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Why Do We Need High-Performance Computing

= Simulation

- computational models that can make accurate quantitative predictions from first order
principles in many areas of natural sciences

- challenge: study interaction of different effects (multi-physics); desire for higher accuracy and
higher temporal and spatial resolution; study dynamics behavior instead of steady state

= Optimization
- identify optimal system structures by repeated simulation with varying parameters
- challenge: same as simulation, but many iterations required

= Analytics
- identify and extract interrelations in data-sets and abstract them with models
- challenge: trend to ever larger data-sets and unstructured data



Simulation

CHANGE IN PRECIPITATION BY END OF 21st CENTURY
inches of liquid water per year

- N ow oA oo
5338 & 3

P

R RN
& 8 3 o

O T T —

-60

as projected by NOAA/GFDL CM2.1

climate prediction

protein folding



Optimization
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Analytics
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Drivers for Ever-increasing Performance

= Engineering
- acceleration of time-to-market with virtual prototyping
- optimization of design parameters to improve functionality or lower cost

= Science

- replacement of experiment and pen-and-paper theory with simulation
- crossing of disciplinary boundaries

= Data-driven research
- new sensors create unprecedented amount of multi-modal data
- desire to extract knowledge from previously unused data



Moore’s Law Blessed us with Transistors ...

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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... and Dennard’s Scaling Law with Efficiency

fundamental change ~2004

10,000,000 1
] <& Num Transistors (in Thousands)
1,000,000 : ® Relative Performance = O 8 o
] A Clock Speed (MHz) 7
11 =Power Typ W) o o© % | 5%
100,000 - P & o
] O NumCores/Chip
10,000 +
1,000 -
100 -
10 4
1
O I I I I
1985 1990 1995 2000 2005 2010
Year of Introduction




Times Have Changed

= Performance gains per CPU core have slowed down dramatically
~20% increase/yr instead of ~50%/year

= Number of CPU cores is now growing exponentially
= Serial programs do not benefit from these advances (in most cases)
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Parallel Computing is a Necessity

= Energy-efficiency
- many but more efficient processor cores in a CPU

= Performance by parallel execution on all levels in a server ...
- data-level (vector instructions)
- thread-level (simultaneous multi threading)
- chip-level (multi-cores)
- server-level (symmetric multi-processing)

= ... and in the compute center
- cluster-level (shared/distributed memory systems with fast interconnect)



Approaches to Make a Serial Program Parallel

= Runtime environment takes care of parallelism
- e.g. Matlab parallel computing toolbox, NumPy

= Auto-parallelizing compilers
- e.9. GNU compiler, Intel ICC

= Optimized, parallel libraries
- e.g. Intel Math Kernel Library (MKL), NAG parallel libraries, Tensorflow

= Languages extensions and APIs for serial programming languages
- Pthreads, OpenMP, MPI, OpenCL, C++ parallel STL

= Parallel programming languages
- Chapel, Julia, Go



Automatic Parallelization

= Compilers for automatic conversion of serial programs to parallel
programs

- studied for decades by so far limited success
- resulting programs frequently inefficient

= In many cases the best parallel solution does not correspond to a
parallelized version of the best serial code

- requires to step back and devise an entirely new algorithm



Example

= Objective: Compute n values and add them together
= Serial solution:

sum = 0;

for (i=0; i<n; i++) {
X = compute_next_value(..);
sum += X;

¥



Example (cont.)

= We have p cores, p <n
= Each core performs a partial sum of approximately n/p values

Cizla my _sum = 0O,

my first i = ..;

my last i = ..;

for (my i1 = my first i; my i < my last i; my i++) {
my x = compute next value(..);
my sum += my_X;

} Each core uses it’s own private variables
and executes this block of code

independently of the other cores.




Example (cont.)

= After each core completes execution of the code, its private variable
my_sum contains the sum of the values computed by its calls to
compute_next_value

= Example: 8 cores, n = 24 and the calls to compute_next_value return:

1,43, 928, 51,1, 52,7, 25,0, 418, 651, 23,9

15



Example (cont.)

= Once all the cores are done computing their sum my_sum, they form a

global sum by sending results to a designated “master” core which adds
the final result.

if (I’m the master core) {
sum = my_X;
for each core other than myself {
receive value from core;
sum += value;

}
} else {

send my x to the master;

}



Example (cont.)

Core 012 (3 |4 |5 6 |7 _

numbers 1,43 92,8 51,1 527 250 418 651 23,9
my sum 8 19 7 15 7 13 12 14

Global sum
8+19+7+154+7+13+12+14=95

Core ﬂ-____ﬂ-

my_sum



Code is Correct but Inefficient

= Computation of parallel sum in master core, two problems
- master is loaded with all the computation time for parallel sum (serial code)
- master aggregates all the communication latencies (serial code)

= Share work for parallel sum among all cores
- use summation tree




Analysis

= Number of operations
- inthe naive implementation the master core performs 7 receives and 7 additions
- inthe summation tree the master performs 3 receives and 3 additions
- the improvement is more than a factor of 2

= The difference is more dramatic with a larger number of cores, for 1000
cores the master
- performs 999 receives and 999 additions in the naive implementation
- butonly 10 receives and 10 additions in the summation tree
- that’s an improvement of almost a factor of 100!

= When communication over network t . .. nication > taddition th€
communication latency may be the main performance limitation



Task vs. Data Parallelism

= Task parallelism

- Partition the problem into a sequence of tasks (that perform a different function and possibly
depend on each other)

- Distribute the tasks among the cores

= Data parallelism

- Partition the data that needs to be processed to solve the problem between the cores
- Let each core perform the same or very similar operations on its part of the data

= Frequently both approaches are combined
- Not an either-or decision

- Application typically work in phases (tasks), which are data parallel themselves (nested
parallelism)



Example: Grading of exams

15 questions
300 exams




Division of Work — Data Parallelism

teaching assistant 2

teaching assistant 1 @

100 exams
100 exams

100 exams
teaching assistant 3

22



Division of Work — Task Parallelism
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Division of Work — Data parallelism

sum = 0;

for (i=0; i<n; 1i++) {
X = compute_next_value(..);
sum += X;

¥



Division of Work — Task Parallelism

if (I’ m the master core) {
sum = my_X;
for each core other than myself {
receive value from core;
sum += value;
}
} else { Tasks

send my x to the master; .« .
) 1) Receiving

2 Addition
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Coordination

= Cores usually need to coordinate their work.

= Communication — one or more cores send their current partial sums to
another core

= Load balancing — share the work evenly among the cores so that one is not
heavily loaded

= Synchronization — because each core works at its own pace, make sure cores
do not get too far ahead of the rest

26



Type of Parallel Systems

= Shared-memory
- All cores shares access to the computer’'s memory

- The cores coordinate and communicate by examining and update shared memory locations
= Distributed-memory

- Each core has its own, private memory

- The cores must communicate explicitly by sending messages across a network

Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
> =<
o o
£ 2
= z
Core p-1 Core p-1 Memory p—1

(a) (b)

Shared-memory Distributed-memory



Concurrent vs. Parallel vs. Distributed

= Concurrent computing — a program is one in which multiple tasks can be
in progress at any instant.

= Parallel computing — a program is one in which multiple tasks cooperate
closely to solve a problem

= Distributed computing — a program may need to cooperate with other
programs to solve a problem.
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Summary

= The laws of physics and limitations of semiconductor technology have
brought us to the doorstep of multicore technology

= Serial programs typically don’t benefit from multiple cores

= Automatic parallel program generation from serial program code isn't the
most efficient approach to get high performance from multicore
computers

= Learning to write parallel programs involves learning how to coordinate
the cores

= Parallel programs are usually very complex and therefore, require sound
program techniques and development
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