
High-Performance
Computing

– Introduction –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

version 1.1.2 2017-10-16

Why Do We Need High-Performance Computing
▪ Simulation

- computational models that can make accurate quantitative predictions from first order
principles in many areas of natural sciences

- challenge: study interaction of different effects (multi-physics); desire for higher accuracy and
higher temporal and spatial resolution; study dynamics behavior instead of steady state

▪ Optimization
- identify optimal system structures by repeated simulation with varying parameters
- challenge: same as simulation, but many iterations required

▪ Analytics
- identify and extract interrelations in data-sets and abstract them with models
- challenge: trend to ever larger data-sets and unstructured data

2

Simulation

mechanical structure simulationclimate prediction

protein folding
3

Optimization

airflow optimization fuel combustion optimization

evolved antenna
(designed with

evolutionary algorithm)

4

Analytics

DNA sequence analysis (bio informatics)

social networks astrophysics (sun spot activity)
5

Drivers for Ever-increasing Performance
▪ Engineering

- acceleration of time-to-market with virtual prototyping
- optimization of design parameters to improve functionality or lower cost

▪ Science
- replacement of experiment and pen-and-paper theory with simulation
- crossing of disciplinary boundaries

▪ Data-driven research
- new sensors create unprecedented amount of multi-modal data
- desire to extract knowledge from previously unused data

6

Moore’s Law Blessed us with Transistors …

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004

8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium
AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7
Six-Core Xeon 7400

Dual-Core Itanium 2
AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law
Tr

an
si

st
or

 c
ou

nt

7

… and Dennard‘s Scaling Law with Efficiency

Copyright © National Academy of Sciences. All rights reserved.

The Future of Computing Performance: Game Over or Next Level?

WHAT IS COMPUTER PERFORMANCE? 55

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1985 1990 1995 2000 2005 2010
Year of Introduction

Num Transistors (in Thousands)
Relative Performance
Clock Speed (MHz)
Power Typ (W)
NumCores/Chip

FIGURE 2.1 Transistors, frequency, power, performance, and cores over time
(1985-2010). The vertical scale is logarithmic. Data curated by Mark Horowitz with
input from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris
Batten, and Krste Asanoviç.

computers that perform single tasks as fast as possible. That goal is still
important. Because the uniprocessor model we have today is extremely
powerful, many performance-demanding applications can be mapped to
run on networks of processors by dividing the work up at a very coarse
granularity. Therefore, we now have great building blocks that enable us
to create a variety of high-performance systems that can be programmed
with high-level abstractions. There is a serious need for research and
education in the creation and use of high-level abstractions for parallel
systems.

However, single-task performance is no longer the only metric of
interest. The market for computers is so large that there is plenty of eco-
nomic incentive to create more specialized and hence more cost-effective
machines. Diversity is already evident. The current trend of moving com-
putation into what is now called the cloud has created great demands for
high-throughput systems. For those systems, making each transaction run
as fast as possible is not the best thing to do. It is better, for example, to
have a larger number of lower-speed processors to optimize the through-
put rate and minimize power consumption. It is similarly important to
conserve power for hand-held devices. Thus, power consumption is a

source: US National Academy of Sciences: Future of Computing Performance (2011)

fundamental change ~2004

8

Times Have Changed
▪ Performance gains per CPU core have slowed down dramatically

~20% increase/yr instead of ~50%/year
▪ Number of CPU cores is now growing exponentially
▪ Serial programs do not benefit from these advances (in most cases)

Copyright © National Academy of Sciences. All rights reserved.

The Future of Computing Performance: Game Over or Next Level?

WHAT IS COMPUTER PERFORMANCE? 55

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1985 1990 1995 2000 2005 2010
Year of Introduction

Num Transistors (in Thousands)
Relative Performance
Clock Speed (MHz)
Power Typ (W)
NumCores/Chip

FIGURE 2.1 Transistors, frequency, power, performance, and cores over time
(1985-2010). The vertical scale is logarithmic. Data curated by Mark Horowitz with
input from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris
Batten, and Krste Asanoviç.

computers that perform single tasks as fast as possible. That goal is still
important. Because the uniprocessor model we have today is extremely
powerful, many performance-demanding applications can be mapped to
run on networks of processors by dividing the work up at a very coarse
granularity. Therefore, we now have great building blocks that enable us
to create a variety of high-performance systems that can be programmed
with high-level abstractions. There is a serious need for research and
education in the creation and use of high-level abstractions for parallel
systems.

However, single-task performance is no longer the only metric of
interest. The market for computers is so large that there is plenty of eco-
nomic incentive to create more specialized and hence more cost-effective
machines. Diversity is already evident. The current trend of moving com-
putation into what is now called the cloud has created great demands for
high-throughput systems. For those systems, making each transaction run
as fast as possible is not the best thing to do. It is better, for example, to
have a larger number of lower-speed processors to optimize the through-
put rate and minimize power consumption. It is similarly important to
conserve power for hand-held devices. Thus, power consumption is a

9

Parallel Computing is a Necessity
▪ Energy-efficiency

- many but more efficient processor cores in a CPU

▪ Performance by parallel execution on all levels in a server …
- data-level (vector instructions)
- thread-level (simultaneous multi threading)
- chip-level (multi-cores)
- server-level (symmetric multi-processing)

▪ … and in the compute center
- cluster-level (shared/distributed memory systems with fast interconnect)

10

Approaches to Make a Serial Program Parallel
▪ Runtime environment takes care of parallelism

- e.g. Matlab parallel computing toolbox, NumPy

▪ Auto-parallelizing compilers
- e.g. GNU compiler, Intel ICC

▪ Optimized, parallel libraries
- e.g. Intel Math Kernel Library (MKL), NAG parallel libraries, Tensorflow

▪ Languages extensions and APIs for serial programming languages
- Pthreads, OpenMP, MPI, OpenCL, C++ parallel STL

▪ Parallel programming languages
- Chapel, Julia, Go

11

Automatic Parallelization
▪ Compilers for automatic conversion of serial programs to parallel

programs
- studied for decades by so far limited success
- resulting programs frequently inefficient

▪ In many cases the best parallel solution does not correspond to a
parallelized version of the best serial code
- requires to step back and devise an entirely new algorithm

12

Example
▪ Objective: Compute n values and add them together
▪ Serial solution:

sum = 0;
for (i=0; i<n; i++) {
x = compute_next_value(…);
sum += x;

}

13

Example (cont.)
▪ We have p cores, p ≪n
▪ Each core performs a partial sum of approximately n/p values

Each core uses it’s own private variables
and executes this block of code
independently of the other cores.

my_sum = 0;
my_first_i = …;
my_last_i = …;
for (my_i = my_first_i; my_i < my_last_i; my_i++) {
my_x = compute_next_value(…);
my_sum += my_x;

}

14

Example (cont.)
▪ After each core completes execution of the code, its private variable

my_sum contains the sum of the values computed by its calls to
compute_next_value

▪ Example: 8 cores, n = 24 and the calls to compute_next_value return:

1,4,3, 9,2,8, 5,1,1, 5,2,7, 2,5,0, 4,1,8, 6,5,1, 2,3,9

15

Example (cont.)
▪ Once all the cores are done computing their sum my_sum, they form a

global sum by sending results to a designated “master” core which adds
the final result.

if (I’m the master core) {
sum = my_x;
for each core other than myself {
receive value from core;
sum += value;

}
} else {

send my_x to the master;
}

16

Example (cont.)

Core 0 1 2 3 4 5 6 7

numbers 1,4,3 9,2,8 5,1,1 5,2,7 2,5,0 4,1,8 6,5,1 2,3,9

my_sum 8 19 7 15 7 13 12 14

Global sum
8 + 19 + 7 + 15 + 7 + 13 + 12 + 14 = 95

Core 0 1 2 3 4 5 6 7

my_sum 95 19 7 15 7 13 12 14

17

Code is Correct but Inefficient
▪ Computation of parallel sum in master core, two problems

- master is loaded with all the computation time for parallel sum (serial code)
- master aggregates all the communication latencies (serial code)

▪ Share work for parallel sum among all cores
- use summation tree

Time

Cores

8

27

719 12

26

15 13 14

49

7

20

46

95

22

0

+ + + +

++

+

1 2 3 4 5 6 7

18

Analysis
▪ Number of operations

- in the naïve implementation the master core performs 7 receives and 7 additions
- in the summation tree the master performs 3 receives and 3 additions
- the improvement is more than a factor of 2

▪ The difference is more dramatic with a larger number of cores, for 1000
cores the master
- performs 999 receives and 999 additions in the naïve implementation
- but only 10 receives and 10 additions in the summation tree
- that’s an improvement of almost a factor of 100!

▪ When communication over network tcommunication≫ taddition the
communication latency may be the main performance limitation

19

Task vs. Data Parallelism
▪ Task parallelism

- Partition the problem into a sequence of tasks (that perform a different function and possibly
depend on each other)

- Distribute the tasks among the cores

▪ Data parallelism
- Partition the data that needs to be processed to solve the problem between the cores
- Let each core perform the same or very similar operations on its part of the data

▪ Frequently both approaches are combined
- Not an either-or decision
- Application typically work in phases (tasks), which are data parallel themselves (nested

parallelism)

20

Example: Grading of exams

15 questions
300 exams

21

Division of Work – Data Parallelism

teaching assistant 1

teaching assistant 2

100 exams
100 exams

100 exams
teaching assistant 3

22

Division of Work – Task Parallelism

Questions 1–5

Questions 6–10

Questions 11–15

teaching assistant 1

teaching assistant 2

teaching assistant 3

23

Division of Work – Data parallelism

sum = 0;
for (i=0; i<n; i++) {
x = compute_next_value(…);
sum += x;

}

24

Division of Work – Task Parallelism

Tasks
1) Receiving
2) Addition

if (I’ m the master core) {
sum = my_x;
for each core other than myself {
receive value from core;
sum += value;

}
} else {

send my_x to the master;
}

25

Coordination
▪ Cores usually need to coordinate their work.
▪ Communication – one or more cores send their current partial sums to

another core
▪ Load balancing – share the work evenly among the cores so that one is not

heavily loaded
▪ Synchronization – because each core works at its own pace, make sure cores

do not get too far ahead of the rest

26

Type of Parallel Systems
▪ Shared-memory

- All cores shares access to the computer’s memory
- The cores coordinate and communicate by examining and update shared memory locations

▪ Distributed-memory
- Each core has its own, private memory
- The cores must communicate explicitly by sending messages across a network

Shared-memory Distributed-memory

(a) (b)

Core 0 Memory 0

Core 1 Memory 1

Core p −1 Memory p −1

N
et

w
or

k

Core 0

Core 1

M
em

or
y

Core p −1

27

Concurrent vs. Parallel vs. Distributed
▪ Concurrent computing – a program is one in which multiple tasks can be

in progress at any instant.
▪ Parallel computing – a program is one in which multiple tasks cooperate

closely to solve a problem
▪ Distributed computing – a program may need to cooperate with other

programs to solve a problem.

28

Summary
▪ The laws of physics and limitations of semiconductor technology have

brought us to the doorstep of multicore technology
▪ Serial programs typically don’t benefit from multiple cores
▪ Automatic parallel program generation from serial program code isn’t the

most efficient approach to get high performance from multicore
computers
▪ Learning to write parallel programs involves learning how to coordinate

the cores
▪ Parallel programs are usually very complex and therefore, require sound

program techniques and development

29

Acknowledgements
▪ Peter S. Pacheco / Elsevier

- for providing the lecture slides on which this presentation is based

30

Change log
▪ 1.1.3 (2017-10-17)

- consistent capitalization of titles
- clarifies text on slide 20

▪ 1.1.2 (2017-10-16)
- fix typo on slide 18
- clarify text on slides 20, 27

▪ 1.1.1 (2017-10-10)
- cosmetics

▪ 1.1.0 (2017-10-08)
- updated for winter term 2017/18

▪ 1.0.1 (2016-10-28)
- fix typo on slide 14; add page numbers; cosmetics

▪ 1.0.0 (2016-10-26)
- initial version of slides

31

