remaining entropy of the sets and remove sets with

0 entropy

25 end

26 return 𝑠𝑝𝑙𝑖𝑡𝑠

Algorithm 3: Calculation of splitting values for data properties.

	Abstract
	1 Introduction
	2 Related Work
	3 Evolutionary Concept Learning
	3.1 Initialization via Biased Random Walks
	3.2 Data Properties
	3.3 Selection, Crossover, and Mutation
	3.4 Fitness Function and Bloat Control

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation of EvoLearner
	4.3 Initialization and Data Properties
	4.4 Variants of Biased Random Walks
	4.5 Dataset Characteristics
	4.6 Example of Emerging Concepts
	4.7 Effectiveness Depending on Runtime

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	7 Appendix
	7.1 Comparison of Initialization Methods
	7.2 Comparison of Mutation Operators
	7.3 Comparison of maxT Settings
	7.4 Pseudocode

