
version 1.1.0 2017-10-13

High-Performance
Computing

– Foundations of Parallel Hardware and Parallel Software –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

Chapter Overview
▪ Modifications to the von Neumann model

- caching, virtual memory, instruction-level parallelism

▪ Parallel hardware
- SIMD, MIMD, interconnects, cache-coherence

▪ Parallel software
- shared and distributed memory programming

▪ Input and output
▪ Performance

- measurement, models

▪ Parallel program design
- Foster’s methodology

2

Serial Hardware and Software

input

output

programs

Computer runs one
program at a time

3

The Von Neumann Architecture

Figure 2.1

registers

Interconnect

Address

Main memory

Contents

registers

ControlALU

CPU

Main Memory
▪ This is a collection of locations, each of which is capable of storing both

instructions and data.

▪ Every location consists of an address, which is used to access the location,
and the contents of the location.

5

Central Processing Unit (CPU)
▪ Divided into two parts

▪ Control unit – responsible for deciding which
instruction in a program should be executed (the boss)

▪ Arithmetic and logic unit (ALU) – responsible for
executing the actual instructions (the worker)

add 2+2

6

Key Terms
▪ Register – very fast storage, part of the CPU

▪ Program counter – stores address of the next instruction to be executed

▪ Bus – wires and hardware that connects the CPU and memory

7

Von Neumann Bottleneck

8

CPU

Memory

• needs instructions and data
• internally very wide and fast

communication buses

• stores instruction and data
• internally very wide data
• high capacity

bus with limited width and speed

An Operating System “process”
▪ An instance of a computer program that is being executed
▪ Components of a process:

- the executable machine language program
- blocks of memory
- descriptors of resources the OS has allocated to the process (e.g. files, network connections)
- security information
- information about the state of the process

9

Multitasking
▪ Gives the illusion that a single processor system is running multiple

programs simultaneously
▪ Two main purposes

- Time slicing: each process takes turns running, after time quantum is used task blocks until it
has a turn again

- Throughput improvement: if a process needs to wait for a busy resource, it is put in a waiting-
queue, allowing other processes to progress

10

Threading
▪ Threads are contained within processes
▪ They allow programmers to divide their programs into (more or less)

independent tasks
▪ The hope is that when one thread blocks because it is waiting on a

resource, another will have work to do and can run
▪ Main difference of threads and processes

- share the process context with all other threads (memory, resources, …)
- lightweight: cheap to create and to destroy

11

One Process and Two Threads

12

Figure 2.2

the “master” thread

starting a thread
is called forking

terminating a thread
is called joining

Thread

Thread

Process

Modifications to the Von Neumann Model
▪ Techniques to overcome memory bottleneck

- reduce the need to access main memory for data (e.g. caching)
- reduce the need to access main memory for instructions (e.g. caching or SIMD)
- perform more work per instruction (SIMD, vector processing, …)

13

Basics of Caching
▪ A collection of memory locations that can be accessed in less time than

some other memory locations

▪ A CPU cache is typically located on the same chip, or one that can be
accessed much faster than ordinary memory

14

Principle of Locality
▪ Accessing one location is followed by an access of a nearby location

▪ Spatial locality – accessing a nearby location

▪ Temporal locality – accessing in the near future

15

float z[1000], sum;
…
sum = 0.0;
for (i = 0; i < 1000; i++)

sum += z[i];

Levels of Cache

L1

L2

L3

smallest & fastest

largest & slowest

16

Cache Hit

L1

L2

L3

x sum

y z total

A[] radius r1 center

fetch x

17

Cache Miss

L1

L2

L3

y sum

r1 z total

A[] radius center

fetch x

18

x

main
memory

Issues with Cache
▪ When a CPU writes data to cache, the value in cache may be inconsistent

with the value in main memory
▪ Write-through caches handle this by updating the data in main memory

at the time it is written to cache
▪ Write-back caches mark data in the cache as dirty. When the cache line is

replaced by a new cache line from memory, the dirty line is written to
memory

19

Cache Associativity
▪ Full associative

- a new line can be placed at any location in the cache

▪ Direct mapped
- each cache line has a unique location in the cache to which it will be assigned

▪ n-way set associative
- each cache line can be place in one of n different locations in the cache
- if a cache line needs to be replaced or evicted, the cache needs to decide which one

20

x

Example

Table 2.1: Assignments of a 16-line main memory
to a 4-line cache

21

Memory	
Index

Possible placement	in	cache

full	assoc direct	mapped 2-way

0 0,	1,	2,	or	3 0 0	or	1

1 0,	1,	2,	or	3 1 2	or	3

2 0,	1,	2,	or	3 2 0	or	1	

3 0,	1,	2,	or	3 3 2	or	3

4 0,	1,	2,	or	3 0 0	or	1

5 0,	1,	2,	or	3 1 2	or	3

6 0,	1,	2,	or	3 2 0	or	1

7 0,	1,	2,	or	3 3 2	or	3

8 0,	1,	2,	or	3 0 0	or	1

9 0,	1,	2,	or	3 1 2	or	3

10 0,	1,	2,	or	3 2 0	or	1

11 0,	1,	2,	or	3 3 2	or	3

12 0,	1,	2,	or	3 0 0	or	1

13 0,	1,	2,	or	3 1 2	or	3

14 0,	1,	2,	or	3 2 0	or 1

15 0,	1,	2,	or	3 3 2	or	3

Caches and Programs

22

double A[MAX][MAX], x[MAX], y[MAX];
…
/* Initialize A and x, assign y = 0 */
…
/* First pair of loops */

for (i=0; i<MAX; i++)
for (j=0; j<MAX; j++)

y[i] += A[i][j]*x[j];

/* Assign y=0 */

/* First pair of loops */

for (j=0; j<MAX; j++)
for (i=0; i<MAX; i++)

y[i] += A[i][j]*x[j];

Cache	
Line Elements of	A

0 A[0][0] A[0][1] A[0][2] A[0][3]

1 A[1][0] A[1][1] A[1][2] A[1][3]

2 A[2][0] A[2][1] A[2][2] A[2][3]

3 A[3][0] A[3][1] A[3][2] A[3][3]

Example for MAX=4

Virtual Memory (1)
▪ If we run a very large program or a program that accesses very large data

sets, all of the instructions and data may not fit into main memory

▪ Virtual memory functions as a cache for secondary storage

▪ It exploits the principle of spatial and temporal locality (like caches)

▪ It only keeps the active parts of running programs in main memory

23

Virtual Memory (2)
▪ Swap space - those parts that are idle are kept in a block of secondary

storage

▪ Pages – blocks of data and instructions
- usually these are relatively large
- most systems have a fixed page size that currently ranges from 4 to 16 kilobytes

24

Virtual Memory (2)
program A

program B

program C

main memory

25

Virtual Addresses and Page Table
▪ When a program is compiled it uses virtual addresses that are assigned to

virtual page numbers

▪ When the program is run, a table is created that maps the virtual page
numbers to physical addresses

▪ A page table is used to translate the virtual address into a physical address

26

Table 2.2: Virtual Address Divided into Virtual Page
Number and Byte Offset (4k Page Size)

Virtual	Address

Virtual	Page	Number Byte	Offset

31 30 … 13 12 11 10 … 1 0

1 0 … 1 1 0 0 … 1 1

Translation-Lookaside Buffer (TLB)
▪ Using a page table adds a layer of

indirection for each load/store
operation
- would significantly increase the program’s

overall run-time

▪ Translation-lookaside buffer
- special address translation cache in the

processor
- caches a small number of entries (typically 16–

512) from the page table in very fast memory

▪ Page fault – attempting to access a
valid physical address for a page in the
page table but the page is only stored
on disk

27

TLB/page table
(simplified)

TLB

page table

disk

virtual address physical address

TLB hit

TLB miss TLB write

page table
hit

page not
present page table

write

Instruction Level Parallelism (ILP)
▪ Attempts to improve processor performance by having multiple processor

components or functional units simultaneously executing instructions
▪ Two approaches

- Pipelining – overlapped processing of instructions by functional units arranged in stages
- Multiple issue – simultaneously initiation and execution of multiple instructions

28

Pipelining (1)
▪ Divide processing into a sequence of steps
▪ Pass intermediate data between pipeline stages
▪ Example:

29

Add the floating point numbers 9.87 × 104 and 6.54 × 103

Time Operation Operand	1 Operand 2 Result

1 Fetch	operands 9.87⨉ 104 6.54⨉ 103

2 Compare exponents 9.87⨉ 104 6.54⨉ 103

3 Shift	one operand 9.87⨉ 104 0.654⨉ 104

4 Add 9.87⨉ 104 0.654⨉ 104 10.524	⨉ 104

5 Normalize	result 9.87⨉ 104 0.654⨉ 104 1.0524	⨉ 105

6 Round	result 9.87⨉ 104 0.654⨉ 104 1.05	⨉ 105

7 Store	result 9.87⨉ 104 0.654⨉ 104 1.05	⨉ 105

Pipelining (2)
▪ Assume each operation takes one nanosecond (10-9 seconds)
▪ This for loop takes about 7000 nanoseconds

▪ Divide the floating point adder into 7 separate pieces of hardware or
functional units
▪ First unit fetches two operands, second unit compares exponents, etc.
▪ Output of one functional unit is input to the next

30

float x[1000], y[1000], z[1000];
…
for (i = 0; i < 1000; i++)

z[i] = x[i] + y[i];

Pipelining (3)

Table 2.3: Pipelined Addition.
Numbers in the table are subscripts of operands/results

31

Pipelining (4)
▪ Latency of operations is unchanged

- one floating point addition still takes 7 nanoseconds

▪ Increase throughput
- 1000 floating point additions now takes 1006 nanoseconds
- pipeline with N pipeline stages ideally achieves a speedup of N
- challenges

§ balancing of pipeline stages
§ data dependencies

32

Multiple Issue
▪ Multiple issue processors replicate functional units and try to

simultaneously execute different instructions in a program

▪ static multiple issue (VLIW) – functional units are scheduled at compile
time
▪ dynamic multiple issue (superscalar) – functional units are scheduled at

run-time

adder #1 adder #2

z[1]

z[3]

z[2]

z[4]

for (i = 0; i < 1000; i++)
z[i] = x[i] + y[i];

33

Speculation
▪ In order to make use of multiple issue, the system must find instructions

that can be executed simultaneously
▪ Approach: compiler or processor make guesses about the outcome of

control-flow decisions and execute instructions on the basis of the guess

34

z = x + y ;
if (z > 0)

w = x ;
else

w = y ;

z will be
positive

If the system speculates incorrectly, it must go back and recalculate w = y

oracle

Hardware Multithreading
▪ Hardware multithreading allows CPU to continue doing useful work when

the task being currently executed has stalled
- Ex., the current task has to wait for data to be loaded from memory

▪ Fine-grained – the processor switches between threads after each
instruction, skipping threads that are stalled
- Pro: potential to avoid wasted machine time due to stalls
- Con: a thread that’s ready to execute a long sequence of instructions may have to wait to

execute every instruction

▪ Coarse-grained – only switches threads that are stalled waiting for a time-
consuming operation to complete.
- Pros: switching threads doesn’t need to be nearly instantaneous
- Cons: the processor can be idled on shorter stalls, and thread switching will also cause delays

▪ Simultaneous multithreading (SMT) - a variation on fine-grained
multithreading
- issues instructions from different threads in every cycle
- hence, instructions from different threads can be concurrently executed in each pipeline stage35

Explicitly Exploitation of Parallelism

36

Flynn’s Taxonomy
▪ Classification of Parallel Computer Architectures

37

SISD
Single instruction stream

Single data stream

SIMD
Single instruction stream

Multiple data stream

MISD
Multiple instruction stream

Single data stream

MIMD
Multiple instruction stream

Multiple data stream

classic Von Neumann

Michael J. Flynn, Kevin W. Rudd. Parallel Architectures CRC Press, 1996.

SIMD
▪ Parallelism achieved by dividing data among the processing elements

▪ Applies the same instruction to multiple data items

▪ Denoted as data parallelism

38

SIMD Example

39

control unit

ALU1 ALU2 ALUn

…

for (i = 0; i < n; i++)
x[i] += y[i];

x[1] x[2] x[n]

n data items
n ALUs

SIMD
▪ What if we don’t have as many ALUs as data items?
▪ Divide the work and process iteratively
▪ Ex. m = 4 ALUs and n = 15 data items

Round ALU1 ALU2 ALU3 ALU4

1 X[0] X[1] X[2] X[3]

2 X[4] X[5] X[6] X[7]

3 X[8] X[9] X[10] X[11]

4 X[12] X[13] X[14]

40

SIMD Pros and Cons
▪ Advantages

- simple extension to scalar CPU core
- effective method for data parallel computations

▪ Disadvantages
- restricted to highly regular code without control flow, because ALUs are required to execute

the same instruction, or remain idle
- requires code modification to be exploited
- SIMD units are only useful for data parallel code, not for other forms of parallelism
- challenge for memory subsystem supply SIMD units with sufficient data

41

Vector Processors
▪ Operate on arrays or vectors of data while conventional CPUs operate on

individual data elements or scalars
▪ Everything is vectorized

- registers: can store a vector of operands and allows concurrent access to contents
- functional units: same operation is applied to each element in the vector (or pairs of elements)
- instructions: operate on vectors rather than scalars

▪ Vector length can be wider than functional units
- difference to SIMD instructions

▪ Parallel memory subsystem
- multiple memory banks for concurrent access
- interleaving schemes to distribute vectors across banks, reduce or eliminate delay in

loading/storing successive elements
- support for efficient strided access and scatter/gather

42

Vector processors – Pros and Cons
▪ Advantages

- very effective for scientific codes using dense linear algebra
- vectorizing compilers are good at automatically identifying vectorizable code
- effective use of memory bandwidth and caches (uses every item in a cache line)

▪ Disadvantages
- handling of control-flow and irregular data structures is inefficient
- limited scalability

§ CPU implementation imposes physical limits on width of vector processing units
§ finite length of vectors in applications

- data or control-flow dependencies may prohibit auto-vectorization
§ manual refactoring of code needed

43

Graphics Processing Units (GPU)
▪ Developed for real-time processing of geometric primitives (points, lines,

triangles) that represent the surface of objects
▪ Graphics processing pipeline

- converts internal representation into an array of pixels that
can be sent to a computer screen

- initially a strict pipeline of fixed functions
- since early 2000’s stages of this pipeline (shaders) have

become more and more programmable

▪ Programmable Shaders
- typically just a few lines of C code, working on geometric

primitives
- execution on primitives is implicitly parallel
- can implement linear algebra functions
- gave rise to application in high-performance computing

44

GPUs (2)
▪ General-Purpose GPUs (GPGPUs)

- further generalized processing pipeline
- directly programmable with computing-

focused programming languages (e.g.
CUDA, OpenCL)

▪ Current GPUs have a hybrid
architecture
- combination of SIMD and hardware multi-

threading (SIMT)
- increasingly MIMD-like architecture

▪ Most widely used accelerator in HPC
- supported by increasing number of

scientific codes

45

use of accelerators in 500 most
powerful supercomputers

MIMD
▪ Supports multiple simultaneous instruction streams operating on

multiple data streams

▪ Typically consist of a collection of fully independent processing units or
cores, each of which has its own control unit and its own ALU

▪ Multi-Core CPUs are currently the most widespread MIMD architectures
- although each core typically follows a SIMD model

46

Shared Memory System (1)
▪ A collection of autonomous processors is connected to a memory system

via an interconnection network.
- each processor can access each memory location (same address space)
- processors usually communicate implicitly by accessing shared data structures

▪ Most widely available shared memory systems use one or more multicore
processors

47

Shared Memory System (2)

Figure 2.3

48

Interconnect

CPU CPU CPU CPU

Memory

Unified Memory Access (UMA) Multicore System
▪ Access time and latency to access all the memory locations is the same for

all cores

49

Figure 2.5

Interconnect

Core 1 Core 1Core 2 Core 2

Chip 2Chip 1

Memory

Non-Unified Memory Access (NUMA) Multicore System
▪ Still, all cores share same address space
▪ But cores can access locally connected memory faster than memory

connected through another processor
▪ Requires careful data placement for optimal memory subsystem

performance

50Figure 2.6

Core 1 Core 2

Interconnect Interconnect

MemoryMemory

Core 1 Core 2

Chip 2Chip 1

Distributed Memory System
▪ HPC Computer Clusters

- collection of commodity servers
- connected by a commodity network (InfiniBand, Ethernet)
- most popular and cost-effective HPC systems today

▪ Cluster nodes are independent
- resource management system and communication library allow system to be used as one unit

51Figure 2.4

CPU

Memory

CPU

Memory

CPU

Memory

CPU

Memory

Interconnect

Interconnection networks
▪ Choice of interconnection network determines performance of both

distributed and shared memory systems
- Tradeoff between hardware effort / cost and performance

▪ Two categories:
- Shared memory interconnects
- Distributed memory interconnects

52

Shared Memory Interconnects
▪ Bus interconnect

- shared parallel communication wires connect communicating units
- arbiter controls access to bus
- with increasing number of devices, contention for use of the bus increases, and performance

decreases

▪ Switched interconnect
- uses switches to control the routing of data among the connected devices
- crossbar

§ allows simultaneous communication among different devices
§ faster than buses
§ cost of the switches and links is relatively high

53

Figure 2.7

(a) crossbar switch connecting 4 processors
(Pi) and 4 memory modules (Mj)

(b) configuration of internal switches in a
crossbar

(c) simultaneous memory accesses by
the processors

54

P1

M1

M2

M3

M4

P2 P3 P4

(c)

(i) (ii)

(b)

(a)

M1

M2

M3

M4

P1 P2 P3 P4

Distributed Memory Interconnects
▪ Direct interconnect

- each switch is directly connected to a processor memory pair, and the switches are connected
to each other

▪ Indirect interconnect
- switches may not be directly connected to a processor

55

Direct Interconnect

Figure 2.8

ring toroidal mesh

56

(b)

P1 P2 P3

(a)

Bisection Width
▪ A measure of “number of simultaneous communications” or

“connectivity”

▪ Computing the bisection width
- How many simultaneous communications can take place “across the divide” between the

halves?
- Or, how many connections need to be removed to split the topology into two halves?

57

Two Bisections of a Ring

Figure 2.9
58

removing two connections
creates a bi-partition

removing eight connections
creates bi-partition

(a) (b)

A

B

A

A

B

B

B

A

B

B

B

A

A

B

A

A

A Bisection of a Toroidal Mesh

59

Figure 2.10

Definitions
▪ Bandwidth

- the rate at which a link can transmit data
- usually given in megabits or megabytes per second

▪ Bisection bandwidth
- a measure of network quality
- instead of counting the number of links joining the halves, it sums the bandwidth of the links

60

Fully Connected Network
▪ Each switch is directly connected to every other switch

Figure 2.11

bisection width = p2/4

impractical: p2/2 – p/2 links required; each switch needs p ports

61

Hypercube
▪ Highly connected direct interconnect
▪ Built inductively

- 1D hypercube is a fully-connected system with two processors
- 2D hypercube is built from two 1D hypercubes by joining “corresponding” switches
- 3D hypercube is built from two 2D hypercubes

62Figure 2.12

one- three-dimensionaltwo-
(a) (b) (c)

Indirect Interconnects
▪ Simple examples of indirect networks

- Crossbar
- Omega network

▪ Often shown with unidirectional links and a collection of processors, each
of which has an outgoing and an incoming link, and a switching network

63

Generic Indirect Network

Figure 2.13

64

Switching
Network

Crossbar Interconnect for Distributed Memory

Figure 2.14

65

Omega Network

Figure 2.15

66

A Switch in an Omega Network

Figure 2.16

67

More definitions
▪ Any time data is transmitted, we’re interested in how long it will take for

the data to reach its destination
▪ Latency

- time that elapses between the source beginning to transmit the data and the destination
starting to receive the first byte

▪ Bandwidth
- the rate at which the destination receives data after it has started to receive the first byte

68

message transmission time = l + n / b

l: latency (seconds)

b: bandwidth (bytes per second)
n: length of message (bytes)

Cache Coherence (1)
▪ Programmers have no control over

caches and when they get updated

Figure 2.17

A shared memory system with
two cores and two caches

69

Core 0

Cache 0

Interconnect

x 2 y1

z1y0

Cache 1

Core 1

Core 0

Cache 0

Interconnect

x 2 y1

z1y0

Cache 1

Core 1

Cache Coherence (2)
▪ Programmers have no control over caches and when they get updated

70

y0 privately owned by Core 0
y1 and z1 privately owned by Core 1
x = 2; /* shared variable */

y0 eventually ends up = 2
y1 eventually ends up = 6
z1 = ???

Time Core	0 Core	1

0 y0	=	x; y1	=	3*x;

1 x =	7; statement(s) not	
involving	x

2 statement(s) not	
involving	x

z1	=	4*x;

A shared memory system with
two cores and two caches

Figure 2.17

y0,x y1, z1,x

Cache Coherence Mechanisms
▪ Snooping-base coherency

- The cores share a bus, i.e. any signal transmitted on the bus can be “seen” by all cores
connected to the bus

- When core 0 updates the copy of x stored in its cache it also broadcasts this information across
the bus

- If core 1 is “snooping” the bus, it will see that x has been updated and it can mark its copy of x
as invalid

▪ Directory-based coherency
- Uses a data structure called a directory that stores the status of each cache line
- When a variable is updated, the directory is consulted, and the cache controllers of the cores

that have that variable’s cache line in their caches are invalidated

71

Parallel Software
▪ Computer architectures are increasingly parallel

- not only in HPC but also in embedded computing

▪ Parallel programming is still not pervasive in programming education but
considered a “specialization”
▪ Compilers and tools have come a long way

- but fully automate parallelization is not a reality yet (and possibly will never be)

▪ The burden to efficiently exploit parallel computing is on software

72

SPMD – Single Program Multiple Data
▪ An SPMD programs consists of a single executable that can behave as if it

were multiple different programs through the use of conditional
branches.

if (I’m thread process i)
do this;

else
do that;

73

Writing Parallel Programs
1. Divide the work among the processes/threads, such that

- each process/thread gets roughly the same amount of work
- communication is minimized

2. Arrange for the processes/threads to synchronize
3. Arrange for communication among processes/threads

74

double x[n], y[n];
…
for (i = 0; i < n; i++)

x[i] += y[i];

Nondeterminism (1)

. . .
printf ("Thread %d > my_val = %d\n" ,

my_rank , my_x) ;
. . .

Thread 0 > my_val = 7
Thread 1 > my_val = 19

Thread 1 > my_val = 19
Thread 0 > my_val = 7

75

order of execution in theads/processes non-
deterministic, in this case not a huge problem

Nondeterminism (2)
my_val = Compute_val (my_rank) ;
x += my_val ;

76

Time Core	0 Core	1

0 Finish	assignment	to	my_val In	call	to	Compute_val

1 Load	x = 0 into	register Finish	assignment	to	my_val

2 Load	my_val = 7 into	register Load	x = 0 into	register

3 Add	my_val = 7 to	x Load	my_val = 19 into	register

4 Store	x = 7 Add	my_val = 19 to	x

5 Start other	work Store	x = 19

my_val, my_rank are private; x is shared

order of threads makes a difference (race condition)

Nondeterminism (3)
▪ Race conditions can be avoided by protecting critical sections, e.g. with

mutual exclusion locks (mutex)

my_val = Compute_val (my_rank) ;
Lock(&add_my_val_lock) ;
x += my_val ;
Unlock(&add_my_val_lock) ;

77

Busy-Waiting

my_val = Compute_val (my_rank) ;
if (my_rank == 1)

while (!ok_for_1) ; /* Busy−wait loop */
x += my_val ; /* Critical section */
if (my_rank == 0)

ok_for_1 = true ; /* Let thread 1 update x */

78

Message-Passing

char message [1 0 0] ;
. . .
my_rank = Get_rank () ;
if (my_rank == 1) {

sprintf (message , "Greetings from process 1") ;
Send (message , MSG_CHAR , 100 , 0) ;

} else if (my_rank == 0) {
Receive (message , MSG_CHAR , 100 , 1) ;
printf ("Process 0 > Received: %s\n" , message) ;

}

79

Partitioned Global Address Space Languages

shared int n = . . . ;
shared double x [n] , y [n] ;
private int i, my_first_element , my_last_element ;
my_first_element = . . . ;
my_last_element = . . . ;
/ * Initialize x and y */
. . .
for (i = my_first_element ; i <= my_last_element ; i++)

x [i] += y [i] ;

80

Input and Output
▪ Parallel programs need specific rules how processes/threads can access I/O
▪ Standard input (stdin)

- in distributed memory programs, only process 0 will access stdin
- in shared memory programs, only the master thread or thread 0 will access stdin

▪ Standard output (stdout) and standard error (stderr)
- in distributed memory and shared memory programs all the processes/threads can access

stdout and stderr
- because of the non-determinism of the order of output to stdout only a single process/thread

should be used for all output to stdout other than debugging output
- debug output should include the rank/id of the process/thread generating the output

▪ File I/O
- only a single process/thread shall access any single file (other than stdin, stdout, or stderr)
- each process/thread can open its own, private file for reading or writing, but no two

processes/threads will open the same file.

81

Performance

82image: NY - http://nyphotographic.com/

Speedup of a Parallel Program
▪ Number of cores = n
▪ Serial run-time = Tserial

▪ Parallel run-time = Tparallel

▪ Speedup S
▪ Efficiency E

linear speedup

83

𝑇"#$#%%&% = 𝑇(&$)#%/𝑛

S	= ,-./012
,31/122.2

E	= 4
5
=

6-./012
631/122.2

5
= ,-./012

57,31/122.2

Example: Speedups and Efficiencies

84

p 1 2 4 8 16

S 1.0 1.9 3.6 6.5 10.8

E = S/p 1.0 0.95 0.90 0.81 0.68

Amdahl’s Law
▪ Gene Amdahl’s seminal paper from 1967 makes the case that speeding up

programs with parallel processing is severely limited
- only a fraction p of the each application will be parallelizable
- even with perfect speedup for the parallelizable part, the overall achievable speedup will be

dominated by the computation time of the remaining (serial) part

▪ Model
- p : percentage of execution time that benefits from parallelization
- 1-p: percentage of the execution time not benefitting from parallelization (serial part)
- n: speedup of the parallelizable part (= number of processors assuming linear speedup)
- T: execution time of the program running on 1 processor

85
G. M. Amdahl. Validity of the single processor approach to achieving large scale computing capabilities.

In Proc. Spring Joint Computer Conference (SJCC), pages 483–485, New York, 1967. ACM.

S(𝑛) = ,-./012
,31/122.2

	= ,

<=" ,>	6?
= <

<=" >	@?
lim
5→E

𝑆(𝑛) =
1

1 − 𝑝

	

Amdahl’s Law (2)

86

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Amdahl's Law

Parallel portion

Number of processors

50%
75%
90%
95%

Sp
ee

du
p

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

image: Daniels220, English Wikipedia

Gustafson-Barsis’ Law
▪ Amdahl’s law suggests that parallel computing “does not work”

- limited speedup and decreasing efficiency with increasing number of processors
- still, parallel computing is successfully used and many codes run with high efficiency

▪ Gustafson writes seminal paper in 1988 arguing for measuring speedup by
scaling the problem size instead of time
- Amdahl assumes that the problem size is constant, use more processor to reduce time (strong

scaling)
- Gustafson assumes that time to solution is constant, use more processor to solve larger

problems (weak scaling)

87
J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532--533, May 1988.

Gustafson-Barsis’ Law (2)
▪ Model

- ts (tp) computation time for sequential (parallel) part
- n: number of processors
- wp: workload on parallel system wp = ts + tp

- w1: workload on sequential system w1 = ts + N • tp

88J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–533, May 1988.

S(𝑛) = J@
KL
	=

M->57M3
M->M3

𝑓∗ =
𝑡(

𝑡(+ 𝑡"
percentage of sequential
computation on the parallel system

let

S 𝑛 = 𝑓∗ + 𝑛 7 (1 − 𝑓∗)

Example: Speedups and Efficiencies of
Parallel Program on Different Problem Sizes

89

p 1 2 4 8 16

Half
S 1.0 1.9 3.1 4.8 6.2

E 1.0 0.95 0.78 0.60 0.39

Original
S 1.0 1.9 3.6 6.5 10.8

E 1.0 0.95 0.90 0.81 0.68

Double
S 1.0 1.9 3.9 7.5 14.2

E 1.0 0.95 0.98 0.94 0.89

Speedup

90

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Processes

S
p
e
e
d
u
p

Half size
Original
Double size

Figure 2.18

Efficiency

91

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processes

E
ff
ic

ie
n
cy

Half size
Original
Double size

Figure 2.19

Amdahl’s vs. Gustafson-Barsis’ Law Illustrated

92

serial work

parallelizable work

P = 1

time

P = 2 P = 4 P = 8

serial work

parallelizable work

P = 1

time

P = 2 P = 4 P = 8

Amdahl
• figure of merit: execution time
• total workload constant
• speedup limited
• strong scaling

Gustafson-Barsis
• figure of merit: workload
• time to execution constant
• speedup unlimited
• weak scaling

Scalability
▪ In general, a problem is scalable if it can handle ever increasing problem

sizes
▪ If we can increase the number of processes/threads and keep the

efficiency fixed without increasing problem size, the problem is strongly
scalable
▪ If we can keep the efficiency fixed by increasing the problem size at the

same rate as we increase the number of processes/threads, the problem is
weakly scalable

93

Taking Timings
▪ What is time?
▪ Start to finish?
▪ A program segment of interest?
▪ CPU time?
▪ Wall clock time?

94

Taking Timings

theoretical
function

MPI_Wtime omp_get_wtime

95

64 CHAPTER 2 Parallel Hardware and Parallel Software

hit the start button on her stopwatch when it begins execution and hit the stop button
when it stops execution. Of course, she can’t see her code executing, but she can
modify the source code so that it looks something like this:

double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

The function Get current time() is a hypothetical function that’s supposed to
return the number of seconds that have elapsed since some fixed time in the past.
It’s just a placeholder. The actual function that is used will depend on the API. For
example, MPI has a function MPI Wtime that could be used here, and the OpenMP
API for shared-memory programming has a function omp get wtime. Both functions
return wall clock time instead of CPU time.

There may be an issue with the resolution of the timer function. The resolution is
the unit of measurement on the timer. It’s the duration of the shortest event that can
have a nonzero time. Some timer functions have resolutions in milliseconds (10�3

seconds), and when instructions can take times that are less than a nanosecond (10�9

seconds), a program may have to execute millions of instructions before the timer
reports a nonzero time. Many APIs provide a function that reports the resolution of
the timer. Other APIs specify that a timer must have a given resolution. In either case
we, as the programmers, need to check these values.

When we’re timing parallel programs, we need to be a little more careful about
how the timings are taken. In our example, the code that we want to time is probably
being executed by multiple processes or threads and our original timing will result in
the output of p elapsed times.

private double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

However, what we’re usually interested in is a single time: the time that has elapsed
from when the first process/thread began execution of the code to the time the last
process/thread finished execution of the code. We often can’t obtain this exactly, since
there may not be any correspondence between the clock on one node and the clock
on another node. We usually settle for a compromise that looks something like this:

shared double global elapsed;
private double my start, my finish, my elapsed;
. . .

Taking Timings

96

64 CHAPTER 2 Parallel Hardware and Parallel Software

hit the start button on her stopwatch when it begins execution and hit the stop button
when it stops execution. Of course, she can’t see her code executing, but she can
modify the source code so that it looks something like this:

double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

The function Get current time() is a hypothetical function that’s supposed to
return the number of seconds that have elapsed since some fixed time in the past.
It’s just a placeholder. The actual function that is used will depend on the API. For
example, MPI has a function MPI Wtime that could be used here, and the OpenMP
API for shared-memory programming has a function omp get wtime. Both functions
return wall clock time instead of CPU time.

There may be an issue with the resolution of the timer function. The resolution is
the unit of measurement on the timer. It’s the duration of the shortest event that can
have a nonzero time. Some timer functions have resolutions in milliseconds (10�3

seconds), and when instructions can take times that are less than a nanosecond (10�9

seconds), a program may have to execute millions of instructions before the timer
reports a nonzero time. Many APIs provide a function that reports the resolution of
the timer. Other APIs specify that a timer must have a given resolution. In either case
we, as the programmers, need to check these values.

When we’re timing parallel programs, we need to be a little more careful about
how the timings are taken. In our example, the code that we want to time is probably
being executed by multiple processes or threads and our original timing will result in
the output of p elapsed times.

private double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

However, what we’re usually interested in is a single time: the time that has elapsed
from when the first process/thread began execution of the code to the time the last
process/thread finished execution of the code. We often can’t obtain this exactly, since
there may not be any correspondence between the clock on one node and the clock
on another node. We usually settle for a compromise that looks something like this:

shared double global elapsed;
private double my start, my finish, my elapsed;
. . .

Taking Timings

97

64 CHAPTER 2 Parallel Hardware and Parallel Software

hit the start button on her stopwatch when it begins execution and hit the stop button
when it stops execution. Of course, she can’t see her code executing, but she can
modify the source code so that it looks something like this:

double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

The function Get current time() is a hypothetical function that’s supposed to
return the number of seconds that have elapsed since some fixed time in the past.
It’s just a placeholder. The actual function that is used will depend on the API. For
example, MPI has a function MPI Wtime that could be used here, and the OpenMP
API for shared-memory programming has a function omp get wtime. Both functions
return wall clock time instead of CPU time.

There may be an issue with the resolution of the timer function. The resolution is
the unit of measurement on the timer. It’s the duration of the shortest event that can
have a nonzero time. Some timer functions have resolutions in milliseconds (10�3

seconds), and when instructions can take times that are less than a nanosecond (10�9

seconds), a program may have to execute millions of instructions before the timer
reports a nonzero time. Many APIs provide a function that reports the resolution of
the timer. Other APIs specify that a timer must have a given resolution. In either case
we, as the programmers, need to check these values.

When we’re timing parallel programs, we need to be a little more careful about
how the timings are taken. In our example, the code that we want to time is probably
being executed by multiple processes or threads and our original timing will result in
the output of p elapsed times.

private double start, finish;
. . .
start = Get current time();
/⇤ Code that we want to time ⇤/
. . .
finish = Get current time();
printf("The elapsed time = %e seconds\n", finish�start);

However, what we’re usually interested in is a single time: the time that has elapsed
from when the first process/thread began execution of the code to the time the last
process/thread finished execution of the code. We often can’t obtain this exactly, since
there may not be any correspondence between the clock on one node and the clock
on another node. We usually settle for a compromise that looks something like this:

shared double global elapsed;
private double my start, my finish, my elapsed;
. . .

2.7 Parallel Program Design 65

/⇤ Synchronize all processes/threads ⇤/
Barrier();
my start = Get current time();

/⇤ Code that we want to time ⇤/
. . .

my finish = Get current time();
my elapsed = my finish � my start;

/⇤ Find the max across all processes/threads ⇤/
global elapsed = Global max(my elapsed);
if (my rank == 0)

printf("The elapsed time = %e seconds\n", global elapsed);

Here, we first execute a barrier function that approximately synchronizes all of the
processes/threads. We would like for all the processes/threads to return from the call
simultaneously, but such a function usually can only guarantee that all the process-
es/threads have started the call when the first process/thread returns. We then execute
the code as before and each process/thread finds the time it took. Then all the process-
es/threads call a global maximum function, which returns the largest of the elapsed
times, and process/thread 0 prints it out.

We also need to be aware of the variability in timings. When we run a program
several times, it’s extremely likely that the elapsed time will be different for each
run. This will be true even if each time we run the program we use the same input
and the same systems. It might seem that the best way to deal with this would be to
report either a mean or a median run-time. However, it’s unlikely that some outside
event could actually make our program run faster than its best possible run-time.
So instead of reporting the mean or median time, we usually report the minimum
time.

Running more than one thread per core can cause dramatic increases in the
variability of timings. More importantly, if we run more than one thread per core,
the system will have to take extra time to schedule and deschedule cores, and this
will add to the overall run-time. Therefore, we rarely run more than one thread per
core.

Finally, as a practical matter, since our programs won’t be designed for high-
performance I/O, we’ll usually not include I/O in our reported run-times.

2.7 PARALLEL PROGRAM DESIGN
So we’ve got a serial program. How do we parallelize it? We know that in general
we need to divide the work among the processes/threads so that each process gets
roughly the same amount of work and communication is minimized. In most cases,
we also need to arrange for the processes/threads to synchronize and communicate.

Foster’s methodology for Parallel Program Design
▪ Step 1 – Partitioning

- divide the computation to be performed and the data operated on by the computation into
small tasks

- keep the focus on identifying tasks that can be executed in parallel

▪ Step 2 – Communication
- determine what communication needs to be carried out among the tasks identified in the

previous step

▪ Step 3 – Agglomeration or aggregation
- combine tasks and communications identified in the first step into larger tasks
- e.g., if task A must be executed before task B can be executed, it may make sense to aggregate

them into a single composite task

▪ Step 4 – Mapping
- assign the composite tasks identified in the previous step to processes/threads
- strive for minimizing communication
- each process/thread should get roughly the same amount of work

98

Example – Histogram Computation

99

raw data
1.3, 2.9, 0.4, 0.3, 1.3, 4.4, 1.7, 0.4, 3.2,
0.3, 4.9, 2.4, 3.1, 4.4, 3.9, 0.4, 4.2, 4.5, 4.9, 0.9

0

2

4

6

1 2 3 4 5

histogram

Serial program
▪ Input

- number of measurements: data_count
- array of data_count floats: data
- minimum value for bin containing the smallest values: min_meas
- maximum value for the bin containing the largest values: max_meas
- number of bins: bin_count

▪ Output
- bin_maxes : an array of bin_count floats
- bin_counts : an array of bin_count ints

100

First two stages of Foster’s Methodology
▪ Partitioning
▪ Communication

101

data[i] data[i+1]

bin_counts[b–1]++ bin_counts[b]++

data[i–1]Find_bin

Increment

bin_counts

lots of potential parallelism, but conflicts when incrementing bin_counts

Alternative Definition of Tasks and Communication

102

loc_bin_cts[b–1]++ loc_bin_cts[b]++

bin_counts[b–1]+= bin_counts[b]+=

loc_bin_cts[b]++

data[i] data[i+1] data[i+2]data[i–1]Find_bin

loc_bin_cts[b–1]++

aggregate local counts for smaller batches of data first, reduce conflicts
for updates of bin_counts

Adding the Local Arrays

103

0

+

+

+

+ +

+

+

1 2 3 4 5 6 7

Concluding Remarks (1)
▪ Serial systems

- The standard model of computer hardware has been the von Neumann architecture

▪ Parallel hardware
- Flynn’s taxonomy

▪ Parallel software
- We focus on software for homogeneous MIMD systems, consisting of a single program that

obtains parallelism by branching
- SPMD programs

▪ Input and Output
- We’ll write programs in which one process or thread can access stdin, and all processes can

access stdout and stderr
- However, because of nondeterminism, except for debug output we’ll usually have a single

process or thread accessing stdout

104

Concluding Remarks (2)
▪ Performance

- Speedup
- Efficiency
- Amdahl’s law
- Gustafson-Barsis’ law
- Scalability

▪ Parallel Program Design
- Foster’s methodology

105

Acknowledgements
▪ Peter S. Pacheco / Elsevier

- for providing the lecture slides on which this presentation is based

106

Change log
▪ 1.1.1 (2017-10-16)

- clarify slide 13, 46, 79, 120, 121
- merge slide 35 + 36, 70+71
- removed slide 75 (dynamic vs. static threads)

▪ 1.1.0 (2017-10-13)
- updated slides for winter term 2017/18
- correction of minor typos, cosmetics

107

Change log
▪ 1.0.4 (2016-11-11)

- fix typo on slide 69

▪ 1.0.3 (2016-11-10)
- add illustration Amdahl vs. Gustafson-Barsis

▪ 1.0.2 (2016-11-09)
- finalize slides for second part

▪ 1.0.1 (2016-11-04)
- fix typo in code on slide 22
- numerous cosmetic changes, improve legibility of tables and figures

▪ 1.0.0 (2016-11-04)
- initial version of slides

108

