
High-Performance 
Computing

– Exercises: Introduction –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

version 1.1.0 2017-10-08



Reminder
▪ Tree-structured global sum

Time

Cores

8

27

719 12

26

15 13 14

49

7

20

46

95

22

0

+ + + +

++

+

1 2 3 4 5 6 7



Exercises from Pacheco Chapter 1
▪ Ex 1.1:

- Devise formulas for the function that calculate my_first_i and my_last_i in the global 
sum example.

- Assume the id (number) of the core is given by a variable my_rank
- Remember that each core should be assigned roughly the same number of elements of 

computations in the loop.
- Hint: First consider the case when n is evenly divisible by p.

▪ Ex 1.3:
- Try to write pseudo-code for the tree-structured global sum illustrated in Figure 1.1. Assume 

the number of cores is a power of two (1, 2, 4, 8, …).
- Hint: Use a variable divisor to determine whether a core should send its sum or receive and

add. The divisor should start with the value 2 and be doubled after each iteration.
- Also use a variable core_difference to determine which core should be partnered with the

current core. It should start with the value 1 and also be doubled after each iteration.
- For example, in the first iteration 0 % divisor = 0 and 1 % divisor = 1, so 0 receives

and adds, while 1 sends. Also in the first iteration 0 + core_difference = 1 and 1–
core_difference = 0, so 0 and 1 are paired in the first iteration.



Exercises from Pacheco Chapter 1 (contd.)
▪ Ex 1.4:

- As an alternative to the approach outlined in the preceding problem, we can use C’s bitwise 
operators to implement the tree-structured global sum. In order to see how this works, it helps 
to write down the binary representation of each of the cores ranks, and note the pairings 
during each stage:

Cores

Stages

1 2 3

010 = 0002 110 =	0012 210 =	0102 410=1002
110 = 0012 010 =	0002
210 = 0102 310 =	0112 010 =	0002
310 = 0112 210 =	0102
410 = 1002 510 =	1012 610 =	1102 010=0002
510 = 1012 410 =	1002
610 = 1102 710 =	1112 410 =	1002
710 = 1112 610 =	1102

send	to

receive	from



Exercises from Pacheco Chapter 1 (contd.)
▪ Ex 1.4 (contd):

- From the table we see that during the first stage each core is paired with the core whose rank 
differs in the rightmost or first bit.

- During the second stage cores that continue are paired with the cores whose rank differs in the 
second bit, and during the third stage cores are paired with the core whose rank differs in the 
third bit.

- Thus, if we have a binary value bitmask that is 0012 for the first stage, 0102 for the second, 
and 1002 for the third, we can get the rank of the core we’re parred with by “inverting” the bit 
in our rank that is nonzero in bitmask. This can be done using the “bitwise exclusive or” (^) 
operator.

- Implement this algorithm in pseudo-code using the bitwise exclusive or and the left -shift 
operator.

▪ Ex 1.5:
- What happens if your pseudo-code in Exercise 1.3 or Exercise 1.4 is run when the number of 

cores is not a power of two (e.g. 3, 5, 6, 7)? Can you modify the pseudo-code so that it will work 
regardless of the number of cores?



Change log
▪ 1.1.0 (2017-10-08)

- updated for winter term 2017/18

▪ 1.0.1 (2016-10-28)
- add slide numbers

▪ 1.0.0 (2016-10-26)
- initial version of slides


