High-Performance
Computing
— Introduction -

Christian Plessl

High-Performance IT Systems Group
Paderborn University

'L(‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Why Do We Need High-Performance Computing

= Simulation

- computational models that can make accurate quantitative predictions from first order
principles in many areas of natural sciences

- challenge: study interaction of different effects (multi-physics); desire for higher accuracy and
higher temporal and spatial resolution; study dynamics behavior instead of steady state

= Optimization
- identify optimal system structures by repeated simulation with varying parameters
- challenge: same as simulation, but many iterations required

= Analytics
- identify and extract interrelations in data-sets and abstract them with models
- challenge: trend to ever larger data-sets and unstructured data

Simulation

CHANGE IN PRECIPITATION BY END OF 21st CENTURY
inches of liquid water per year

- N ow oA oo
5338 & 3

P

R RN
& 8 3 o

O T T —

-60

as projected by NOAA/GFDL CM2.1

climate prediction

protein folding

Optimization

evolved antenna
(designed with
evolutionary algorithm)

Analytics

ASASC3.,1
B4F917.1
A9S1V2,1
B9GSN7.1
QBHO56,1
QoD4z3,2
BOMVIIE, 1
QOIYCS,1
A9NW4E, 1
QA9C500,1
Q2HRI7,1
A9M7N3, 1
QA9M7NE, 1
A9LES2,1
A9M651, 2
BIR748.,1

14 SIKLWPPSE

social networks

EARENAKQIEEVACSTANG, . ., . . HYEKEPDGDGGSAVELYAKECS 101
EAHENAKTIEELCFALADE,HFREEPDGDGSSAVELYAKETS 100
DALNEHARAIEEVAFGAALE, ADSGGDKTGSAVVMYYAKHAS 109
EREEDAKKIEEVAFAARANG, . , , . HYEKAPDGDGSSAYE 100
;ﬂEPRﬂRGIEQEﬂFDﬂﬁQR..SGEQQQTRSVEEGIKQLf 120
EAGRARAAVEARERYAAYTES, SSARARAPASYEDGIEYLA 135
EASEASRRIEEEAFSGAST, YASSEKDGLEVLA 141
DAERAARRAVYEARRAFDAASA, ., , ., SS555SSVEDGIETLA 121
EARENAKRIEETAFLAAND, . , . . HEAKEPNLDDSSVVE 100
DATTYAKLIEEERYGVASN, AYSSDDDGIKILE 142
EASARALQIEDEAFSYANA, |, ..., SSSTSNDNVTILEVYSKEIS 110
DATSAARIIEEEAFSYASY . ASAASTGGRPEDEWIEVLHIYSAEIXER 119
EASETARLIEEEAFAAAGS, TASDADDGIEILAYYSKEI SKRE 110
EREQDAKRIEDLAFATANK, | ., . . HFANEPDGDGT SAVHYYAKESS 101
UATENAKRIEDIAFSTANG, . ., . QFEREPDGDGGSAVELYAKECS 100
EAESAARRIEDEARFGYANT,ATSAEDDGLEILALYSKEISRRE 133
350 IS S e E S S S S S S e S S S p T
C SUNSPOT NUMBER Ri .
300 Duily =]
- Monthly]
L — Smoothed -
250 e redictions E
5 & uncertainty .
200 - 3
150 :- _:
100 -
sof- 3
o PR RPN R | — %bfﬂ‘; E
1986 1988 1980 1992 1994 1996 1998
TIME {years)

astrophysics (sun spot activity)

Drivers for Ever-increasing Performance

= Engineering
- acceleration of time-to-market with virtual prototyping
- optimization of design parameters to improve functionality or lower cost

= Science

- replacement of experiment and pen-and-paper theory with simulation
- crossing of disciplinary boundaries

= Data-driven research
- new sensors create unprecedented amount of multi-modal data
- desire to extract knowledge from previously unused data

Moore’s Law Blessed us with Transistors ...

Microprocessor Transistor Counts 1971-2011 & Moore's Law

16-Core SPARC T3
Six-Core Core i,

2,600,000,000— Six-Core Xeon 7400\\. @10-Core Xeon Westmere-EX
Dual-Core Itanium 2@ @ 8-core POWER7
1 000 000 000— AMD K10\ Cgﬂgg%%% It13n|um Tukwila
’ ’ ’ POWERG® 8-Core Xeon Nehalem-EX
Itanium 2 with 9MB cache® Six-Core Opteron 2400
AMD Core i7 (Quad)
Core 2 Duo
Itanium 2@ ell
100,000,000
Pentium 4 ®Barton ® Atom
] SAMD K7
curve shows transistor AMD Ke-1il
= _ count doubling every AVD K6
% 10,000,000 two years 'Penguprsrrluum .
(@] ® AMD K5
© Pentium
[
@]
-
R] 1,000,000+
(2]
C
[
o
|_
100,000
10,000
8008 @
2,300 4004® Rca'1s02
[T T T 1
1971 1980 1990 2000 201

Date of introduction

... and Dennard’s Scaling Law with Efficiency

fundamental change ~2004

10,000,000 1
] <& Num Transistors (in Thousands)
1,000,000 : ® Relative Performance = O 8 o
] A Clock Speed (MHz) 7
11 =Power Typ W) o o© % | 5%
100,000 - P & o
] O NumCores/Chip
10,000 +
1,000 -
100 -
10 4
1
O I I I I
1985 1990 1995 2000 2005 2010
Year of Introduction

Times Have Changed

= Performance gains per CPU core have slowed down dramatically
~20% increase/yr instead of ~50%/year

= Number of CPU cores is now growing exponentially
= Serial programs do not benefit from these advances (in most cases)

10,000,000 1
i < Num Transistors (in Thousands)
1,000,000 1| e Relative Performance & 8
A Clock Speed (MHz) A
100,000 _ = Power Typ (W))
] O NumCores/Chip
10,000 -
1,000 4
100
10 4
1
0 - 1 U 1 1
1985 1990 1995 2000 2005 2010

Year of Introduction

Parallel Computing is a Necessity

= Energy-efficiency
- many but more efficient processor cores in a CPU

= Performance by parallel execution on all levels in a server ...
- data-level (vector instructions)
- thread-level (simultaneous multi threading)
- chip-level (multi-cores)
- server-level (symmetric multi-processing)

= ... and in the compute center
- cluster-level (shared/distributed memory systems with fast interconnect)

Approaches to Make a Serial Program Parallel

= Runtime environment takes care of parallelism
- e.g. Matlab parallel computing toolbox, NumPy

= Auto-parallelizing compilers
- e.9. GNU compiler, Intel ICC

= Optimized, parallel libraries
- e.g. Intel Math Kernel Library (MKL), NAG parallel libraries, Tensorflow

= Languages extensions and APIs for serial programming languages
- Pthreads, OpenMP, MPI, OpenCL, C++ parallel STL

= Parallel programming languages
- Chapel, Julia, Go

Automatic Parallelization

= Compilers for automatic conversion of serial programs to parallel
programs

- studied for decades by so far limited success
- resulting programs frequently inefficient

= In many cases the best parallel solution does not correspond to a
parallelized version of the best serial code

- requires to step back and devise an entirely new algorithm

Example

= Objective: Compute n values and add them together
= Serial solution:

sum = 0;

for (i=0; i<n; i++) {
X = compute_next_value(..);
sum += X;

¥

Example (cont.)

= We have p cores, p <n
= Each core performs a partial sum of approximately n/p values

Cizla my _sum = 0O,

my first i = ..;

my last i = ..;

for (my i1 = my first i; my i < my last i; my i++) {
my x = compute next value(..);
my sum += my_X;

} Each core uses it’s own private variables
and executes this block of code

independently of the other cores.

Example (cont.)

= After each core completes execution of the code, its private variable
my_sum contains the sum of the values computed by its calls to
compute_next_value

= Example: 8 cores, n = 24 and the calls to compute_next_value return:

1,43, 928, 51,1, 52,7, 25,0, 418, 651, 23,9

15

Example (cont.)

= Once all the cores are done computing their sum my_sum, they form a

global sum by sending results to a designated “master” core which adds
the final result.

if (I’m the master core) {
sum = my_X;
for each core other than myself {
receive value from core;
sum += value;

}
} else {

send my x to the master;

}

Example (cont.)

Core 012 (3 |4 |5 6 |7 _

numbers 1,43 92,8 51,1 527 250 418 651 23,9
my sum 8 19 7 15 7 13 12 14

Global sum
8+19+7+154+7+13+12+14=95

Core ﬂ-____ﬂ-

my_sum

Code is Correct but Inefficient

= Computation of parallel sum in master core, two problems
- master is loaded with all the computation time for parallel sum (serial code)
- master aggregates all the communication latencies (serial code)

= Share work for parallel sum among all cores
- use summation tree

Analysis

= Number of operations
- inthe naive implementation the master core performs 7 receives and 7 additions
- inthe summation tree the master performs 3 receives and 3 additions
- the improvement is more than a factor of 2

= The difference is more dramatic with a larger number of cores, for 1000
cores the master
- performs 999 receives and 999 additions in the naive implementation
- butonly 10 receives and 10 additions in the summation tree
- that’s an improvement of almost a factor of 100!

= When communication over network t . .. nication > taddition th€
communication latency may be the main performance limitation

Task vs. Data Parallelism

= Task parallelism

- Partition the problem into a sequence of tasks (that perform a different function and possibly
depend on each other)

- Distribute the tasks among the cores

= Data parallelism

- Partition the data that needs to be processed to solve the problem between the cores
- Let each core perform the same or very similar operations on its part of the data

= Frequently both approaches are combined
- Not an either-or decision

- Application typically work in phases (tasks), which are data parallel themselves (nested
parallelism)

Example: Grading of exams

15 questions
300 exams

Division of Work — Data Parallelism

teaching assistant 2

teaching assistant 1 @

100 exams
100 exams

100 exams
teaching assistant 3

22

Division of Work — Task Parallelism

teaching assistant 2

teaching assistant 1

—
’V'
—
— ’V'
— p—
’V' A
—
‘ (]
————— Questions 11-15

Questions 1-5

teaching assistant 3

Questions 6-10

Division of Work — Data parallelism

sum = 0;

for (i=0; i<n; 1i++) {
X = compute_next_value(..);
sum += X;

¥

Division of Work — Task Parallelism

if (I’ m the master core) {
sum = my_X;
for each core other than myself {
receive value from core;
sum += value;
}
} else { Tasks

send my x to the master; .« .
) 1) Receiving

2 Addition

25

Coordination

= Cores usually need to coordinate their work.

= Communication — one or more cores send their current partial sums to
another core

= Load balancing — share the work evenly among the cores so that one is not
heavily loaded

= Synchronization — because each core works at its own pace, make sure cores
do not get too far ahead of the rest

26

Type of Parallel Systems

= Shared-memory
- All cores shares access to the computer’'s memory

- The cores coordinate and communicate by examining and update shared memory locations
= Distributed-memory

- Each core has its own, private memory

- The cores must communicate explicitly by sending messages across a network

Core 0 Core 0 Memory 0
Core 1 Core 1 Memory 1
> =<
o o
£ 2
= z
Core p-1 Core p-1 Memory p—1

(a) (b)

Shared-memory Distributed-memory

Concurrent vs. Parallel vs. Distributed

= Concurrent computing — a program is one in which multiple tasks can be
in progress at any instant.

= Parallel computing — a program is one in which multiple tasks cooperate
closely to solve a problem

= Distributed computing — a program may need to cooperate with other
programs to solve a problem.

28

Summary

= The laws of physics and limitations of semiconductor technology have
brought us to the doorstep of multicore technology

= Serial programs typically don’t benefit from multiple cores

= Automatic parallel program generation from serial program code isn't the
most efficient approach to get high performance from multicore
computers

= Learning to write parallel programs involves learning how to coordinate
the cores

= Parallel programs are usually very complex and therefore, require sound
program techniques and development

Acknowledgements

= PeterS. Pacheco / Elsevier
- for providing the lecture slides on which this presentation is based

Change log

= 1.1.3 (2017-10-17)

- consistent capitalization of titles
- clarifies text on slide 20

= 1.1.2 (2017-10-16)

- fixtypo onslide 18
- clarify text on slides 20, 27

= 1.1.1(2017-10-10)

- cosmetics

= 1.1.0(2017-10-08)
- updated for winter term 2017/18

= 1.0.1(2016-10-28)

- fix typo on slide 14; add page numbers; cosmetics

= 1.0.0 (2016-10-26)

- initial version of slides

