
version 1.2.3 2017-11-20

High-Performance
Computing

– Distributed Memory Programming with MPI –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

Outline
▪ Overview of MPI
▪ Basic MPI

- Hello world
- basic MPI functions
- example: trapezoidal rule

▪ Intermediate MPI
- collective communication
- derived datatypes
- performance measurements
- example: parallel sorting
- safety in MPI programs

▪ Advanced MPI (in future supplement to these slides)
- non-blocking peer-to-peer communication
- one-sided communication
- I/O

2

The Message Passing Interface (MPI)
▪ Messages are transported between processes by explicit cooperation of

sending and receiving processes
▪ Increasing popularity in the 1980s and early 90s

- numerous vendor-specific libraries, but no standard
- limited portability of code between different machines
- differences in features, efficiency, price

image: LLNL MPI tutorial 3

The Message Passing Interface (MPI)
▪ Need for a common standard recognized in 1992
▪ First drafts in 1992, final standard of MPI-1.0 in 1994
▪ Today, MPI the most widely used standard for message passing

- MPI is a specification for users and developers of a message passing library (not a library itself)
- defines C and Fortran interfaces

▪ There exist several widely used implementations, e.g.
- OpenMPI, Intel MPI, MPICH, MVAPICH, …
- vendors can innovate in the implementation, e.g. offloading part of MPI functions to network

cards (e.g. broadcast, barrier)

▪ Standard has been extended over time
- initially rather simple
- over time, more complex features added, latest MPI-3.1 standard has 800+ pages

4

Hello World!

5

1.9 Typographical Conventions 11

parallel program contains at least one serial program. Since we almost always need to
coordinate the actions of multiple cores, writing parallel programs is almost always
more complex than writing a serial program that solves the same problem. In fact,
it is often far more complex. All the rules about careful design and development are
usually far more important for the writing of parallel programs than they are for serial
programs.

1.9 TYPOGRAPHICAL CONVENTIONS
We’ll make use of the following typefaces in the text:

. Program text, displayed or within running text, will use the following typefaces:

/⇤ This is a short program ⇤/
#include <stdio.h>

int main(int argc, char⇤ argv[]) {
printf("hello, world\n");

return 0;
}

. Definitions are given in the body of the text, and the term being defined is printed
in boldface type: A parallel program can make use of multiple cores.. When we need to refer to the environment in which a program is being developed,
we’ll assume that we’re using a UNIX shell, and we’ll use a $ to indicate the shell
prompt:

$ gcc �g �Wall �o hello hello.c

. We’ll specify the syntax of function calls with fixed argument lists by including
a sample argument list. For example, the integer absolute value function, abs, in
stdlib might have its syntax specified with

int abs(int x); /⇤ Returns absolute value of int x ⇤/

For more complicated syntax, we’ll enclose required content in angle brackets <>

and optional content in square brackets []. For example, the C if statement might
have its syntax specified as follows:

if (<expression>)
<statement1>

[else
<statement2>]

This says that the if statement must include an expression enclosed in parentheses,
and the right parenthesis must be followed by a statement. This statement can be
followed by an optional else clause. If the else clause is present, it must include
a second statement.

Identifying MPI processes
▪ Common practice to identify processes by nonnegative integer numbers,

denoted as ranks
- p processes are numbered 0, 1, 2, .. p-1
- rank 0 is typically reserved for the “master process”

▪ Processes can query their own rank and the total number of ranks at
runtime

6

Our First MPI Program
3.1 Getting Started 85

1 #include <stdio.h>
2 #include <string.h> /⇤ For strlen ⇤/
3 #include <mpi.h> /⇤ For MPI functions, etc ⇤/
4
5 const int MAX STRING = 100;
6
7 int main(void) {
8 char greeting[MAX STRING];
9 int comm sz; /⇤ Number of processes ⇤/

10 int my rank; /⇤ My process rank ⇤/
11
12 MPI Init(NULL, NULL);
13 MPI Comm size(MPI COMM WORLD, &comm sz);
14 MPI Comm rank(MPI COMM WORLD, &my rank);
15
16 if (my rank != 0) {
17 sprintf(greeting, "Greetings from process %d of %d!",
18 my rank, comm sz);
19 MPI Send(greeting, strlen(greeting)+1, MPI CHAR, 0, 0,
20 MPI COMM WORLD);
21 } else {
22 printf("Greetings from process %d of %d!\n", my rank,

comm sz);
23 for (int q = 1; q < comm sz; q++) {
24 MPI Recv(greeting, MAX STRING, MPI CHAR, q,
25 0, MPI COMM WORLD, MPI STATUS IGNORE);
26 printf("%s\n", greeting);
27 }
28 }
29
30 MPI Finalize();
31 return 0;
32 } /⇤ main ⇤/

Program 3.1: MPI program that prints greetings from the processes

the command line to compile and run. Many systems use a command called mpicc
for compilation:1

$ mpicc �g �Wall �o mpi hello mpi hello.c

Typically, mpicc is a script that’s a wrapper for the C compiler. A wrapper script
is a script whose main purpose is to run some program. In this case, the program
is the C compiler. However, the wrapper simplifies the running of the compiler by
telling it where to find the necessary header files and which libraries to link with the
object file.

1Recall that the dollar sign ($) is the shell prompt, so it shouldn’t be typed in. Also recall that, for
the sake of explicitness, we assume that we’re using the Gnu C compiler, gcc, and we always use the
options -g, -Wall, and -o. See Section 2.9 for further information.

7

Compilation

mpicc -g -Wall -o mpi_hello mpi_hello.c

wrapper script to compile

turns on all warnings

source file

create this executable file name
(as opposed to default a.out)

produce
debugging
information

8

Execution

mpiexec -n <number of processes> <executable>

mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

run with 1 process

run with 4 processes

9

Execution
mpiexec -n 1 ./mpi_hello

mpiexec -n 4 ./mpi_hello

Greetings from process 0 of 1 !

Greetings from process 0 of 4 !
Greetings from process 1 of 4 !
Greetings from process 2 of 4 !
Greetings from process 3 of 4 !

10

MPI Programs
▪ Written in C (in this lecture, Fortran interface available too)

- need main function
- include headers for standard library functions, e.g., stdio.h, string.h, etc.

▪ MPI-specific functions declared in mpi.h header file
▪ Identifiers defined by MPI start with “MPI_”
▪ First letter following underscore is uppercase

- for function names and MPI-defined types
- helps to avoid confusion

▪ Compilation and linking with MPI-specific libraries
- simplified with mpicc compiler wrapper
- wrapper adds required libraries automatically

11

MPI Program Structure
▪ MPI_Init

- needs to be called by all ranks before using any MPI functions
- tells MPI to do all the necessary setup

▪ MPI_Finalize
- needs to be called by all ranks at the end of the program
- frees up any resources allocated for this program

3.1 Getting Started 87

int MPI Init(
int⇤ argc p /⇤ in/out ⇤/,
char⇤⇤⇤ argv p /⇤ in/out ⇤/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char⇤ argv[]) {

. . .
/⇤ No MPI calls before this ⇤/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/⇤ No MPI calls after this ⇤/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /⇤ in ⇤/,
int⇤ comm sz p /⇤ out ⇤/);

int MPI Comm rank(
MPI Comm comm /⇤ in ⇤/,
int⇤ my rank p /⇤ out ⇤/);

3.1 Getting Started 87

int MPI Init(
int⇤ argc p /⇤ in/out ⇤/,
char⇤⇤⇤ argv p /⇤ in/out ⇤/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char⇤ argv[]) {

. . .
/⇤ No MPI calls before this ⇤/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/⇤ No MPI calls after this ⇤/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /⇤ in ⇤/,
int⇤ comm sz p /⇤ out ⇤/);

int MPI Comm rank(
MPI Comm comm /⇤ in ⇤/,
int⇤ my rank p /⇤ out ⇤/);

12

Basic Outline

3.1 Getting Started 87

int MPI Init(
int⇤ argc p /⇤ in/out ⇤/,
char⇤⇤⇤ argv p /⇤ in/out ⇤/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char⇤ argv[]) {

. . .
/⇤ No MPI calls before this ⇤/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/⇤ No MPI calls after this ⇤/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /⇤ in ⇤/,
int⇤ comm sz p /⇤ out ⇤/);

int MPI Comm rank(
MPI Comm comm /⇤ in ⇤/,
int⇤ my rank p /⇤ out ⇤/);

13

Communicators
▪ A communicator is a group of

processes that may send
messages to each other

▪ MPI_Init creates a default
communicator
- consists of all the processes created

when the program is started
- called MPI_COMM_WORLD

▪ Additional communicators and
groups can be created at runtime
- simplifies repeated communication

within subset of nodes (e.g. all even or
all odd nodes)

- for our basic needs typically not
required

14

Communicators

number of processes in the communicator

my rank
(the process making this call)

3.1 Getting Started 87

int MPI Init(
int⇤ argc p /⇤ in/out ⇤/,
char⇤⇤⇤ argv p /⇤ in/out ⇤/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char⇤ argv[]) {

. . .
/⇤ No MPI calls before this ⇤/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/⇤ No MPI calls after this ⇤/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /⇤ in ⇤/,
int⇤ comm sz p /⇤ out ⇤/);

int MPI Comm rank(
MPI Comm comm /⇤ in ⇤/,
int⇤ my rank p /⇤ out ⇤/);

3.1 Getting Started 87

int MPI Init(
int⇤ argc p /⇤ in/out ⇤/,
char⇤⇤⇤ argv p /⇤ in/out ⇤/);

The arguments, argc p and argv p, are pointers to the arguments to main, argc, and
argv. However, when our program doesn’t use these arguments, we can just pass
NULL for both. Like most MPI functions, MPI Init returns an int error code, and in
most cases we’ll ignore these error codes.

In Line 30 the call to MPI Finalize tells the MPI system that we’re done using
MPI, and that any resources allocated for MPI can be freed. The syntax is quite
simple:

int MPI Finalize(void);

In general, no MPI functions should be called after the call to MPI Finalize.
Thus, a typical MPI program has the following basic outline:

. . .
#include <mpi.h>
. . .
int main(int argc, char⇤ argv[]) {

. . .
/⇤ No MPI calls before this ⇤/
MPI Init(&argc, &argv);
. . .
MPI Finalize();
/⇤ No MPI calls after this ⇤/
. . .
return 0;

}

However, we’ve already seen that it’s not necessary to pass pointers to argc and argv
to MPI Init. It’s also not necessary that the calls to MPI Init and MPI Finalize be
in main.

3.1.4 Communicators, MPI Comm size and MPI Comm rank
In MPI a communicator is a collection of processes that can send messages to each
other. One of the purposes of MPI Init is to define a communicator that consists of
all of the processes started by the user when she started the program. This commu-
nicator is called MPI COMM WORLD. The function calls in Lines 13 and 14 are getting
information about MPI COMM WORLD. Their syntax is

int MPI Comm size(
MPI Comm comm /⇤ in ⇤/,
int⇤ comm sz p /⇤ out ⇤/);

int MPI Comm rank(
MPI Comm comm /⇤ in ⇤/,
int⇤ my rank p /⇤ out ⇤/);

15

SPMD (Single-Program Multiple Data)
▪ The code for all processes (ranks) is specified with one program
▪ Advantages

- simplified compilation, deployment and execution of code on many processors
- tailoring the execution to the available number of processes (ranks) is happens at runtime, not

compile time

▪ Rank-specific code implemented by conditional code (if-else constructs)
▪ Rank 0 is different

- designated Master process
- has access to standard input
- (in the hello world example: receives messages and prints them while the other processes do

the work)

16

Communication 3.1 Getting Started 89

int MPI Send(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The first three arguments, msg buf p, msg size, and msg type, determine the con-
tents of the message. The remaining arguments, dest, tag, and communicator,
determine the destination of the message.

The first argument, msg buf p, is a pointer to the block of memory containing
the contents of the message. In our program, this is just the string containing the
message, greeting. (Remember that in C an array, such as a string, is a pointer.)
The second and third arguments, msg size and msg type, determine the amount of
data to be sent. In our program, the msg size argument is the number of characters in
the message plus one character for the ‘\0’ character that terminates C strings. The
msg type argument is MPI CHAR. These two arguments together tell the system that
the message contains strlen(greeting)+1 chars.

Since C types (int, char, and so on.) can’t be passed as arguments to functions,
MPI defines a special type, MPI Datatype, that is used for the msg type argument.
MPI also defines a number of constant values for this type. The ones we’ll use (and a
few others) are listed in Table 3.1.

Notice that the size of the string greeting is not the same as the size of the mes-
sage specified by the arguments msg size and msg type. For example, when we run
the program with four processes, the length of each of the messages is 31 characters,

Table 3.1 Some Predefined MPI

Datatypes

MPI datatype C datatype

MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI LONG LONG signed long long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

17

Data Types

3.1 Getting Started 89

int MPI Send(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The first three arguments, msg buf p, msg size, and msg type, determine the con-
tents of the message. The remaining arguments, dest, tag, and communicator,
determine the destination of the message.

The first argument, msg buf p, is a pointer to the block of memory containing
the contents of the message. In our program, this is just the string containing the
message, greeting. (Remember that in C an array, such as a string, is a pointer.)
The second and third arguments, msg size and msg type, determine the amount of
data to be sent. In our program, the msg size argument is the number of characters in
the message plus one character for the ‘\0’ character that terminates C strings. The
msg type argument is MPI CHAR. These two arguments together tell the system that
the message contains strlen(greeting)+1 chars.

Since C types (int, char, and so on.) can’t be passed as arguments to functions,
MPI defines a special type, MPI Datatype, that is used for the msg type argument.
MPI also defines a number of constant values for this type. The ones we’ll use (and a
few others) are listed in Table 3.1.

Notice that the size of the string greeting is not the same as the size of the mes-
sage specified by the arguments msg size and msg type. For example, when we run
the program with four processes, the length of each of the messages is 31 characters,

Table 3.1 Some Predefined MPI

Datatypes

MPI datatype C datatype

MPI CHAR signed char
MPI SHORT signed short int
MPI INT signed int
MPI LONG signed long int
MPI LONG LONG signed long long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

18

Communication

90 CHAPTER 3 Distributed-Memory Programming with MPI

while we’ve allocated storage for 100 characters in greetings. Of course, the size
of the message sent should be less than or equal to the amount of storage in the
buffer—in our case the string greeting.

The fourth argument, dest, specifies the rank of the process that should receive
the message. The fifth argument, tag, is a nonnegative int. It can be used to dis-
tinguish messages that are otherwise identical. For example, suppose process 1 is
sending floats to process 0. Some of the floats should be printed, while others should
be used in a computation. Then the first four arguments to MPI Send provide no
information regarding which floats should be printed and which should be used in a
computation. So process 1 can use, say, a tag of 0 for the messages that should be
printed and a tag of 1 for the messages that should be used in a computation.

The final argument to MPI Send is a communicator. All MPI functions that involve
communication have a communicator argument. One of the most important purposes
of communicators is to specify communication universes; recall that a communica-
tor is a collection of processes that can send messages to each other. Conversely, a
message sent by a process using one communicator cannot be received by a process
that’s using a different communicator. Since MPI provides functions for creating new
communicators, this feature can be used in complex programs to insure that messages
aren’t “accidentally received” in the wrong place.

An example will clarify this. Suppose we’re studying global climate change, and
we’ve been lucky enough to find two libraries of functions, one for modeling the
Earth’s atmosphere and one for modeling the Earth’s oceans. Of course, both libraries
use MPI. These models were built independently, so they don’t communicate with
each other, but they do communicate internally. It’s our job to write the interface
code. One problem we need to solve is to insure that the messages sent by one library
won’t be accidentally received by the other. We might be able to work out some
scheme with tags: the atmosphere library gets tags 0,1, . . . ,n � 1 and the ocean library
gets tags n,n + 1, . . . ,n + m. Then each library can use the given range to figure out
which tag it should use for which message. However, a much simpler solution is
provided by communicators: we simply pass one communicator to the atmosphere
library functions and a different communicator to the ocean library functions.

3.1.8 MPI Recv
The first six arguments to MPI Recv correspond to the first six arguments of
MPI Send:

int MPI Recv(
void⇤ msg buf p /⇤ out ⇤/,
int buf size /⇤ in ⇤/,
MPI Datatype buf type /⇤ in ⇤/,
int source /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/,
MPI Status⇤ status p /⇤ out ⇤/);

Thus, the first three arguments specify the memory available for receiving the
message: msg buf p points to the block of memory, buf size determines the

19

Message Matching

MPI_Send
src = q

MPI_Recv
dest = r

r

q

3.1 Getting Started 91

number of objects that can be stored in the block, and buf type indicates the
type of the objects. The next three arguments identify the message. The source
argument specifies the process from which the message should be received. The
tag argument should match the tag argument of the message being sent, and the
communicator argument must match the communicator used by the sending pro-
cess. We’ll talk about the status p argument shortly. In many cases it won’t be used
by the calling function, and, as in our “greetings” program, the special MPI constant
MPI STATUS IGNORE can be passed.

3.1.9 Message matching
Suppose process q calls MPI Send with

MPI Send(send buf p, send buf sz, send type, dest, send tag,
send comm);

Also suppose that process r calls MPI Recv with

MPI Recv(recv buf p, recv buf sz, recv type, src, recv tag,
recv comm, &status);

Then the message sent by q with the above call to MPI Send can be received by r

with the call to MPI Recv if

. recv comm = send comm,. recv tag = send tag,. dest = r, and. src = q.

These conditions aren’t quite enough for the message to be successfully

received, however. The parameters specified by the first three pairs of arguments,
send buf p/recv buf p, send buf sz/recv buf sz, and send type/recv type,
must specify compatible buffers. For detailed rules, see the MPI-1 specification [39].
Most of the time, the following rule will suffice:

. If recv type = send type and recv buf sz � send buf sz, then the message
sent by q can be successfully received by r.

Of course, it can happen that one process is receiving messages from multiple
processes, and the receiving process doesn’t know the order in which the other pro-
cesses will send the messages. For example, suppose, for example, process 0 is doling
out work to processes 1,2, . . . ,comm sz� 1, and processes 1,2, . . . ,comm sz� 1, send
their results back to process 0 when they finish the work. If the work assigned to each
process takes an unpredictable amount of time, then 0 has no way of knowing the
order in which the processes will finish. If process 0 simply receives the results in
process rank order—first the results from process 1, then the results from process 2,
and so on—and if, say, process comm sz�1 finishes first, it could happen that pro-
cess comm sz�1 could sit and wait for the other processes to finish. In order to avoid
this problem, MPI provides a special constant MPI ANY SOURCE that can be passed to

3.1 Getting Started 91

number of objects that can be stored in the block, and buf type indicates the
type of the objects. The next three arguments identify the message. The source
argument specifies the process from which the message should be received. The
tag argument should match the tag argument of the message being sent, and the
communicator argument must match the communicator used by the sending pro-
cess. We’ll talk about the status p argument shortly. In many cases it won’t be used
by the calling function, and, as in our “greetings” program, the special MPI constant
MPI STATUS IGNORE can be passed.

3.1.9 Message matching
Suppose process q calls MPI Send with

MPI Send(send buf p, send buf sz, send type, dest, send tag,
send comm);

Also suppose that process r calls MPI Recv with

MPI Recv(recv buf p, recv buf sz, recv type, src, recv tag,
recv comm, &status);

Then the message sent by q with the above call to MPI Send can be received by r

with the call to MPI Recv if

. recv comm = send comm,. recv tag = send tag,. dest = r, and. src = q.

These conditions aren’t quite enough for the message to be successfully

received, however. The parameters specified by the first three pairs of arguments,
send buf p/recv buf p, send buf sz/recv buf sz, and send type/recv type,
must specify compatible buffers. For detailed rules, see the MPI-1 specification [39].
Most of the time, the following rule will suffice:

. If recv type = send type and recv buf sz � send buf sz, then the message
sent by q can be successfully received by r.

Of course, it can happen that one process is receiving messages from multiple
processes, and the receiving process doesn’t know the order in which the other pro-
cesses will send the messages. For example, suppose, for example, process 0 is doling
out work to processes 1,2, . . . ,comm sz� 1, and processes 1,2, . . . ,comm sz� 1, send
their results back to process 0 when they finish the work. If the work assigned to each
process takes an unpredictable amount of time, then 0 has no way of knowing the
order in which the processes will finish. If process 0 simply receives the results in
process rank order—first the results from process 1, then the results from process 2,
and so on—and if, say, process comm sz�1 finishes first, it could happen that pro-
cess comm sz�1 could sit and wait for the other processes to finish. In order to avoid
this problem, MPI provides a special constant MPI ANY SOURCE that can be passed to

typically MPI_COM_WORLD

20

MPI point-to-point communication requires
that all of these ”Message Envelope”
parameters match!

Receiving Messages
▪ A receiver can also receive a message without knowing ..

- the amount of data in the message,
- the sender of the message,
- or the tag of the message

▪ .. by specifying wildcards for source and tag
- MPI_ANY_SOURCE
- MPI_ANY_TAG

21

Determine Source, Tag and Length

MPI_SOURCE
MPI_TAG
MPI_ERROR

MPI_Status*

MPI_Status* status;

status.MPI_SOURCE
status.MPI_TAG

3.1 Getting Started 91

number of objects that can be stored in the block, and buf type indicates the
type of the objects. The next three arguments identify the message. The source
argument specifies the process from which the message should be received. The
tag argument should match the tag argument of the message being sent, and the
communicator argument must match the communicator used by the sending pro-
cess. We’ll talk about the status p argument shortly. In many cases it won’t be used
by the calling function, and, as in our “greetings” program, the special MPI constant
MPI STATUS IGNORE can be passed.

3.1.9 Message matching
Suppose process q calls MPI Send with

MPI Send(send buf p, send buf sz, send type, dest, send tag,
send comm);

Also suppose that process r calls MPI Recv with

MPI Recv(recv buf p, recv buf sz, recv type, src, recv tag,
recv comm, &status);

Then the message sent by q with the above call to MPI Send can be received by r

with the call to MPI Recv if

. recv comm = send comm,. recv tag = send tag,. dest = r, and. src = q.

These conditions aren’t quite enough for the message to be successfully

received, however. The parameters specified by the first three pairs of arguments,
send buf p/recv buf p, send buf sz/recv buf sz, and send type/recv type,
must specify compatible buffers. For detailed rules, see the MPI-1 specification [39].
Most of the time, the following rule will suffice:

. If recv type = send type and recv buf sz � send buf sz, then the message
sent by q can be successfully received by r.

Of course, it can happen that one process is receiving messages from multiple
processes, and the receiving process doesn’t know the order in which the other pro-
cesses will send the messages. For example, suppose, for example, process 0 is doling
out work to processes 1,2, . . . ,comm sz� 1, and processes 1,2, . . . ,comm sz� 1, send
their results back to process 0 when they finish the work. If the work assigned to each
process takes an unpredictable amount of time, then 0 has no way of knowing the
order in which the processes will finish. If process 0 simply receives the results in
process rank order—first the results from process 1, then the results from process 2,
and so on—and if, say, process comm sz�1 finishes first, it could happen that pro-
cess comm sz�1 could sit and wait for the other processes to finish. In order to avoid
this problem, MPI provides a special constant MPI ANY SOURCE that can be passed to

22

When	using	wildcards	(MPI_ANY_SOURCE	or	MPI_ANY_TAG)	the	sender	can	use	the	
MPI_Status*	return	value	to	identify	the	source,	tag	of	a	message

How Much Data am I Receiving?

3.1 Getting Started 93

will return the number of elements received in the count argument. In general, the
syntax of MPI Get count is

int MPI Get count(
MPI Status⇤ status p /⇤ in ⇤/,
MPI Datatype type /⇤ in ⇤/,
int⇤ count p /⇤ out ⇤/);

Note that the count isn’t directly accessible as a member of the MPI Status
variable simply because it depends on the type of the received data, and, conse-
quently, determining it would probably require a calculation (e.g. (number of bytes
received)/(bytes per object)). If this information isn’t needed, we shouldn’t waste a
calculation determining it.

3.1.11 Semantics of MPI Send and MPI Recv
What exactly happens when we send a message from one process to another? Many
of the details depend on the particular system, but we can make a few generaliza-
tions. The sending process will assemble the message. For example, it will add the
“envelope” information to the actual data being transmitted—the destination process
rank, the sending process rank, the tag, the communicator, and some information
on the size of the message. Once the message has been assembled, recall from
Chapter 2 that there are essentially two possibilities: the sending process can buffer
the message or it can block. If it buffers the message, the MPI system will place the
message (data and envelope) into its own internal storage, and the call to MPI Send
will return.

Alternatively, if the system blocks, it will wait until it can begin transmitting
the message, and the call to MPI Send may not return immediately. Thus, if we use
MPI Send, when the function returns, we don’t actually know whether the message
has been transmitted. We only know that the storage we used for the message, the
send buffer, is available for reuse by our program. If we need to know that the
message has been transmitted, or if we need for our call to MPI Send to return
immediately—regardless of whether the message has been sent—MPI provides alter-
native functions for sending. We’ll learn about one of these alternative functions
later.

The exact behavior of MPI Send is determined by the MPI implementation. How-
ever, typical implementations have a default “cutoff” message size. If the size of a
message is less than the cutoff, it will be buffered. If the size of the message is greater
than the cutoff, MPI Send will block.

Unlike MPI Send, MPI Recv always blocks until a matching message has been
received. Thus, when a call to MPI Recv returns, we know that there is a message
stored in the receive buffer (unless there’s been an error). There is an alternate method
for receiving a message, in which the system checks whether a matching message is
available and returns, regardless of whether there is one. (For more details on the use
of nonblocking communication, see Exercise 6.22.)

MPI requires that messages be nonovertaking. This means that if process q sends
two messages to process r, then the first message sent by q must be available to r

23

Issues with Send and Receive
▪ Exact behavior is determined by the MPI implementation
▪ MPI_Send may behave differently with regard to buffer size, cutoffs and

blocking
▪ MPI_Recv always blocks until a matching message is received
▪ Know your implementation; don’t make assumptions!

24

TRAPEZOIDAL RULE IN MPI

The Trapezoidal Rule

y

a b x a b

y

x

(a) (b)

Figure 3.3

26

One Trapezoid

y

f (xi)
y = f (x)

f (xi+1)

x

h

xi xi+1

Figure 3.4

27

The Trapezoidal Rule

94 CHAPTER 3 Distributed-Memory Programming with MPI

before the second message. However, there is no restriction on the arrival of mes-
sages sent from different processes. That is, if q and t both send messages to r,
then even if q sends its message before t sends its message, there is no require-
ment that q’s message become available to r before t’s message. This is essentially
because MPI can’t impose performance on a network. For example, if q happens
to be running on a machine on Mars, while r and t are both running on the same
machine in San Francisco, and if q sends its message a nanosecond before t sends
its message, it would be extremely unreasonable to require that q’s message arrive
before t’s.

3.1.12 Some potential pitfalls
Note that the semantics of MPI Recv suggests a potential pitfall in MPI programming:
If a process tries to receive a message and there’s no matching send, then the process
will block forever. That is, the process will hang. When we design our programs, we
therefore need to be sure that every receive has a matching send. Perhaps even more
important, we need to be very careful when we’re coding that there are no inadvertent
mistakes in our calls to MPI Send and MPI Recv. For example, if the tags don’t match,
or if the rank of the destination process is the same as the rank of the source process,
the receive won’t match the send, and either a process will hang, or, perhaps worse,
the receive may match another send.

Similarly, if a call to MPI Send blocks and there’s no matching receive, then the
sending process can hang. If, on the other hand, a call to MPI Send is buffered and
there’s no matching receive, then the message will be lost.

3.2 THE TRAPEZOIDAL RULE IN MPI
Printing messages from processes is all well and good, but we’re probably not tak-
ing the trouble to learn to write MPI programs just to print messages. Let’s take a
look at a somewhat more useful program—let’s write a program that implements the
trapezoidal rule for numerical integration.

3.2.1 The trapezoidal rule
Recall that we can use the trapezoidal rule to approximate the area between the graph
of a function, y = f (x), two vertical lines, and the x-axis. See Figure 3.3. The basic
idea is to divide the interval on the x-axis into n equal subintervals. Then we approxi-
mate the area lying between the graph and each subinterval by a trapezoid whose base
is the subinterval, whose vertical sides are the vertical lines through the endpoints of
the subinterval, and whose fourth side is the secant line joining the points where the
vertical lines cross the graph. See Figure 3.4. If the endpoints of the subinterval are
xi and xi+1, then the length of the subinterval is h = xi+1 � xi. Also, if the lengths of
the two vertical segments are f (xi) and f (xi+1), then the area of the trapezoid is

Area of one trapezoid = h

2
[f (xi) + f (xi+1)].

3.2 The Trapezoidal Rule in MPI 95

y

a b x a b

y

x

(a) (b)

FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x = a and x = b, then

h = b � a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn�1 = a + (n � 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

y

f (xi)
y= f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid

3.2 The Trapezoidal Rule in MPI 95

y

a b x a b

y

x

(a) (b)

FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x = a and x = b, then

h = b � a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn�1 = a + (n � 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

y

f (xi)
y= f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid

3.2 The Trapezoidal Rule in MPI 95

y

a b x a b

y

x

(a) (b)

FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x = a and x = b, then

h = b � a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn�1 = a + (n � 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

y

f (xi)
y= f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid

28

Pseudo-Code for a Serial Program

3.2 The Trapezoidal Rule in MPI 95

y

a b x a b

y

x

(a) (b)

FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x = a and x = b, then

h = b � a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn�1 = a + (n � 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

y

f (xi)
y= f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid

29

Parallelizing the Trapezoidal Rule
▪ Apply Foster’s approach

- Partition problem solution into tasks
- Identify communication channels between tasks
- Aggregate tasks into composite tasks
- Map composite tasks to cores

30

Parallel Pseudo-Code

96 CHAPTER 3 Distributed-Memory Programming with MPI

3.2.2 Parallelizing the trapezoidal rule
It is not the most attractive word, but, as we noted in Chapter 1, people who write
parallel programs do use the verb “parallelize” to describe the process of converting
a serial program or algorithm into a parallel program.

Recall that we can design a parallel program using four basic steps:

1. Partition the problem solution into tasks.
2. Identify the communication channels between the tasks.
3. Aggregate the tasks into composite tasks.
4. Map the composite tasks to cores.

In the partitioning phase, we usually try to identify as many tasks as possible. For the
trapezoidal rule, we might identify two types of tasks: one type is finding the area
of a single trapezoid, and the other is computing the sum of these areas. Then the
communication channels will join each of the tasks of the first type to the single task
of the second type. See Figure 3.5.

So how can we aggregate the tasks and map them to the cores? Our intuition tells
us that the more trapezoids we use, the more accurate our estimate will be. That is,
we should use many trapezoids, and we will use many more trapezoids than cores.
Thus, we need to aggregate the computation of the areas of the trapezoids into groups.
A natural way to do this is to split the interval [a,b] up into comm sz subintervals. If
comm sz evenly divides n, the number of trapezoids, we can simply apply the trape-
zoidal rule with n/comm sz trapezoids to each of the comm sz subintervals. To finish,
we can have one of the processes, say process 0, add the estimates.

Let’s make the simplifying assumption that comm sz evenly divides n. Then
pseudo-code for the program might look something like the following:

1 Get a, b, n;
2 h = (b�a)/n;
3 local n = n/comm sz;
4 local a = a + my rank⇤local n⇤h;
5 local b = local a + local n⇤h;
6 local integral = Trap(local a, local b, local n, h);

Add areas

Compute area
of trap 0

Compute area
of trap 1

Compute area
of trap n −1

FIGURE 3.5

Tasks and communications for the trapezoidal rule

3.3 Dealing with I/O 97

7 if (my rank != 0)
8 Send local integral to process 0;
9 else /⇤ my rank == 0 ⇤/

10 total integral = local integral;
11 for (proc = 1; proc < comm sz; proc++) {
12 Receive local integral from proc;
13 total integral += local integral;
14 }
15 }
16 if (my rank == 0)
17 print result;

Let’s defer, for the moment, the issue of input and just “hardwire” the values for a,
b, and n. When we do this, we get the MPI program shown in Program 3.2. The Trap
function is just an implementation of the serial trapezoidal rule. See Program 3.3.

Notice that in our choice of identifiers, we try to differentiate between local and
global variables. Local variables are variables whose contents are significant only on
the process that’s using them. Some examples from the trapezoidal rule program are
local a, local b, and local n. Variables whose contents are significant to all the
processes are sometimes called global variables. Some examples from the trapezoidal
rule are a, b, and n. Note that this usage is different from the usage you learned in your
introductory programming class, where local variables are private to a single function
and global variables are accessible to all the functions. However, no confusion should
arise, since the context will usually make the meaning clear.

3.3 DEALING WITH I/O
Of course, the current version of the parallel trapezoidal rule has a serious deficiency:
it will only compute the integral over the interval [0,3] using 1024 trapezoids. We can
edit the code and recompile, but this is quite a bit of work compared to simply typing
in three new numbers. We need to address the problem of getting input from the user.
While we’re talking about input to parallel programs, it might be a good idea to also
take a look at output. We discussed these two issues in Chapter 2, so if you remember
the discussion of nondeterminism and output, you can skip ahead to Section 3.3.2.

3.3.1 Output
In both the “greetings” program and the trapezoidal rule program we’ve assumed
that process 0 can write to stdout, that is, its calls to printf behave as we might
expect. Although the MPI standard doesn’t specify which processes have access
to which I/O devices, virtually all MPI implementations allow all the processes in
MPI COMM WORLD full access to stdout and stderr, so most MPI implementations
allow all processes to execute printf and fprintf(stderr, ...).

However, most MPI implementations don’t provide any automatic scheduling of
access to these devices. That is, if multiple processes are attempting to write to,

31

Tasks and Communications for Trapezoidal
Rule

Add areas

Compute area
of trap 0

Compute area
of trap 1

Compute area
of trap n − 1

Figure 3.5

32

First Version (1)
98 CHAPTER 3 Distributed-Memory Programming with MPI

1 int main(void) {
2 int my rank, comm sz, n = 1024, local n;
3 double a = 0.0, b = 3.0, h, local a, local b;
4 double local int, total int;
5 int source;
6
7 MPI Init(NULL, NULL);
8 MPI Comm rank(MPI COMM WORLD, &my rank);
9 MPI Comm size(MPI COMM WORLD, &comm sz);

10
11 h = (b�a)/n; /⇤ h is the same for all processes ⇤/
12 local n = n/comm sz; /⇤ So is the number of trapezoids ⇤/
13
14 local a = a + my rank⇤local n⇤h;
15 local b = local a + local n⇤h;
16 local int = Trap(local a, local b, local n, h);
17
18 if (my rank != 0) {
19 MPI Send(&local int, 1, MPI DOUBLE, 0, 0,
20 MPI COMM WORLD);
21 } else {
22 total int = local int;
23 for (source = 1; source < comm sz; source++) {
24 MPI Recv(&local int, 1, MPI DOUBLE, source, 0,
25 MPI COMM WORLD, MPI STATUS IGNORE);
26 total int += local int;
27 }
28 }
29
30 if (my rank == 0) {
31 printf("With n = %d trapezoids, our estimate\n", n);
32 printf("of the integral from %f to %f = %.15e\n",
33 a, b, total int);
34 }
35 MPI Finalize();
36 return 0;
37 } /⇤ main ⇤/

Program 3.2: First version of the MPI trapezoidal rule

say, stdout, the order in which the processes’ output appears will be unpredictable.
Indeed, it can even happen that the output of one process will be interrupted by the
output of another process.

For example, suppose we try to run an MPI program in which each process simply
prints a message. See Program 3.4. On our cluster, if we run the program with five
processes, it often produces the “expected” output:

Proc 0 of 5 > Does anyone have a toothpick?
Proc 1 of 5 > Does anyone have a toothpick?
Proc 2 of 5 > Does anyone have a toothpick?

33

First Version (2)

98 CHAPTER 3 Distributed-Memory Programming with MPI

1 int main(void) {
2 int my rank, comm sz, n = 1024, local n;
3 double a = 0.0, b = 3.0, h, local a, local b;
4 double local int, total int;
5 int source;
6
7 MPI Init(NULL, NULL);
8 MPI Comm rank(MPI COMM WORLD, &my rank);
9 MPI Comm size(MPI COMM WORLD, &comm sz);

10
11 h = (b�a)/n; /⇤ h is the same for all processes ⇤/
12 local n = n/comm sz; /⇤ So is the number of trapezoids ⇤/
13
14 local a = a + my rank⇤local n⇤h;
15 local b = local a + local n⇤h;
16 local int = Trap(local a, local b, local n, h);
17
18 if (my rank != 0) {
19 MPI Send(&local int, 1, MPI DOUBLE, 0, 0,
20 MPI COMM WORLD);
21 } else {
22 total int = local int;
23 for (source = 1; source < comm sz; source++) {
24 MPI Recv(&local int, 1, MPI DOUBLE, source, 0,
25 MPI COMM WORLD, MPI STATUS IGNORE);
26 total int += local int;
27 }
28 }
29
30 if (my rank == 0) {
31 printf("With n = %d trapezoids, our estimate\n", n);
32 printf("of the integral from %f to %f = %.15e\n",
33 a, b, total int);
34 }
35 MPI Finalize();
36 return 0;
37 } /⇤ main ⇤/

Program 3.2: First version of the MPI trapezoidal rule

say, stdout, the order in which the processes’ output appears will be unpredictable.
Indeed, it can even happen that the output of one process will be interrupted by the
output of another process.

For example, suppose we try to run an MPI program in which each process simply
prints a message. See Program 3.4. On our cluster, if we run the program with five
processes, it often produces the “expected” output:

Proc 0 of 5 > Does anyone have a toothpick?
Proc 1 of 5 > Does anyone have a toothpick?
Proc 2 of 5 > Does anyone have a toothpick?

34

First Version (3)
3.3 Dealing with I/O 99

1 double Trap(
2 double left endpt /⇤ in ⇤/,
3 double right endpt /⇤ in ⇤/,
4 int trap count /⇤ in ⇤/,
5 double base len /⇤ in ⇤/) {
6 double estimate, x;
7 int i;
8
9 estimate = (f(left endpt) + f(right endpt))/2.0;

10 for (i = 1; i <= trap count�1; i++) {
11 x = left endpt + i⇤base len;
12 estimate += f(x);
13 }
14 estimate = estimate⇤base len;
15
16 return estimate;
17 } /⇤ Trap ⇤/

Program 3.3: Trap function in the MPI trapezoidal rule

#include <stdio.h>
#include <mpi.h>

int main(void) {
int my rank, comm sz;

MPI Init(NULL, NULL);
MPI Comm size(MPI COMM WORLD, &comm sz);
MPI Comm rank(MPI COMM WORLD, &my rank);

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my rank, comm sz);

MPI Finalize();
return 0;

} /⇤ main ⇤/

Program 3.4: Each process just prints a message

Proc 3 of 5 > Does anyone have a toothpick?
Proc 4 of 5 > Does anyone have a toothpick?

However, when we run it with six processes, the order of the output lines is
unpredictable:

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?

35

Dealing with I/O

Each process just
prints a message

3.3 Dealing with I/O 99

1 double Trap(
2 double left endpt /⇤ in ⇤/,
3 double right endpt /⇤ in ⇤/,
4 int trap count /⇤ in ⇤/,
5 double base len /⇤ in ⇤/) {
6 double estimate, x;
7 int i;
8
9 estimate = (f(left endpt) + f(right endpt))/2.0;

10 for (i = 1; i <= trap count�1; i++) {
11 x = left endpt + i⇤base len;
12 estimate += f(x);
13 }
14 estimate = estimate⇤base len;
15
16 return estimate;
17 } /⇤ Trap ⇤/

Program 3.3: Trap function in the MPI trapezoidal rule

#include <stdio.h>
#include <mpi.h>

int main(void) {
int my rank, comm sz;

MPI Init(NULL, NULL);
MPI Comm size(MPI COMM WORLD, &comm sz);
MPI Comm rank(MPI COMM WORLD, &my rank);

printf("Proc %d of %d > Does anyone have a toothpick?\n",
my rank, comm sz);

MPI Finalize();
return 0;

} /⇤ main ⇤/

Program 3.4: Each process just prints a message

Proc 3 of 5 > Does anyone have a toothpick?
Proc 4 of 5 > Does anyone have a toothpick?

However, when we run it with six processes, the order of the output lines is
unpredictable:

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?

36

Running with 6 Processes

Non-deterministic output

100 CHAPTER 3 Distributed-Memory Programming with MPI

Proc 5 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?

or

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 5 of 6 > Does anyone have a toothpick?

The reason this happens is that the MPI processes are “competing” for access to
the shared output device, stdout, and it’s impossible to predict the order in which the
processes’ output will be queued up. Such a competition results in nondeterminism.
That is, the actual output will vary from one run to the next.

In any case, if we don’t want output from different processes to appear in a random
order, it’s up to us to modify our program accordingly. For example, we can have each
process other than 0 send its output to process 0, and process 0 can print the output
in process rank order. This is exactly what we did in the “greetings” program.

3.3.2 Input
Unlike output, most MPI implementations only allow process 0 in MPI COMM WORLD
access to stdin. This makes sense: If multiple processes have access to stdin, which
process should get which parts of the input data? Should process 0 get the first line?
Process 1 the second? Or should process 0 get the first character?

In order to write MPI programs that can use scanf, we need to branch on
process rank, with process 0 reading in the data and then sending it to the other
processes. For example, we might write the Get input function shown in Pro-
gram 3.5 for our parallel trapezoidal rule program. In this function, process 0 simply
reads in the values for a, b, and n and sends all three values to each process. This
function uses the same basic communication structure as the “greetings” program,
except that now process 0 is sending to each process, while the other processes are
receiving.

To use this function, we can simply insert a call to it inside our main function,
being careful to put it after we’ve initialized my rank and comm sz:

. . .
MPI Comm rank(MPI COMM WORLD, &my rank);
MPI Comm size(MPI COMM WORLD, &comm sz);

Get data(my rank, comm sz, &a, &b, &n);

h = (b�a)/n;
. . .

Example output (could be any other permutation)

37

Input
▪ Most MPI implementations only allow process 0 in MPI_COMM_WORLD

access to stdin
▪ Process 0 must read the data (scanf) and send to the other processes

100 CHAPTER 3 Distributed-Memory Programming with MPI

Proc 5 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?

or

Proc 0 of 6 > Does anyone have a toothpick?
Proc 1 of 6 > Does anyone have a toothpick?
Proc 2 of 6 > Does anyone have a toothpick?
Proc 4 of 6 > Does anyone have a toothpick?
Proc 3 of 6 > Does anyone have a toothpick?
Proc 5 of 6 > Does anyone have a toothpick?

The reason this happens is that the MPI processes are “competing” for access to
the shared output device, stdout, and it’s impossible to predict the order in which the
processes’ output will be queued up. Such a competition results in nondeterminism.
That is, the actual output will vary from one run to the next.

In any case, if we don’t want output from different processes to appear in a random
order, it’s up to us to modify our program accordingly. For example, we can have each
process other than 0 send its output to process 0, and process 0 can print the output
in process rank order. This is exactly what we did in the “greetings” program.

3.3.2 Input
Unlike output, most MPI implementations only allow process 0 in MPI COMM WORLD
access to stdin. This makes sense: If multiple processes have access to stdin, which
process should get which parts of the input data? Should process 0 get the first line?
Process 1 the second? Or should process 0 get the first character?

In order to write MPI programs that can use scanf, we need to branch on
process rank, with process 0 reading in the data and then sending it to the other
processes. For example, we might write the Get input function shown in Pro-
gram 3.5 for our parallel trapezoidal rule program. In this function, process 0 simply
reads in the values for a, b, and n and sends all three values to each process. This
function uses the same basic communication structure as the “greetings” program,
except that now process 0 is sending to each process, while the other processes are
receiving.

To use this function, we can simply insert a call to it inside our main function,
being careful to put it after we’ve initialized my rank and comm sz:

. . .
MPI Comm rank(MPI COMM WORLD, &my rank);
MPI Comm size(MPI COMM WORLD, &comm sz);

Get data(my rank, comm sz, &a, &b, &n);

h = (b�a)/n;
. . .

Example: passing the input data to all processes

38

Get_input all ranks run
this function

Function for Reading User Input
3.4 Collective Communication 101

1 void Get input(
2 int my rank /⇤ in ⇤/,
3 int comm sz /⇤ in ⇤/,
4 double⇤ a p /⇤ out ⇤/,
5 double⇤ b p /⇤ out ⇤/,
6 int⇤ n p /⇤ out ⇤/) {
7 int dest;
8
9 if (my rank == 0) {

10 printf("Enter a, b, and n\n");
11 scanf("%lf %lf %d", a p, b p, n p);
12 for (dest = 1; dest < comm sz; dest++) {
13 MPI Send(a p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
14 MPI Send(b p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
15 MPI Send(n p, 1, MPI INT, dest, 0, MPI COMM WORLD);
16 }
17 } else { /⇤ my rank != 0 ⇤/
18 MPI Recv(a p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
19 MPI STATUS IGNORE);
20 MPI Recv(b p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
21 MPI STATUS IGNORE);
22 MPI Recv(n p, 1, MPI INT, 0, 0, MPI COMM WORLD,
23 MPI STATUS IGNORE);
24 }
25 } /⇤ Get input ⇤/

Program 3.5: A function for reading user input

3.4 COLLECTIVE COMMUNICATION
If we pause for a moment and think about our trapezoidal rule program, we can find
several things that we might be able to improve on. One of the most obvious is that the
“global sum” after each process has computed its part of the integral. If we hire eight
workers to, say, build a house, we might feel that we weren’t getting our money’s
worth if seven of the workers told the first what to do, and then the seven collected
their pay and went home. But this is very similar to what we’re doing in our global
sum. Each process with rank greater than 0 is “telling process 0 what to do” and then
quitting. That is, each process with rank greater than 0 is, in effect, saying “add this
number into the total.” Process 0 is doing nearly all the work in computing the global
sum, while the other processes are doing almost nothing. Sometimes it does happen
that this is the best we can do in a parallel program, but if we imagine that we have
eight students, each of whom has a number, and we want to find the sum of all eight
numbers, we can certainly come up with a more equitable distribution of the work
than having seven of the eight give their numbers to one of the students and having
the first do the addition.

39

This Could be the End
▪ Essentially, we could stop discussing MPI here
▪ Everything can be built on top of point-to-point send and receive

functions
▪ What is missing

- higher-level communication abstractions for convenience
- efficient one-to-many, many-to-one, and many-to-many communication
- functions for safe (deadlock free) operation
- one-sided communication
- efficient file I/O

40

MPI Collective Communication Routines
▪ MPI Collectives perform operations by involving all tasks available within

one communicator

▪ Type of collective operations
- synchronization: let all processes wait until all members of the group have reached a

synchronization point (barrier)
- data movement: one-to-many and many-to-many communications (broadcast, scatter,

gather, all to all)
- collective computation (reductions): one member of the group collects data from all other

members and performs an operation on the data (min, max, add, multiply, …)

41

Collections Visual Overview

image: LLNL MPI tutorial 42

Reduction: Tree-Structured Global Sum
Processes

5 2 −1

−4 −5

−3 6 5 −7 2

0 1

7

3

9

6

11

2 3 4 5 6 7

Figure 3.6

43

An Alternative Tree-Structured Global Sum

Processes

5 2 −1

−8 −1

−3 6 5 −7 2

0 1

11 7

3 6

9

2 3 4 5 6 7

Figure 3.7

44

MPI_Reduce

104 CHAPTER 3 Distributed-Memory Programming with MPI

between collective communications and functions such as MPI Send and MPI Recv,
MPI Send and MPI Recv are often called point-to-point communications.

In fact, global sum is just a special case of an entire class of collective communi-
cations. For example, it might happen that instead of finding the sum of a collection of
comm sz numbers distributed among the processes, we want to find the maximum or
the minimum or the product or any one of many other possibilities. MPI generalized
the global-sum function so that any one of these possibilities can be implemented
with a single function:

int MPI Reduce(
void⇤ input data p /⇤ in ⇤/,
void⇤ output data p /⇤ out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
MPI Op operator /⇤ in ⇤/,
int dest process /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The key to the generalization is the fifth argument, operator. It has type MPI Op,
which is a predefined MPI type like MPI Datatype and MPI Comm. There are a number
of predefined values in this type. See Table 3.2. It’s also possible to define your own
operators; for details, see the MPI-1 Standard [39].

The operator we want is MPI SUM. Using this value for the operator argument, we
can replace the code in Lines 18 through 28 of Program 3.2 with the single function
call

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

One point worth noting is that by using a count argument greater than 1, MPI Reduce
can operate on arrays instead of scalars. The following code could thus be used to

Table 3.2 Predefined Reduction Operators in MPI

Operation Value Meaning

MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum

104 CHAPTER 3 Distributed-Memory Programming with MPI

between collective communications and functions such as MPI Send and MPI Recv,
MPI Send and MPI Recv are often called point-to-point communications.

In fact, global sum is just a special case of an entire class of collective communi-
cations. For example, it might happen that instead of finding the sum of a collection of
comm sz numbers distributed among the processes, we want to find the maximum or
the minimum or the product or any one of many other possibilities. MPI generalized
the global-sum function so that any one of these possibilities can be implemented
with a single function:

int MPI Reduce(
void⇤ input data p /⇤ in ⇤/,
void⇤ output data p /⇤ out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
MPI Op operator /⇤ in ⇤/,
int dest process /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The key to the generalization is the fifth argument, operator. It has type MPI Op,
which is a predefined MPI type like MPI Datatype and MPI Comm. There are a number
of predefined values in this type. See Table 3.2. It’s also possible to define your own
operators; for details, see the MPI-1 Standard [39].

The operator we want is MPI SUM. Using this value for the operator argument, we
can replace the code in Lines 18 through 28 of Program 3.2 with the single function
call

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

One point worth noting is that by using a count argument greater than 1, MPI Reduce
can operate on arrays instead of scalars. The following code could thus be used to

Table 3.2 Predefined Reduction Operators in MPI

Operation Value Meaning

MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum

3.4 Collective Communication 105

add a collection of N-dimensional vectors, one per process:

double local x[N], sum[N];
. . .
MPI Reduce(local x, sum, N, MPI DOUBLE, MPI SUM, 0,

MPI COMM WORLD);

3.4.3 Collective vs. point-to-point communications
It’s important to remember that collective communications differ in several ways
from point-to-point communications:

1. All the processes in the communicator must call the same collective function. For
example, a program that attempts to match a call to MPI Reduce on one process
with a call to MPI Recv on another process is erroneous, and, in all likelihood, the
program will hang or crash.

2. The arguments passed by each process to an MPI collective communication must
be “compatible.” For example, if one process passes in 0 as the dest process
and another passes in 1, then the outcome of a call to MPI Reduce is erroneous,
and, once again, the program is likely to hang or crash.

3. The output data p argument is only used on dest process. However, all
of the processes still need to pass in an actual argument corresponding to
output data p, even if it’s just NULL.

4. Point-to-point communications are matched on the basis of tags and communica-
tors. Collective communications don’t use tags, so they’re matched solely on the
basis of the communicator and the order in which they’re called. As an example,
consider the calls to MPI Reduce shown in Table 3.3. Suppose that each pro-
cess calls MPI Reduce with operator MPI SUM, and destination process 0. At first
glance, it might seem that after the two calls to MPI Reduce, the value of b will be
three, and the value of d will be six. However, the names of the memory locations
are irrelevant to the matching, of the calls to MPI Reduce. The order of the calls
will determine the matching, so the value stored in b will be 1 + 2 + 1 = 4, and
the value stored in d will be 2 + 1 + 2 = 5.

A final caveat: it might be tempting to call MPI Reduce using the same buffer for
both input and output. For example, if we wanted to form the global sum of x on each
process and store the result in x on process 0, we might try calling

MPI Reduce(&x, &x, 1, MPI DOUBLE, MPI SUM, 0, comm);

Table 3.3 Multiple Calls to MPI Reduce

Time Process 0 Process 1 Process 2

0 a = 1; c = 2 a = 1; c = 2 a = 1; c = 2
1 MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...)
2 MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...)

MPI_Reduce function signature

example: sum scalar value (local_int) from each rank

example: element-wise summation of arrays from each rank 45

MPI_Reduce Illustration

image: LLNL MPI tutorial 46

Predefined Reduction Operators in MPI

104 CHAPTER 3 Distributed-Memory Programming with MPI

between collective communications and functions such as MPI Send and MPI Recv,
MPI Send and MPI Recv are often called point-to-point communications.

In fact, global sum is just a special case of an entire class of collective communi-
cations. For example, it might happen that instead of finding the sum of a collection of
comm sz numbers distributed among the processes, we want to find the maximum or
the minimum or the product or any one of many other possibilities. MPI generalized
the global-sum function so that any one of these possibilities can be implemented
with a single function:

int MPI Reduce(
void⇤ input data p /⇤ in ⇤/,
void⇤ output data p /⇤ out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
MPI Op operator /⇤ in ⇤/,
int dest process /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The key to the generalization is the fifth argument, operator. It has type MPI Op,
which is a predefined MPI type like MPI Datatype and MPI Comm. There are a number
of predefined values in this type. See Table 3.2. It’s also possible to define your own
operators; for details, see the MPI-1 Standard [39].

The operator we want is MPI SUM. Using this value for the operator argument, we
can replace the code in Lines 18 through 28 of Program 3.2 with the single function
call

MPI Reduce(&local int, &total int, 1, MPI DOUBLE, MPI SUM, 0,
MPI COMM WORLD);

One point worth noting is that by using a count argument greater than 1, MPI Reduce
can operate on arrays instead of scalars. The following code could thus be used to

Table 3.2 Predefined Reduction Operators in MPI

Operation Value Meaning

MPI MAX Maximum
MPI MIN Minimum
MPI SUM Sum
MPI PROD Product
MPI LAND Logical and
MPI BAND Bitwise and
MPI LOR Logical or
MPI BOR Bitwise or
MPI LXOR Logical exclusive or
MPI BXOR Bitwise exclusive or
MPI MAXLOC Maximum and location of maximum
MPI MINLOC Minimum and location of minimum

47

Collective vs. Point-to-Point Communications

▪ All the processes in the communicator must call the same collective
function
- e.g. a program that attempts to match a call to MPI_Reduce on one process with a call to

MPI_Recv on another process is erroneous and will cause the program to hang or crash
- arguments passed by each process to an MPI collective must be “compatible”, e.g. if one

process passes in 0 as the dest_process and another passes in 1, then the outcome of a call to
MPI_Reduce is erroneous and will cause the program to hang or crash

- The output_data_p argument is only used on dest_process, however, all of the processes still
need to pass in an actual argument corresponding to output_data_p, even if it’s just NULL

▪ Send and receive matching
- point-to-point communication: matched on the basis of tags and communicators
- collective communications: don’t use tags, matching on the basis of the communicator and the

order in which they’re called

48

Example
▪ Collectives are matched by order in which they are called (not tags)

- example: MPI_ADD reduction, with rank 0 as destination
- after executing these statements value of b=1+2+1 and d=2+1+2

▪ Using the same buffer for both input and output is illegal and may result in
invalid results (aliasing)

▪ MPI has special functions for sending and receiving using a single buffer (e.g.
MPI_Sendrecv_replace)

3.4 Collective Communication 105

add a collection of N-dimensional vectors, one per process:

double local x[N], sum[N];
. . .
MPI Reduce(local x, sum, N, MPI DOUBLE, MPI SUM, 0,

MPI COMM WORLD);

3.4.3 Collective vs. point-to-point communications
It’s important to remember that collective communications differ in several ways
from point-to-point communications:

1. All the processes in the communicator must call the same collective function. For
example, a program that attempts to match a call to MPI Reduce on one process
with a call to MPI Recv on another process is erroneous, and, in all likelihood, the
program will hang or crash.

2. The arguments passed by each process to an MPI collective communication must
be “compatible.” For example, if one process passes in 0 as the dest process
and another passes in 1, then the outcome of a call to MPI Reduce is erroneous,
and, once again, the program is likely to hang or crash.

3. The output data p argument is only used on dest process. However, all
of the processes still need to pass in an actual argument corresponding to
output data p, even if it’s just NULL.

4. Point-to-point communications are matched on the basis of tags and communica-
tors. Collective communications don’t use tags, so they’re matched solely on the
basis of the communicator and the order in which they’re called. As an example,
consider the calls to MPI Reduce shown in Table 3.3. Suppose that each pro-
cess calls MPI Reduce with operator MPI SUM, and destination process 0. At first
glance, it might seem that after the two calls to MPI Reduce, the value of b will be
three, and the value of d will be six. However, the names of the memory locations
are irrelevant to the matching, of the calls to MPI Reduce. The order of the calls
will determine the matching, so the value stored in b will be 1 + 2 + 1 = 4, and
the value stored in d will be 2 + 1 + 2 = 5.

A final caveat: it might be tempting to call MPI Reduce using the same buffer for
both input and output. For example, if we wanted to form the global sum of x on each
process and store the result in x on process 0, we might try calling

MPI Reduce(&x, &x, 1, MPI DOUBLE, MPI SUM, 0, comm);

Table 3.3 Multiple Calls to MPI Reduce

Time Process 0 Process 1 Process 2

0 a = 1; c = 2 a = 1; c = 2 a = 1; c = 2
1 MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...)
2 MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...)

memory location of destination used by senders is irrelevant

3.4 Collective Communication 105

add a collection of N-dimensional vectors, one per process:

double local x[N], sum[N];
. . .
MPI Reduce(local x, sum, N, MPI DOUBLE, MPI SUM, 0,

MPI COMM WORLD);

3.4.3 Collective vs. point-to-point communications
It’s important to remember that collective communications differ in several ways
from point-to-point communications:

1. All the processes in the communicator must call the same collective function. For
example, a program that attempts to match a call to MPI Reduce on one process
with a call to MPI Recv on another process is erroneous, and, in all likelihood, the
program will hang or crash.

2. The arguments passed by each process to an MPI collective communication must
be “compatible.” For example, if one process passes in 0 as the dest process
and another passes in 1, then the outcome of a call to MPI Reduce is erroneous,
and, once again, the program is likely to hang or crash.

3. The output data p argument is only used on dest process. However, all
of the processes still need to pass in an actual argument corresponding to
output data p, even if it’s just NULL.

4. Point-to-point communications are matched on the basis of tags and communica-
tors. Collective communications don’t use tags, so they’re matched solely on the
basis of the communicator and the order in which they’re called. As an example,
consider the calls to MPI Reduce shown in Table 3.3. Suppose that each pro-
cess calls MPI Reduce with operator MPI SUM, and destination process 0. At first
glance, it might seem that after the two calls to MPI Reduce, the value of b will be
three, and the value of d will be six. However, the names of the memory locations
are irrelevant to the matching, of the calls to MPI Reduce. The order of the calls
will determine the matching, so the value stored in b will be 1 + 2 + 1 = 4, and
the value stored in d will be 2 + 1 + 2 = 5.

A final caveat: it might be tempting to call MPI Reduce using the same buffer for
both input and output. For example, if we wanted to form the global sum of x on each
process and store the result in x on process 0, we might try calling

MPI Reduce(&x, &x, 1, MPI DOUBLE, MPI SUM, 0, comm);

Table 3.3 Multiple Calls to MPI Reduce

Time Process 0 Process 1 Process 2

0 a = 1; c = 2 a = 1; c = 2 a = 1; c = 2
1 MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...)
2 MPI Reduce(&c, &d, ...) MPI Reduce(&a, &b, ...) MPI Reduce(&c, &d, ...)

49

MPI_Allreduce
▪ Useful in a situation in which all of the processes need the result of a

global sum in order to complete some larger computation

▪ Essentially the same function as MPI_Reduce but without dest_process
argument, because all process shall receive the result

106 CHAPTER 3 Distributed-Memory Programming with MPI

However, this call is illegal in MPI, so its result will be unpredictable: it might pro-
duce an incorrect result, it might cause the program to crash, it might even produce
a correct result. It’s illegal because it involves aliasing of an output argument. Two
arguments are aliased if they refer to the same block of memory, and MPI prohibits
aliasing of arguments if one of them is an output or input/output argument. This is
because the MPI Forum wanted to make the Fortran and C versions of MPI as sim-
ilar as possible, and Fortran prohibits aliasing. In some instances, MPI provides an
alternative construction that effectively avoids this restriction. See Section 6.1.9 for
an example.

3.4.4 MPI Allreduce
In our trapezoidal rule program, we just print the result, so it’s perfectly natural for
only one process to get the result of the global sum. However, it’s not difficult to
imagine a situation in which all of the processes need the result of a global sum in
order to complete some larger computation. In this situation, we encounter some of
the same problems we encountered with our original global sum. For example, if we
use a tree to compute a global sum, we might “reverse” the branches to distribute
the global sum (see Figure 3.8). Alternatively, we might have the processes exchange

partial results instead of using one-way communications. Such a communication pat-
tern is sometimes called a butterfly (see Figure 3.9). Once again, we don’t want to
have to decide on which structure to use, or how to code it for optimal performance.
Fortunately, MPI provides a variant of MPI Reduce that will store the result on all the
processes in the communicator:

int MPI Allreduce(
void⇤ input data p /⇤ in ⇤/,
void⇤ output data p /⇤ out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
MPI Op operator /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The argument list is identical to that for MPI Reduce except that there is no
dest process since all the processes should get the result.

3.4.5 Broadcast
If we can improve the performance of the global sum in our trapezoidal rule program
by replacing a loop of receives on process 0 with a tree-structured communication,
we ought to be able to do something similar with the distribution of the input data.
In fact, if we simply “reverse” the communications in the tree-structured global sum
in Figure 3.6, we obtain the tree-structured communication shown in Figure 3.10,
and we can use this structure to distribute the input data. A collective communication
in which data belonging to a single process is sent to all of the processes in the
communicator is called a broadcast, and you’ve probably guessed that MPI provides

MPI_Allreduce function signature

50

A global sum followed
by distribution of the
result.

Processes

Processes

5 2 −1

−4 −511

−3 6 5 −7 2

0 1

7

3 6

9

9

9

9 9 9 9 9 9 9 9

9 9

9

9

2 3 4 5 6 7

0 1 2 3 4 5 6 7

Naïve implementation of MPI_Allreduce

Figure 3.8

51

A butterfly-structured global sum

Efficient Implementation of MPI_Allreduce

Figure 3.9

52

Broadcast
▪ Data belonging to a single process is sent to all of the processes in the

communicator

▪ For the sending process data_p is an input, for all other processes an
output

108 CHAPTER 3 Distributed-Memory Programming with MPI

Processes

6

6

6

6 6 6 6 6 6 6 6

6 6

6

6

0 1 2 3 4 5 6 7

FIGURE 3.10

A tree-structured broadcast

a broadcast function:

int MPI Bcast(
void⇤ data p /⇤ in/out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
int source proc /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The process with rank source proc sends the contents of the memory referenced
by data p to all the processes in the communicator comm. Program 3.6 shows how

1 void Get input(
2 int my rank /⇤ in ⇤/,
3 int comm sz /⇤ in ⇤/,
4 double⇤ a p /⇤ out ⇤/,
5 double⇤ b p /⇤ out ⇤/,
6 int⇤ n p /⇤ out ⇤/) {
7
8 if (my rank == 0) {
9 printf("Enter a, b, and n\n");

10 scanf("%lf %lf %d", a p, b p, n p);
11 }
12 MPI Bcast(a p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
13 MPI Bcast(b p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
14 MPI Bcast(n p, 1, MPI INT, 0, MPI COMM WORLD);
15 } /⇤ Get input ⇤/

Program 3.6: A version of Get input that uses MPI Bcast

MPI_Bcast function signature

53

A tree-structured broadcast

Figure 3.10
54

MPI_Bcast Illustration

image: LLNL MPI tutorial 55

Recap: Function for Reading User Input

56

3.4 Collective Communication 101

1 void Get input(
2 int my rank /⇤ in ⇤/,
3 int comm sz /⇤ in ⇤/,
4 double⇤ a p /⇤ out ⇤/,
5 double⇤ b p /⇤ out ⇤/,
6 int⇤ n p /⇤ out ⇤/) {
7 int dest;
8
9 if (my rank == 0) {

10 printf("Enter a, b, and n\n");
11 scanf("%lf %lf %d", a p, b p, n p);
12 for (dest = 1; dest < comm sz; dest++) {
13 MPI Send(a p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
14 MPI Send(b p, 1, MPI DOUBLE, dest, 0, MPI COMM WORLD);
15 MPI Send(n p, 1, MPI INT, dest, 0, MPI COMM WORLD);
16 }
17 } else { /⇤ my rank != 0 ⇤/
18 MPI Recv(a p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
19 MPI STATUS IGNORE);
20 MPI Recv(b p, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD,
21 MPI STATUS IGNORE);
22 MPI Recv(n p, 1, MPI INT, 0, 0, MPI COMM WORLD,
23 MPI STATUS IGNORE);
24 }
25 } /⇤ Get input ⇤/

Program 3.5: A function for reading user input

3.4 COLLECTIVE COMMUNICATION
If we pause for a moment and think about our trapezoidal rule program, we can find
several things that we might be able to improve on. One of the most obvious is that the
“global sum” after each process has computed its part of the integral. If we hire eight
workers to, say, build a house, we might feel that we weren’t getting our money’s
worth if seven of the workers told the first what to do, and then the seven collected
their pay and went home. But this is very similar to what we’re doing in our global
sum. Each process with rank greater than 0 is “telling process 0 what to do” and then
quitting. That is, each process with rank greater than 0 is, in effect, saying “add this
number into the total.” Process 0 is doing nearly all the work in computing the global
sum, while the other processes are doing almost nothing. Sometimes it does happen
that this is the best we can do in a parallel program, but if we imagine that we have
eight students, each of whom has a number, and we want to find the sum of all eight
numbers, we can certainly come up with a more equitable distribution of the work
than having seven of the eight give their numbers to one of the students and having
the first do the addition.

point-to-point communication

Implementation of Get_input using MPI_Bcast

108 CHAPTER 3 Distributed-Memory Programming with MPI

Processes

6

6

6

6 6 6 6 6 6 6 6

6 6

6

6

0 1 2 3 4 5 6 7

FIGURE 3.10

A tree-structured broadcast

a broadcast function:

int MPI Bcast(
void⇤ data p /⇤ in/out ⇤/,
int count /⇤ in ⇤/,
MPI Datatype datatype /⇤ in ⇤/,
int source proc /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The process with rank source proc sends the contents of the memory referenced
by data p to all the processes in the communicator comm. Program 3.6 shows how

1 void Get input(
2 int my rank /⇤ in ⇤/,
3 int comm sz /⇤ in ⇤/,
4 double⇤ a p /⇤ out ⇤/,
5 double⇤ b p /⇤ out ⇤/,
6 int⇤ n p /⇤ out ⇤/) {
7
8 if (my rank == 0) {
9 printf("Enter a, b, and n\n");

10 scanf("%lf %lf %d", a p, b p, n p);
11 }
12 MPI Bcast(a p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
13 MPI Bcast(b p, 1, MPI DOUBLE, 0, MPI COMM WORLD);
14 MPI Bcast(n p, 1, MPI INT, 0, MPI COMM WORLD);
15 } /⇤ Get input ⇤/

Program 3.6: A version of Get input that uses MPI Bcast
57

broadcast: simpler, more efficient

Data Distributions
▪ Goal: We want to efficiently execute operations on matrices or vectors in a

distributed memory machine
▪ Example: vector summation

▪ Serial implementation

3.4 Collective Communication 109

to modify the Get input function shown in Program 3.5 so that it uses MPI Bcast
instead of MPI Send and MPI Recv.

Recall that in serial programs, an in/out argument is one whose value is both
used and changed by the function. For MPI Bcast, however, the data p argument is
an input argument on the process with rank source proc and an output argument
on the other processes. Thus, when an argument to a collective communication is
labeled in/out, it’s possible that it’s an input argument on some processes and an
output argument on other processes.

3.4.6 Data distributions
Suppose we want to write a function that computes a vector sum:

x + y = (x0,x1, . . . ,xn�1) + (y0,y1, . . . ,yn�1)

= (x0 + y0,x1 + y1, . . . ,xn�1 + yn�1)

= (z0,z1, . . . ,zn�1)

= z

If we implement the vectors as arrays of, say, doubles, we could implement serial
vector addition with the code shown in Program 3.7.

1 void Vector sum(double x[], double y[], double z[], int n) {
2 int i;
3
4 for (i = 0; i < n; i++)
5 z[i] = x[i] + y[i];
6 } /⇤ Vector sum ⇤/

Program 3.7: A serial implementation of vector addition

How could we implement this using MPI? The work consists of adding the indi-
vidual components of the vectors, so we might specify that the tasks are just the
additions of corresponding components. Then there is no communication between
the tasks, and the problem of parallelizing vector addition boils down to aggregat-
ing the tasks and assigning them to the cores. If the number of components is n and
we have comm sz cores or processes, let’s assume that n evenly divides comm sz and
define local n = n/comm sz. Then we can simply assign blocks of local n consec-
utive components to each process. The four columns on the left of Table 3.4 show an
example when n = 12 and comm sz = 3. This is often called a block partition of the
vector.

An alternative to a block partition is a cyclic partition. In a cyclic partition,
we assign the components in a round robin fashion. The four columns in the mid-
dle of Table 3.4 show an example when n = 12 and comm sz = 3. Process 0 gets
component 0, process 1 gets component 1, process 2 gets component 2, process 0
gets component 3, and so on.

3.4 Collective Communication 109

to modify the Get input function shown in Program 3.5 so that it uses MPI Bcast
instead of MPI Send and MPI Recv.

Recall that in serial programs, an in/out argument is one whose value is both
used and changed by the function. For MPI Bcast, however, the data p argument is
an input argument on the process with rank source proc and an output argument
on the other processes. Thus, when an argument to a collective communication is
labeled in/out, it’s possible that it’s an input argument on some processes and an
output argument on other processes.

3.4.6 Data distributions
Suppose we want to write a function that computes a vector sum:

x + y = (x0,x1, . . . ,xn�1) + (y0,y1, . . . ,yn�1)

= (x0 + y0,x1 + y1, . . . ,xn�1 + yn�1)

= (z0,z1, . . . ,zn�1)

= z

If we implement the vectors as arrays of, say, doubles, we could implement serial
vector addition with the code shown in Program 3.7.

1 void Vector sum(double x[], double y[], double z[], int n) {
2 int i;
3
4 for (i = 0; i < n; i++)
5 z[i] = x[i] + y[i];
6 } /⇤ Vector sum ⇤/

Program 3.7: A serial implementation of vector addition

How could we implement this using MPI? The work consists of adding the indi-
vidual components of the vectors, so we might specify that the tasks are just the
additions of corresponding components. Then there is no communication between
the tasks, and the problem of parallelizing vector addition boils down to aggregat-
ing the tasks and assigning them to the cores. If the number of components is n and
we have comm sz cores or processes, let’s assume that n evenly divides comm sz and
define local n = n/comm sz. Then we can simply assign blocks of local n consec-
utive components to each process. The four columns on the left of Table 3.4 show an
example when n = 12 and comm sz = 3. This is often called a block partition of the
vector.

An alternative to a block partition is a cyclic partition. In a cyclic partition,
we assign the components in a round robin fashion. The four columns in the mid-
dle of Table 3.4 show an example when n = 12 and comm sz = 3. Process 0 gets
component 0, process 1 gets component 1, process 2 gets component 2, process 0
gets component 3, and so on.

58

Distribution of Data to Processes
▪ How to partition and distribute data to processes
▪ Example: partitioning a 12 component vector to 3 processes

- block partitioning: assign blocks of consecutive components to each process
- cyclic partitioning: assign components in a round robin fashion
- block-cyclic partitioning: use a cyclic distribution of blocks of components

110 CHAPTER 3 Distributed-Memory Programming with MPI

Table 3.4 Different Partitions of a 12-Component Vector

among Three Processes

Components

Block-Cyclic

Process Block Cyclic Blocksize = 2

0 0 1 2 3 0 3 6 9 0 1 6 7
1 4 5 6 7 1 4 7 10 +6’ 3 8 9
2 8 9 10 11 2 5 8 11 4 5 10 11

A third alternative is a block-cyclic partition. The idea here is that instead
of using a cyclic distribution of individual components, we use a cyclic distri-
bution of blocks of components, so a block-cyclic distribution isn’t fully spec-
ified until we decide how large the blocks are. If comm sz = 3, n = 12, and
the blocksize b = 2, an example is shown in the four columns on the right of
Table 3.4.

Once we’ve decided how to partition the vectors, it’s easy to write a parallel vector
addition function: each process simply adds its assigned components. Furthermore,
regardless of the partition, each process will have local n components of the vec-
tor, and, in order to save on storage, we can just store these on each process as an
array of local n elements. Thus, each process will execute the function shown in
Program 3.8. Although the names of the variables have been changed to emphasize
the fact that the function is operating on only the process’ portion of the vector, this
function is virtually identical to the original serial function.

1 void Parallel vector sum(
2 double local x[] /⇤ in ⇤/,
3 double local y[] /⇤ in ⇤/,
4 double local z[] /⇤ out ⇤/,
5 int local n /⇤ in ⇤/) {
6 int local i;
7
8 for (local i = 0; local i < local n; local i++)
9 local z[local i] = local x[local i] + local y[local i];

10 } /⇤ Parallel vector sum ⇤/

Program 3.8: A parallel implementation of vector addition

3.4.7 Scatter
Now suppose we want to test our vector addition function. It would be convenient
to be able to read the dimension of the vectors and then read in the vectors x and y.

2

59

Parallel Implementation of Vector Addition
▪ Once the data is distributed, the implementation of the parallel code is

straight forward

110 CHAPTER 3 Distributed-Memory Programming with MPI

Table 3.4 Different Partitions of a 12-Component Vector

among Three Processes

Components

Block-Cyclic

Process Block Cyclic Blocksize = 2

0 0 1 2 3 0 3 6 9 0 1 6 7
1 4 5 6 7 1 4 7 10 +6’ 3 8 9
2 8 9 10 11 2 5 8 11 4 5 10 11

A third alternative is a block-cyclic partition. The idea here is that instead
of using a cyclic distribution of individual components, we use a cyclic distri-
bution of blocks of components, so a block-cyclic distribution isn’t fully spec-
ified until we decide how large the blocks are. If comm sz = 3, n = 12, and
the blocksize b = 2, an example is shown in the four columns on the right of
Table 3.4.

Once we’ve decided how to partition the vectors, it’s easy to write a parallel vector
addition function: each process simply adds its assigned components. Furthermore,
regardless of the partition, each process will have local n components of the vec-
tor, and, in order to save on storage, we can just store these on each process as an
array of local n elements. Thus, each process will execute the function shown in
Program 3.8. Although the names of the variables have been changed to emphasize
the fact that the function is operating on only the process’ portion of the vector, this
function is virtually identical to the original serial function.

1 void Parallel vector sum(
2 double local x[] /⇤ in ⇤/,
3 double local y[] /⇤ in ⇤/,
4 double local z[] /⇤ out ⇤/,
5 int local n /⇤ in ⇤/) {
6 int local i;
7
8 for (local i = 0; local i < local n; local i++)
9 local z[local i] = local x[local i] + local y[local i];

10 } /⇤ Parallel vector sum ⇤/

Program 3.8: A parallel implementation of vector addition

3.4.7 Scatter
Now suppose we want to test our vector addition function. It would be convenient
to be able to read the dimension of the vectors and then read in the vectors x and y.

A parallel implementation of vector addition

60

Scatter
▪ MPI_Scatter can be used in a function that reads in an entire vector on

process 0 but only sends the needed components to each of the other
processes

▪ Performs only block distribution, works only if number of elements is
evenly divisible by number of processes
▪ Note: send_count and recv_count is size of elements being sent to each

process, not total size of data

3.4 Collective Communication 111

We already know how to read in the dimension of the vectors: process 0 can prompt
the user, read in the value, and broadcast the value to the other processes. We might
try something similar with the vectors: process 0 could read them in and broadcast
them to the other processes. However, this could be very wasteful. If there are 10
processes and the vectors have 10,000 components, then each process will need
to allocate storage for vectors with 10,000 components, when it is only operating
on subvectors with 1000 components. If, for example, we use a block distribution,
it would be better if process 0 sent only components 1000 to 1999 to process 1,
components 2000 to 2999 to process 2, and so on. Using this approach, processes
1 to 9 would only need to allocate storage for the components they’re actually
using.

Thus, we might try writing a function that reads in an entire vector that is on
process 0 but only sends the needed components to each of the other processes. For
the communication MPI provides just such a function:

int MPI Scatter(
void⇤ send buf p /⇤ in ⇤/,
int send count /⇤ in ⇤/,
MPI Datatype send type /⇤ in ⇤/,
void⇤ recv buf p /⇤ out ⇤/,
int recv count /⇤ in ⇤/,
MPI Datatype recv type /⇤ in ⇤/,
int src proc /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

If the communicator comm contains comm sz processes, then MPI Scatter divides the
data referenced by send buf p into comm sz pieces—the first piece goes to process 0,
the second to process 1, the third to process 2, and so on. For example, suppose we’re
using a block distribution and process 0 has read in all of an n-component vector into
send buf p. Then, process 0 will get the first local n = n/comm sz components,
process 1 will get the next local n components, and so on. Each process should pass
its local vector as the recv buf p argument and the recv count argument should
be local n. Both send type and recv type should be MPI DOUBLE and src proc
should be 0. Perhaps surprisingly, send count should also be local n—send count
is the amount of data going to each process; it’s not the amount of data in the memory
referred to by send buf p. If we use a block distribution and MPI Scatter, we can
read in a vector using the function Read vector shown in Program 3.9.

One point to note here is that MPI Scatter sends the first block of send count
objects to process 0, the next block of send count objects to process 1, and so on,
so this approach to reading and distributing the input vectors will only be suitable
if we’re using a block distribution and n, the number of components in the vectors,
is evenly divisible by comm sz. We’ll discuss a partial solution to dealing with a
cyclic or block-cyclic distribution in Exercise 18. For a complete solution, see [23].
We’ll look at dealing with the case in which n is not evenly divisible by comm sz in
Exercise 3.13.

MPI_Scatter function signature

61

MPI_Scatter Illustration

image: LLNL MPI tutorial 62

Reading and Distributing a Vector
112 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Read vector(
2 double local a[] /⇤ out ⇤/,
3 int local n /⇤ in ⇤/,
4 int n /⇤ in ⇤/,
5 char vec name[] /⇤ in ⇤/,
6 int my rank /⇤ in ⇤/,
7 MPI Comm comm /⇤ in ⇤/) {
8
9 double⇤ a = NULL;

10 int i;
11
12 if (my rank == 0) {
13 a = malloc(n⇤sizeof(double));
14 printf("Enter the vector %s\n", vec name);
15 for (i = 0; i < n; i++)
16 scanf("%lf", &a[i]);
17 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
18 MPI DOUBLE, 0, comm);
19 free(a);
20 } else {
21 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
22 MPI DOUBLE, 0, comm);
23 }
24 } /⇤ Read vector ⇤/

Program 3.9: A function for reading and distributing a vector

3.4.8 Gather
Of course, our test program will be useless unless we can see the result of our vector
addition, so we need to write a function for printing out a distributed vector. Our
function can collect all of the components of the vector onto process 0, and then
process 0 can print all of the components. The communication in this function can be
carried out by MPI Gather,

int MPI Gather(
void⇤ send buf p /⇤ in ⇤/,
int send count /⇤ in ⇤/,
MPI Datatype send type /⇤ in ⇤/,
void⇤ recv buf p /⇤ out ⇤/,
int recv count /⇤ in ⇤/,
MPI Datatype recv type /⇤ in ⇤/,
int dest proc /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The data stored in the memory referred to by send buf p on process 0 is stored in the
first block in recv buf p, the data stored in the memory referred to by send buf p
on process 1 is stored in the second block referred to by recv buf p, and so on. So,
if we’re using a block distribution, we can implement our distributed vector print
function as shown in Program 3.10. Note that recv count is the number of data
items received from each process, not the total number of data items received.

63

Gather
▪ Collect all of the components of the vector onto process 0, and then

process 0 can process all of the components.

112 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Read vector(
2 double local a[] /⇤ out ⇤/,
3 int local n /⇤ in ⇤/,
4 int n /⇤ in ⇤/,
5 char vec name[] /⇤ in ⇤/,
6 int my rank /⇤ in ⇤/,
7 MPI Comm comm /⇤ in ⇤/) {
8
9 double⇤ a = NULL;

10 int i;
11
12 if (my rank == 0) {
13 a = malloc(n⇤sizeof(double));
14 printf("Enter the vector %s\n", vec name);
15 for (i = 0; i < n; i++)
16 scanf("%lf", &a[i]);
17 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
18 MPI DOUBLE, 0, comm);
19 free(a);
20 } else {
21 MPI Scatter(a, local n, MPI DOUBLE, local a, local n,
22 MPI DOUBLE, 0, comm);
23 }
24 } /⇤ Read vector ⇤/

Program 3.9: A function for reading and distributing a vector

3.4.8 Gather
Of course, our test program will be useless unless we can see the result of our vector
addition, so we need to write a function for printing out a distributed vector. Our
function can collect all of the components of the vector onto process 0, and then
process 0 can print all of the components. The communication in this function can be
carried out by MPI Gather,

int MPI Gather(
void⇤ send buf p /⇤ in ⇤/,
int send count /⇤ in ⇤/,
MPI Datatype send type /⇤ in ⇤/,
void⇤ recv buf p /⇤ out ⇤/,
int recv count /⇤ in ⇤/,
MPI Datatype recv type /⇤ in ⇤/,
int dest proc /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

The data stored in the memory referred to by send buf p on process 0 is stored in the
first block in recv buf p, the data stored in the memory referred to by send buf p
on process 1 is stored in the second block referred to by recv buf p, and so on. So,
if we’re using a block distribution, we can implement our distributed vector print
function as shown in Program 3.10. Note that recv count is the number of data
items received from each process, not the total number of data items received.

MPI_Gather function signature

64

MPI_Gather Illustration

image: LLNL MPI tutorial 65

Print a Distributed Vector
3.4 Collective Communication 113

1 void Print vector(
2 double local b[] /⇤ in ⇤/,
3 int local n /⇤ in ⇤/,
4 int n /⇤ in ⇤/,
5 char title[] /⇤ in ⇤/,
6 int my rank /⇤ in ⇤/,
7 MPI Comm comm /⇤ in ⇤/) {
8
9 double⇤ b = NULL;

10 int i;
11
12 if (my rank == 0) {
13 b = malloc(n⇤sizeof(double));
14 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
15 MPI DOUBLE, 0, comm);
16 printf("%s\n", title);
17 for (i = 0; i < n; i++)
18 printf("%f ", b[i]);
19 printf("\n");
20 free(b);
21 } else {
22 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
23 MPI DOUBLE, 0, comm);
24 }
25 } /⇤ Print vector ⇤/

Program 3.10: A function for printing a distributed vector

The restrictions on the use of MPI Gather are similar to those on the use of
MPI Scatter: our print function will only work correctly with vectors using a block
distribution in which each block has the same size.

3.4.9 Allgather
As a final example, let’s look at how we might write an MPI function that multiplies
a matrix by a vector. Recall that if A = (aij) is an m ⇥ n matrix and x is a vector with
n components, then y = Ax is a vector with m components and we can find the ith
component of y by forming the dot product of the ith row of A with x:

yi = ai0x0 + ai1x1 + ai2x2 + ·· ·ai,n�1xn�1.

See Figure 3.11.
Thus, we might write pseudo-code for serial matrix multiplication as follows:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

/⇤ Form dot product of ith row with x ⇤/
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];
}

66

Allgather
▪ Concatenates the contents of each process’ send_buf_p and stores this in

each process’ recv_buf_p
▪ As usual, recv_count is the amount of data being received from each

process

3.4 Collective Communication 115

1 void Mat vect mult(
2 double A[] /⇤ in ⇤/,
3 double x[] /⇤ in ⇤/,
4 double y[] /⇤ out ⇤/,
5 int m /⇤ in ⇤/,
6 int n /⇤ in ⇤/) {
7 int i, j;
8
9 for (i = 0; i < m; i++) {

10 y[i] = 0.0;
11 for (j = 0; j < n; j++)
12 y[i] += A[i⇤n+j]⇤x[j];
13 }
14 } /⇤ Mat vect mult ⇤/

Program 3.11: Serial matrix-vector multiplication

A, is assigned to process q, then the ith component of y should also be assigned to
process q.

Now the computation of y[i] involves all the elements in the ith row of A and
all the components of x, so we could minimize the amount of communication by
simply assigning all of x to each process. However, in actual applications—especially
when the matrix is square—it’s often the case that a program using matrix-vector
multiplication will execute the multiplication many times and the result vector y from
one multiplication will be the input vector x for the next iteration. In practice, then,
we usually assume that the distribution for x is the same as the distribution for y.

So if x has a block distribution, how can we arrange that each process has access
to all the components of x before we execute the following loop?

for (j = 0; j < n; j++)
y[i] += A[i⇤n+j]⇤x[j];

Using the collective communications we’re already familiar with, we could execute
a call to MPI Gather followed by a call to MPI Bcast. This would, in all likelihood,
involve two tree-structured communications, and we may be able to do better by
using a butterfly. So, once again, MPI provides a single function:

int MPI Allgather(
void⇤ send buf p /⇤ in ⇤/,
int send count /⇤ in ⇤/,
MPI Datatype send type /⇤ in ⇤/,
void⇤ recv buf p /⇤ out ⇤/,
int recv count /⇤ in ⇤/,
MPI Datatype recv type /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

This function concatenates the contents of each process’ send buf p and stores this
in each process’ recv buf p. As usual, recv count is the amount of data being

MPI_Allgather function signature

67

MPI_Allgather Illustration

image: LLNL MPI tutorial 68

Example: Vector Addition
▪ See source code

- vector_add.c (serial code)
- mpi_vector_add.c (MPI code)

69

Use Case: Matrix-Vector Multiplication
a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1

...
...

...

ai0 ai1 · · · ai,n−1

...
...

...

am−1,0 am−1,1 · · · am−1,n−1

x0

x1

.

.

.

xn−1

=

y0

y1

...

yi = ai0x0 + ai1x1 + ·· ·ai,n−1xn−1

...

ym−1

Figure 3.11

Serial Pseudo-Code for Matrix-Vector Multiplication

3.4 Collective Communication 113

1 void Print vector(
2 double local b[] /⇤ in ⇤/,
3 int local n /⇤ in ⇤/,
4 int n /⇤ in ⇤/,
5 char title[] /⇤ in ⇤/,
6 int my rank /⇤ in ⇤/,
7 MPI Comm comm /⇤ in ⇤/) {
8
9 double⇤ b = NULL;

10 int i;
11
12 if (my rank == 0) {
13 b = malloc(n⇤sizeof(double));
14 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
15 MPI DOUBLE, 0, comm);
16 printf("%s\n", title);
17 for (i = 0; i < n; i++)
18 printf("%f ", b[i]);
19 printf("\n");
20 free(b);
21 } else {
22 MPI Gather(local b, local n, MPI DOUBLE, b, local n,
23 MPI DOUBLE, 0, comm);
24 }
25 } /⇤ Print vector ⇤/

Program 3.10: A function for printing a distributed vector

The restrictions on the use of MPI Gather are similar to those on the use of
MPI Scatter: our print function will only work correctly with vectors using a block
distribution in which each block has the same size.

3.4.9 Allgather
As a final example, let’s look at how we might write an MPI function that multiplies
a matrix by a vector. Recall that if A = (aij) is an m ⇥ n matrix and x is a vector with
n components, then y = Ax is a vector with m components and we can find the ith
component of y by forming the dot product of the ith row of A with x:

yi = ai0x0 + ai1x1 + ai2x2 + ·· ·ai,n�1xn�1.

See Figure 3.11.
Thus, we might write pseudo-code for serial matrix multiplication as follows:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

/⇤ Form dot product of ith row with x ⇤/
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];
}

70

Use Case: Matrix-Vector Multiplication (2)
▪ The C programming langue

- tedious idiosyncrasies with handling multi-dimensional arrays
- not possible to write generic functions that accept multi-dimensional arrays of varying size

▪ Hence, programmers typically express two (or higher)-dimensional arrays
as one-dimensional arrays (linearized storage)

▪ Requires explicit mapping from higher-dimensions to single dimension in
the code

stored as

114 CHAPTER 3 Distributed-Memory Programming with MPI

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 3.11

Matrix-vector multiplication

In fact, this could be actual C code. However, there are some peculiarities in the
way that C programs deal with two-dimensional arrays (see Exercise 3.14), so C
programmers frequently use one-dimensional arrays to “simulate” two-dimensional
arrays. The most common way to do this is to list the rows one after another. For
example, the two-dimensional array

0

@
0 1 2 3
4 5 6 7
8 9 10 11

1

A

would be stored as the one-dimensional array

0 1 2 3 4 5 6 7 8 9 10 11.

In this example, if we start counting rows and columns from 0, then the element stored
in row 2 and column 1 in the two-dimensional array (the 9), is located in position
2 ⇥ 4 + 1 = 9 in the one-dimensional array. More generally, if our array has n

columns, when we use this scheme, we see that the element stored in row i and
column j is located in position i ⇥ n + j in the one-dimensional array. Using this
one-dimensional scheme, we get the C function shown in Program 3.11.

Now let’s see how we might parallelize this function. An individual task can be
the multiplication of an element of A by a component of x and the addition of this
product into a component of y. That is, each execution of the statement

y[i] += A[i⇤n+j]⇤x[j];

is a task. So we see that if y[i] is assigned to process q, then it would be convenient
to also assign row i of A to process q. This suggests that we partition A by rows. We
could partition the rows using a block distribution, a cyclic distribution, or a block-
cyclic distribution. In MPI it’s easiest to use a block distribution, so let’s use a block
distribution of the rows of A, and, as usual, assume that comm sz evenly divides m,
the number of rows.

We are distributing A by rows so that the computation of y[i] will have all of the
needed elements of A, so we should distribute y by blocks. That is, if the ith row of

114 CHAPTER 3 Distributed-Memory Programming with MPI

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 3.11

Matrix-vector multiplication

In fact, this could be actual C code. However, there are some peculiarities in the
way that C programs deal with two-dimensional arrays (see Exercise 3.14), so C
programmers frequently use one-dimensional arrays to “simulate” two-dimensional
arrays. The most common way to do this is to list the rows one after another. For
example, the two-dimensional array

0

@
0 1 2 3
4 5 6 7
8 9 10 11

1

A

would be stored as the one-dimensional array

0 1 2 3 4 5 6 7 8 9 10 11.

In this example, if we start counting rows and columns from 0, then the element stored
in row 2 and column 1 in the two-dimensional array (the 9), is located in position
2 ⇥ 4 + 1 = 9 in the one-dimensional array. More generally, if our array has n

columns, when we use this scheme, we see that the element stored in row i and
column j is located in position i ⇥ n + j in the one-dimensional array. Using this
one-dimensional scheme, we get the C function shown in Program 3.11.

Now let’s see how we might parallelize this function. An individual task can be
the multiplication of an element of A by a component of x and the addition of this
product into a component of y. That is, each execution of the statement

y[i] += A[i⇤n+j]⇤x[j];

is a task. So we see that if y[i] is assigned to process q, then it would be convenient
to also assign row i of A to process q. This suggests that we partition A by rows. We
could partition the rows using a block distribution, a cyclic distribution, or a block-
cyclic distribution. In MPI it’s easiest to use a block distribution, so let’s use a block
distribution of the rows of A, and, as usual, assume that comm sz evenly divides m,
the number of rows.

We are distributing A by rows so that the computation of y[i] will have all of the
needed elements of A, so we should distribute y by blocks. That is, if the ith row of

71

Use Case: Matrix-Vector Multiplication (3)3.4 Collective Communication 115

1 void Mat vect mult(
2 double A[] /⇤ in ⇤/,
3 double x[] /⇤ in ⇤/,
4 double y[] /⇤ out ⇤/,
5 int m /⇤ in ⇤/,
6 int n /⇤ in ⇤/) {
7 int i, j;
8
9 for (i = 0; i < m; i++) {

10 y[i] = 0.0;
11 for (j = 0; j < n; j++)
12 y[i] += A[i⇤n+j]⇤x[j];
13 }
14 } /⇤ Mat vect mult ⇤/

Program 3.11: Serial matrix-vector multiplication

A, is assigned to process q, then the ith component of y should also be assigned to
process q.

Now the computation of y[i] involves all the elements in the ith row of A and
all the components of x, so we could minimize the amount of communication by
simply assigning all of x to each process. However, in actual applications—especially
when the matrix is square—it’s often the case that a program using matrix-vector
multiplication will execute the multiplication many times and the result vector y from
one multiplication will be the input vector x for the next iteration. In practice, then,
we usually assume that the distribution for x is the same as the distribution for y.

So if x has a block distribution, how can we arrange that each process has access
to all the components of x before we execute the following loop?

for (j = 0; j < n; j++)
y[i] += A[i⇤n+j]⇤x[j];

Using the collective communications we’re already familiar with, we could execute
a call to MPI Gather followed by a call to MPI Bcast. This would, in all likelihood,
involve two tree-structured communications, and we may be able to do better by
using a butterfly. So, once again, MPI provides a single function:

int MPI Allgather(
void⇤ send buf p /⇤ in ⇤/,
int send count /⇤ in ⇤/,
MPI Datatype send type /⇤ in ⇤/,
void⇤ recv buf p /⇤ out ⇤/,
int recv count /⇤ in ⇤/,
MPI Datatype recv type /⇤ in ⇤/,
MPI Comm comm /⇤ in ⇤/);

This function concatenates the contents of each process’ send buf p and stores this
in each process’ recv buf p. As usual, recv count is the amount of data being

Serial Pseudo-Code for Matrix-Vector Multiplication with linearized arrays

matrix dimensions
explicitly passed to
function

A[],x[],y[] are linear
1D arrays

explicit mapping
from higher dimensions
to 1D array index

72

Use Case: Matrix-Vector Multiplication (4)

73

a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1

...
...

...

ai0 ai1 · · · ai,n−1

...
...

...

am−1,0 am−1,1 · · · am−1,n−1

x0

x1

.

.

.

xn−1

=

y0

y1

...

yi = ai0x0 + ai1x1 + ·· ·ai,n−1xn−1

...

ym−1

rank 0

rank r-1

rows of matrix A will be
block-distributed to all
ranks

x will be
copied
to all
ranks

computed
by rank 0

computed by
rank r-1

Example: Matrix-Vector Multiplication
▪ See source code

- mat_vect_mult.c (serial code)
- mpi_mat_vect_mult.c (MPI code)

74

MPI matrix-vector multiplication function

75

116 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Mat vect mult(
2 double local A[] /⇤ in ⇤/,
3 double local x[] /⇤ in ⇤/,
4 double local y[] /⇤ out ⇤/,
5 int local m /⇤ in ⇤/,
6 int n /⇤ in ⇤/,
7 int local n /⇤ in ⇤/,
8 MPI Comm comm /⇤ in ⇤/) {
9 double⇤ x;

10 int local i, j;
11 int local ok = 1;
12
13 x = malloc(n⇤sizeof(double));
14 MPI Allgather(local x, local n, MPI DOUBLE,
15 x, local n, MPI DOUBLE, comm);
16
17 for (local i = 0; local i < local m; local i++) {
18 local y[local i] = 0.0;
19 for (j = 0; j < n; j++)
20 local y[local i] += local A[local i⇤n+j]⇤x[j];
21 }
22 free(x);
23 } /⇤ Mat vect mult ⇤/

Program 3.12: An MPI matrix-vector multiplication function

received from each process, so in most cases, recv count will be the same as
send count.

We can now implement our parallel matrix-vector multiplication function as
shown in Program 3.12. If this function is called many times, we can improve per-
formance by allocating x once in the calling function and passing it as an additional
argument.

3.5 MPI DERIVED DATATYPES
In virtually all distributed-memory systems, communication can be much more
expensive than local computation. For example, sending a double from one node
to another will take far longer than adding two doubles stored in the local memory
of a node. Furthermore, the cost of sending a fixed amount of data in multiple mes-
sages is usually much greater than the cost of sending a single message with the same
amount of data. For example, we would expect the following pair of for loops to be
much slower than the single send/receive pair:

double x[1000];
. . .
if (my rank == 0)

for (i = 0; i < 1000; i++)

code shows only
distribution of vector x
(but not A)

MPI Derived Datatypes
▪ Used to represent any collection of data items in memory by storing both

the types of the items and their relative locations in memory
▪ Allow efficient data handling

- function that sends data knows this information about a collection of data items, allowing it to
collect the items from memory before they are sent

- function that receives data can distribute the items into their correct destinations in memory
when they’re received

▪ Consists of a sequence of basic MPI data types together with a
displacement for each of the data types
▪ Trapezoidal Rule example:

76

3.5 MPI Derived Datatypes 117

MPI Send(&x[i], 1, MPI DOUBLE, 1, 0, comm);
else /⇤ my rank == 1 ⇤/

for (i = 0; i < 1000; i++)
MPI Recv(&x[i], 1, MPI DOUBLE, 0, 0, comm, &status);

if (my rank == 0)
MPI Send(x, 1000, MPI DOUBLE, 1, 0, comm);

else /⇤ my rank == 1 ⇤/
MPI Recv(x, 1000, MPI DOUBLE, 0, 0, comm, &status);

In fact, on one of our systems, the code with the loops of sends and receives takes
nearly 50 times longer. On another system, the code with the loops takes more than
100 times longer. Thus, if we can reduce the total number of messages we send, we’re
likely to improve the performance of our programs.

MPI provides three basic approaches to consolidating data that might other-
wise require multiple messages: the count argument to the various communication
functions, derived datatypes, and MPI Pack/Unpack. We’ve already seen the count
argument—it can be used to group contiguous array elements into a single message.
In this section we’ll discuss one method for building derived datatypes. In the exer-
cises, we’ll take a look at some other methods for building derived datatypes and
MPI Pack/Unpack

In MPI, a derived datatype can be used to represent any collection of data items
in memory by storing both the types of the items and their relative locations in
memory. The idea here is that if a function that sends data knows the types and the
relative locations in memory of a collection of data items, it can collect the items from
memory before they are sent. Similarly, a function that receives data can distribute
the items into their correct destinations in memory when they’re received. As an
example, in our trapezoidal rule program we needed to call MPI Bcast three times:
once for the left endpoint a, once for the right endpoint b, and once for the number of
trapezoids n. As an alternative, we could build a single derived datatype that consists
of two doubles and one int. If we do this, we’ll only need one call to MPI Bcast. On
process 0, a,b, and n will be sent with the one call, while on the other processes, the
values will be received with the call.

Formally, a derived datatype consists of a sequence of basic MPI datatypes
together with a displacement for each of the datatypes. In our trapezoidal rule exam-
ple, suppose that on process 0 the variables a, b, and n are stored in memory locations
with the following addresses:

Variable Address

a 24
b 40
n 48

Then the following derived datatype could represent these data items:

{(MPI DOUBLE,0),(MPI DOUBLE,16),(MPI INT,24)}.

3.5 MPI Derived Datatypes 117

MPI Send(&x[i], 1, MPI DOUBLE, 1, 0, comm);
else /⇤ my rank == 1 ⇤/

for (i = 0; i < 1000; i++)
MPI Recv(&x[i], 1, MPI DOUBLE, 0, 0, comm, &status);

if (my rank == 0)
MPI Send(x, 1000, MPI DOUBLE, 1, 0, comm);

else /⇤ my rank == 1 ⇤/
MPI Recv(x, 1000, MPI DOUBLE, 0, 0, comm, &status);

In fact, on one of our systems, the code with the loops of sends and receives takes
nearly 50 times longer. On another system, the code with the loops takes more than
100 times longer. Thus, if we can reduce the total number of messages we send, we’re
likely to improve the performance of our programs.

MPI provides three basic approaches to consolidating data that might other-
wise require multiple messages: the count argument to the various communication
functions, derived datatypes, and MPI Pack/Unpack. We’ve already seen the count
argument—it can be used to group contiguous array elements into a single message.
In this section we’ll discuss one method for building derived datatypes. In the exer-
cises, we’ll take a look at some other methods for building derived datatypes and
MPI Pack/Unpack

In MPI, a derived datatype can be used to represent any collection of data items
in memory by storing both the types of the items and their relative locations in
memory. The idea here is that if a function that sends data knows the types and the
relative locations in memory of a collection of data items, it can collect the items from
memory before they are sent. Similarly, a function that receives data can distribute
the items into their correct destinations in memory when they’re received. As an
example, in our trapezoidal rule program we needed to call MPI Bcast three times:
once for the left endpoint a, once for the right endpoint b, and once for the number of
trapezoids n. As an alternative, we could build a single derived datatype that consists
of two doubles and one int. If we do this, we’ll only need one call to MPI Bcast. On
process 0, a,b, and n will be sent with the one call, while on the other processes, the
values will be received with the call.

Formally, a derived datatype consists of a sequence of basic MPI datatypes
together with a displacement for each of the datatypes. In our trapezoidal rule exam-
ple, suppose that on process 0 the variables a, b, and n are stored in memory locations
with the following addresses:

Variable Address

a 24
b 40
n 48

Then the following derived datatype could represent these data items:

{(MPI DOUBLE,0),(MPI DOUBLE,16),(MPI INT,24)}.

Creating Derived Datatypes
▪ Build a derived datatype that consists of individual elements that have

different basic types.

77

118 CHAPTER 3 Distributed-Memory Programming with MPI

The first element of each pair corresponds to the type of the data, and the second
element of each pair is the displacement of the data element from the beginning of
the type. We’ve assumed that the type begins with a, so it has displacement 0, and
the other elements have displacements measured, in bytes, from a: b is 40 � 24 = 16
bytes beyond the start of a, and n is 48 � 24 = 24 bytes beyond the start of a.

We can use MPI Type create struct to build a derived datatype that consists of
individual elements that have different basic types:

int MPI Type create struct(
int count /⇤ in ⇤/,
int array of blocklengths[] /⇤ in ⇤/,
MPI Aint array of displacements[] /⇤ in ⇤/,
MPI Datatype array of types[] /⇤ in ⇤/,
MPI Datatype⇤ new type p /⇤ out ⇤/);

The argument count is the number of elements in the datatype, so for our example, it
should be three. Each of the array arguments should have count elements. The first
array, array of block lengths, allows for the possibility that the individual data
items might be arrays or subarrays. If, for example, the first element were an array
containing five elements, we would have

array of blocklengths[0] = 5;

However, in our case, none of the elements is an array, so we can simply define

int array of blocklengths[3] = {1, 1, 1};

The third argument to MPI Type create struct, array of displacements,
specifies the displacements, in bytes, from the start of the message. So we want

array of displacements[] = {0, 16, 24};

To find these values, we can use the function MPI Get address:

int MPI Get address(
void⇤ location p /⇤ in ⇤/,
MPI Aint⇤ address p /⇤ out ⇤/);

It returns the address of the memory location referenced by location p. The special
type MPI Aint is an integer type that is big enough to store an address on the sys-
tem. Thus, in order to get the values in array of displacements, we can use the
following code:

MPI Aint a addr, b addr, n addr;

MPI Get address(&a, &a addr);
array of displacements[0] = 0;
MPI Get address(&b, &b addr);
array of displacements[1] = b addr � a addr;
MPI Get address(&n, &n addr);
array of displacements[2] = n addr � a addr;

MPI_Get_address
▪ Returns the address of the memory location referenced by location_p
▪ The special type MPI_Aint is an integer type that is big enough to store an

address on the system

78

118 CHAPTER 3 Distributed-Memory Programming with MPI

The first element of each pair corresponds to the type of the data, and the second
element of each pair is the displacement of the data element from the beginning of
the type. We’ve assumed that the type begins with a, so it has displacement 0, and
the other elements have displacements measured, in bytes, from a: b is 40 � 24 = 16
bytes beyond the start of a, and n is 48 � 24 = 24 bytes beyond the start of a.

We can use MPI Type create struct to build a derived datatype that consists of
individual elements that have different basic types:

int MPI Type create struct(
int count /⇤ in ⇤/,
int array of blocklengths[] /⇤ in ⇤/,
MPI Aint array of displacements[] /⇤ in ⇤/,
MPI Datatype array of types[] /⇤ in ⇤/,
MPI Datatype⇤ new type p /⇤ out ⇤/);

The argument count is the number of elements in the datatype, so for our example, it
should be three. Each of the array arguments should have count elements. The first
array, array of block lengths, allows for the possibility that the individual data
items might be arrays or subarrays. If, for example, the first element were an array
containing five elements, we would have

array of blocklengths[0] = 5;

However, in our case, none of the elements is an array, so we can simply define

int array of blocklengths[3] = {1, 1, 1};

The third argument to MPI Type create struct, array of displacements,
specifies the displacements, in bytes, from the start of the message. So we want

array of displacements[] = {0, 16, 24};

To find these values, we can use the function MPI Get address:

int MPI Get address(
void⇤ location p /⇤ in ⇤/,
MPI Aint⇤ address p /⇤ out ⇤/);

It returns the address of the memory location referenced by location p. The special
type MPI Aint is an integer type that is big enough to store an address on the sys-
tem. Thus, in order to get the values in array of displacements, we can use the
following code:

MPI Aint a addr, b addr, n addr;

MPI Get address(&a, &a addr);
array of displacements[0] = 0;
MPI Get address(&b, &b addr);
array of displacements[1] = b addr � a addr;
MPI Get address(&n, &n addr);
array of displacements[2] = n addr � a addr;

MPI_Type_commit
▪ Allows the MPI implementation to optimize its internal representation of

the datatype for use in communication functions.

79

3.6 Performance Evaluation of MPI Programs 119

The array of datatypes should store the MPI datatypes of the elements, so we
can just define

MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};

With these initializations, we can build the new datatype with the call

MPI Datatype input mpi t;
. . .
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
&input mpi t);

Before we can use input mpi t in a communication function, we must first
commit it with a call to

int MPI Type commit(MPI Datatype⇤ new mpi t p /⇤ in/out ⇤/);

This allows the MPI implementation to optimize its internal representation of the
datatype for use in communication functions.

Now, in order to use new mpi t, we make the following call to MPI Bcast on each
process:

MPI Bcast(&a, 1, input mpi t, 0, comm);

So we can use input mpi t just as we would use one of the basic MPI datatypes.
In constructing the new datatype, it’s likely that the MPI implementation had to

allocate additional storage internally. Therefore, when we’re through using the new
type, we can free any additional storage used with a call to

int MPI Type free(MPI Datatype⇤ old mpi t p /⇤ in/out ⇤/);

We used the steps outlined here to define a Build mpi type function that our
Get input function can call. The new function and the updated Get input function
are shown in Program 3.13.

3.6 PERFORMANCE EVALUATION OF MPI PROGRAMS
Let’s take a look at the performance of the matrix-vector multiplication program. For
the most part we write parallel programs because we expect that they’ll be faster
than a serial program that solves the same problem. How can we verify this? We
spent some time discussing this in Section 2.6, so we’ll start by recalling some of the
material we learned there.

3.6.1 Taking timings
We’re usually not interested in the time taken from the start of program execution
to the end of program execution. For example, in the matrix-vector multiplication,
we’re not interested in the time it takes to type in the matrix or print out the product.

MPI_Type_free
▪ When we’re finished with our new type, this frees any additional storage

used

80

3.6 Performance Evaluation of MPI Programs 119

The array of datatypes should store the MPI datatypes of the elements, so we
can just define

MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};

With these initializations, we can build the new datatype with the call

MPI Datatype input mpi t;
. . .
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
&input mpi t);

Before we can use input mpi t in a communication function, we must first
commit it with a call to

int MPI Type commit(MPI Datatype⇤ new mpi t p /⇤ in/out ⇤/);

This allows the MPI implementation to optimize its internal representation of the
datatype for use in communication functions.

Now, in order to use new mpi t, we make the following call to MPI Bcast on each
process:

MPI Bcast(&a, 1, input mpi t, 0, comm);

So we can use input mpi t just as we would use one of the basic MPI datatypes.
In constructing the new datatype, it’s likely that the MPI implementation had to

allocate additional storage internally. Therefore, when we’re through using the new
type, we can free any additional storage used with a call to

int MPI Type free(MPI Datatype⇤ old mpi t p /⇤ in/out ⇤/);

We used the steps outlined here to define a Build mpi type function that our
Get input function can call. The new function and the updated Get input function
are shown in Program 3.13.

3.6 PERFORMANCE EVALUATION OF MPI PROGRAMS
Let’s take a look at the performance of the matrix-vector multiplication program. For
the most part we write parallel programs because we expect that they’ll be faster
than a serial program that solves the same problem. How can we verify this? We
spent some time discussing this in Section 2.6, so we’ll start by recalling some of the
material we learned there.

3.6.1 Taking timings
We’re usually not interested in the time taken from the start of program execution
to the end of program execution. For example, in the matrix-vector multiplication,
we’re not interested in the time it takes to type in the matrix or print out the product.

Get Input Function Using Derived Datatype (1)

81

120 CHAPTER 3 Distributed-Memory Programming with MPI

void Build mpi type(
double⇤ a p /⇤ in ⇤/,
double⇤ b p /⇤ in ⇤/,
int⇤ n p /⇤ in ⇤/,
MPI Datatype⇤ input mpi t p /⇤ out ⇤/) {

int array of blocklengths[3] = {1, 1, 1};
MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};
MPI Aint a addr, b addr, n addr;
MPI Aint array of displacements[3] = {0};

MPI Get address(a p, &a addr);
MPI Get address(b p, &b addr);
MPI Get address(n p, &n addr);
array of displacements[1] = b addr�a addr;
array of displacements[2] = n addr�a addr;
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
input mpi t p);

MPI Type commit(input mpi t p);
} /⇤ Build mpi type ⇤/

void Get input(int my rank, int comm sz, double⇤ a p, double⇤ b p,
int⇤ n p) {

MPI Datatype input mpi t;

Build mpi type(a p, b p, n p, &input mpi t);

if (my rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a p, b p, n p);

}
MPI Bcast(a p, 1, input mpi t, 0, MPI COMM WORLD);

MPI Type free(&input mpi t);
} /⇤ Get input ⇤/

Program 3.13: The Get input function with a derived datatype

We’re only interested in the time it takes to do the actual multiplication, so we need
to modify our source code by adding in calls to a function that will tell us the amount
of time that elapses from the beginning to the end of the actual matrix-vector mul-
tiplication. MPI provides a function, MPI Wtime, that returns the number of seconds
that have elapsed since some time in the past:

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

double start, finish;
. . .

Get Input Function Using Derived Datatype (2)

82

120 CHAPTER 3 Distributed-Memory Programming with MPI

void Build mpi type(
double⇤ a p /⇤ in ⇤/,
double⇤ b p /⇤ in ⇤/,
int⇤ n p /⇤ in ⇤/,
MPI Datatype⇤ input mpi t p /⇤ out ⇤/) {

int array of blocklengths[3] = {1, 1, 1};
MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};
MPI Aint a addr, b addr, n addr;
MPI Aint array of displacements[3] = {0};

MPI Get address(a p, &a addr);
MPI Get address(b p, &b addr);
MPI Get address(n p, &n addr);
array of displacements[1] = b addr�a addr;
array of displacements[2] = n addr�a addr;
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
input mpi t p);

MPI Type commit(input mpi t p);
} /⇤ Build mpi type ⇤/

void Get input(int my rank, int comm sz, double⇤ a p, double⇤ b p,
int⇤ n p) {

MPI Datatype input mpi t;

Build mpi type(a p, b p, n p, &input mpi t);

if (my rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a p, b p, n p);

}
MPI Bcast(a p, 1, input mpi t, 0, MPI COMM WORLD);

MPI Type free(&input mpi t);
} /⇤ Get input ⇤/

Program 3.13: The Get input function with a derived datatype

We’re only interested in the time it takes to do the actual multiplication, so we need
to modify our source code by adding in calls to a function that will tell us the amount
of time that elapses from the beginning to the end of the actual matrix-vector mul-
tiplication. MPI provides a function, MPI Wtime, that returns the number of seconds
that have elapsed since some time in the past:

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

double start, finish;
. . .

PERFORMANCE EVALUATION

Elapsed Parallel Time
▪ Returns the number of seconds that have elapsed since some time in the

past
- MPI_Wtime available as part of MPI library

84

120 CHAPTER 3 Distributed-Memory Programming with MPI

void Build mpi type(
double⇤ a p /⇤ in ⇤/,
double⇤ b p /⇤ in ⇤/,
int⇤ n p /⇤ in ⇤/,
MPI Datatype⇤ input mpi t p /⇤ out ⇤/) {

int array of blocklengths[3] = {1, 1, 1};
MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};
MPI Aint a addr, b addr, n addr;
MPI Aint array of displacements[3] = {0};

MPI Get address(a p, &a addr);
MPI Get address(b p, &b addr);
MPI Get address(n p, &n addr);
array of displacements[1] = b addr�a addr;
array of displacements[2] = n addr�a addr;
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
input mpi t p);

MPI Type commit(input mpi t p);
} /⇤ Build mpi type ⇤/

void Get input(int my rank, int comm sz, double⇤ a p, double⇤ b p,
int⇤ n p) {

MPI Datatype input mpi t;

Build mpi type(a p, b p, n p, &input mpi t);

if (my rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a p, b p, n p);

}
MPI Bcast(a p, 1, input mpi t, 0, MPI COMM WORLD);

MPI Type free(&input mpi t);
} /⇤ Get input ⇤/

Program 3.13: The Get input function with a derived datatype

We’re only interested in the time it takes to do the actual multiplication, so we need
to modify our source code by adding in calls to a function that will tell us the amount
of time that elapses from the beginning to the end of the actual matrix-vector mul-
tiplication. MPI provides a function, MPI Wtime, that returns the number of seconds
that have elapsed since some time in the past:

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

double start, finish;
. . .

120 CHAPTER 3 Distributed-Memory Programming with MPI

void Build mpi type(
double⇤ a p /⇤ in ⇤/,
double⇤ b p /⇤ in ⇤/,
int⇤ n p /⇤ in ⇤/,
MPI Datatype⇤ input mpi t p /⇤ out ⇤/) {

int array of blocklengths[3] = {1, 1, 1};
MPI Datatype array of types[3] = {MPI DOUBLE, MPI DOUBLE, MPI INT};
MPI Aint a addr, b addr, n addr;
MPI Aint array of displacements[3] = {0};

MPI Get address(a p, &a addr);
MPI Get address(b p, &b addr);
MPI Get address(n p, &n addr);
array of displacements[1] = b addr�a addr;
array of displacements[2] = n addr�a addr;
MPI Type create struct(3, array of blocklengths,

array of displacements, array of types,
input mpi t p);

MPI Type commit(input mpi t p);
} /⇤ Build mpi type ⇤/

void Get input(int my rank, int comm sz, double⇤ a p, double⇤ b p,
int⇤ n p) {

MPI Datatype input mpi t;

Build mpi type(a p, b p, n p, &input mpi t);

if (my rank == 0) {
printf("Enter a, b, and n\n");
scanf("%lf %lf %d", a p, b p, n p);

}
MPI Bcast(a p, 1, input mpi t, 0, MPI COMM WORLD);

MPI Type free(&input mpi t);
} /⇤ Get input ⇤/

Program 3.13: The Get input function with a derived datatype

We’re only interested in the time it takes to do the actual multiplication, so we need
to modify our source code by adding in calls to a function that will tell us the amount
of time that elapses from the beginning to the end of the actual matrix-vector mul-
tiplication. MPI provides a function, MPI Wtime, that returns the number of seconds
that have elapsed since some time in the past:

double MPI Wtime(void);

Thus, we can time a block of MPI code as follows:

double start, finish;
. . .

3.6 Performance Evaluation of MPI Programs 121

start = MPI Wtime();
/⇤ Code to be timed ⇤/
. . .
finish = MPI Wtime();
printf("Proc %d > Elapsed time = %e seconds\n"

my rank, finish�start);

In order to time serial code, it’s not necessary to link in the MPI libraries. There is
a POSIX library function called gettimeofday that returns the number of microsec-
onds that have elapsed since some point in the past. The syntax details aren’t too
important. There’s a C macro GET TIME defined in the header file timer.h that can
be downloaded from the book’s website. This macro should be called with a double
argument:

#include "timer.h"
. . .
double now;
. . .
GET TIME(now);

After executing this macro, now will store the number of seconds since some time in
the past. We can get the elapsed time of serial code with microsecond resolution by
executing

#include "timer.h"
. . .
double start, finish;
. . .
GET TIME(start);
/⇤ Code to be timed ⇤/
. . .
GET TIME(finish);
printf("Elapsed time = %e seconds\n", finish�start);

One point to stress here: GET TIME is a macro, so the code that defines it is inserted
directly into your source code by the preprocessor. Hence, it can operate directly
on its argument, and the argument is a double, not a pointer to a double. A final
note in this connection: Since timer.h is not in the system include file directory,
it’s necessary to tell the compiler where to find it if it’s not in the directory where
you’re compiling. For example, if it’s in the directory /home/peter/my include,
the following command can be used to compile a serial program that uses GET TIME:

$ gcc �g �Wall �I/home/peter/my include �o <executable>
<source code.c>

Both MPI Wtime and GET TIME return wall clock time. Recall that a timer like the
C clock function returns CPU time—the time spent in user code, library functions,
and operating system code. It doesn’t include idle time, which can be a significant
part of parallel run time. For example, a call to MPI Recv may spend a significant
amount of time waiting for the arrival of a message. Wall clock time, on the other
hand, gives total elapsed time, so it includes idle time.

Elapsed Serial Time
▪ In this case, you don’t need to link in the MPI libraries
▪ Returns time in microseconds elapsed from some point in the past
▪ “timer.h” may not be part of default include path

- you may have to inform the compiler about the directory containing timer.h
- in gcc add option: -I/path/to/timer_h

85

3.6 Performance Evaluation of MPI Programs 121

start = MPI Wtime();
/⇤ Code to be timed ⇤/
. . .
finish = MPI Wtime();
printf("Proc %d > Elapsed time = %e seconds\n"

my rank, finish�start);

In order to time serial code, it’s not necessary to link in the MPI libraries. There is
a POSIX library function called gettimeofday that returns the number of microsec-
onds that have elapsed since some point in the past. The syntax details aren’t too
important. There’s a C macro GET TIME defined in the header file timer.h that can
be downloaded from the book’s website. This macro should be called with a double
argument:

#include "timer.h"
. . .
double now;
. . .
GET TIME(now);

After executing this macro, now will store the number of seconds since some time in
the past. We can get the elapsed time of serial code with microsecond resolution by
executing

#include "timer.h"
. . .
double start, finish;
. . .
GET TIME(start);
/⇤ Code to be timed ⇤/
. . .
GET TIME(finish);
printf("Elapsed time = %e seconds\n", finish�start);

One point to stress here: GET TIME is a macro, so the code that defines it is inserted
directly into your source code by the preprocessor. Hence, it can operate directly
on its argument, and the argument is a double, not a pointer to a double. A final
note in this connection: Since timer.h is not in the system include file directory,
it’s necessary to tell the compiler where to find it if it’s not in the directory where
you’re compiling. For example, if it’s in the directory /home/peter/my include,
the following command can be used to compile a serial program that uses GET TIME:

$ gcc �g �Wall �I/home/peter/my include �o <executable>
<source code.c>

Both MPI Wtime and GET TIME return wall clock time. Recall that a timer like the
C clock function returns CPU time—the time spent in user code, library functions,
and operating system code. It doesn’t include idle time, which can be a significant
part of parallel run time. For example, a call to MPI Recv may spend a significant
amount of time waiting for the arrival of a message. Wall clock time, on the other
hand, gives total elapsed time, so it includes idle time.

MPI_Barrier
▪ Ensures that no process will return from calling it until every process in

the communicator has started calling it

86

122 CHAPTER 3 Distributed-Memory Programming with MPI

There are still a few remaining issues. First, as we’ve described it, our parallel
program will report comm sz times, one for each process. We would like to have it
report a single time. Ideally, all of the processes would start execution of the matrix-
vector multiplication at the same time, and then, we would report the time that elapsed
when the last process finished. In other words, the parallel execution time would be
the time it took the “slowest” process to finish. We can’t get exactly this time because
we can’t insure that all the processes start at the same instant. However, we can come
reasonably close. The MPI collective communication function MPI Barrier insures
that no process will return from calling it until every process in the communicator
has started calling it. It’s syntax is

int MPI Barrier(MPI Comm comm /⇤ in ⇤/);

The following code can be used to time a block of MPI code and report a single
elapsed time:

double local start, local finish, local elapsed, elapsed;
. . .
MPI Barrier(comm);
local start = MPI Wtime();
/⇤ Code to be timed ⇤/
. . .
local finish = MPI Wtime();
local elapsed = local finish � local start;
MPI Reduce(&local elapsed, &elapsed, 1, MPI DOUBLE,

MPI MAX, 0, comm);

if (my rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);

Note that the call to MPI Reduce is using the MPI MAX operator; it finds the largest of
the input arguments local elapsed.

As we noted in Chapter 2, we also need to be aware of variability in timings:
when we run a program several times, we’re likely to see a substantial variation in the
times. This will be true even if for each run we use the same input, the same number
of processes, and the same system. This is because the interaction of the program
with the rest of the system, especially the operating system, is unpredictable. Since
this interaction will almost certainly not make the program run faster than it would
run on a “quiet” system, we usually report the minimum run-time rather than the mean
or median. (For further discussion of this, see [5].)

Finally, when we run an MPI program on a hybrid system in which the nodes are
multicore processors, we’ll only run one MPI process on each node. This may reduce
contention for the interconnect and result in somewhat better run-times. It may also
reduce variability in run-times.

3.6.2 Results
The results of timing the matrix-vector multiplication program are shown in
Table 3.5. The input matrices were square. The times shown are in milliseconds,

MPI_Barrier function signature

MPI_Barrier

87

122 CHAPTER 3 Distributed-Memory Programming with MPI

There are still a few remaining issues. First, as we’ve described it, our parallel
program will report comm sz times, one for each process. We would like to have it
report a single time. Ideally, all of the processes would start execution of the matrix-
vector multiplication at the same time, and then, we would report the time that elapsed
when the last process finished. In other words, the parallel execution time would be
the time it took the “slowest” process to finish. We can’t get exactly this time because
we can’t insure that all the processes start at the same instant. However, we can come
reasonably close. The MPI collective communication function MPI Barrier insures
that no process will return from calling it until every process in the communicator
has started calling it. It’s syntax is

int MPI Barrier(MPI Comm comm /⇤ in ⇤/);

The following code can be used to time a block of MPI code and report a single
elapsed time:

double local start, local finish, local elapsed, elapsed;
. . .
MPI Barrier(comm);
local start = MPI Wtime();
/⇤ Code to be timed ⇤/
. . .
local finish = MPI Wtime();
local elapsed = local finish � local start;
MPI Reduce(&local elapsed, &elapsed, 1, MPI DOUBLE,

MPI MAX, 0, comm);

if (my rank == 0)
printf("Elapsed time = %e seconds\n", elapsed);

Note that the call to MPI Reduce is using the MPI MAX operator; it finds the largest of
the input arguments local elapsed.

As we noted in Chapter 2, we also need to be aware of variability in timings:
when we run a program several times, we’re likely to see a substantial variation in the
times. This will be true even if for each run we use the same input, the same number
of processes, and the same system. This is because the interaction of the program
with the rest of the system, especially the operating system, is unpredictable. Since
this interaction will almost certainly not make the program run faster than it would
run on a “quiet” system, we usually report the minimum run-time rather than the mean
or median. (For further discussion of this, see [5].)

Finally, when we run an MPI program on a hybrid system in which the nodes are
multicore processors, we’ll only run one MPI process on each node. This may reduce
contention for the interconnect and result in somewhat better run-times. It may also
reduce variability in run-times.

3.6.2 Results
The results of timing the matrix-vector multiplication program are shown in
Table 3.5. The input matrices were square. The times shown are in milliseconds,

Run-times of Serial and Parallel Matrix-Vector Multiplication

88

(milliseconds)

3.6 Performance Evaluation of MPI Programs 123

Table 3.5 Run-Times of Serial and Parallel

Matrix-Vector Multiplication (times are in

milliseconds)

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 4.1 16.0 64.0 270 1100
2 2.3 8.5 33.0 140 560
4 2.0 5.1 18.0 70 280
8 1.7 3.3 9.8 36 140

16 1.7 2.6 5.9 19 71

and we’ve rounded each time to two significant digits. The times for comm sz = 1
are the run-times of the serial program running on a single core of the distributed-
memory system. Not surprisingly, if we fix comm sz, and increase n, the order of the
matrix, the run-times increase. For relatively small numbers of processes, doubling n

results in roughly a four-fold increase in the run-time. However, for large numbers of
processes, this formula breaks down.

If we fix n and increase comm sz, the run-times usually decrease. In fact, for large
values of n, doubling the number of processes roughly halves the overall run-time.
However, for small n, there is very little benefit in increasing comm sz. In fact, in
going from 8 to 16 processes when n = 1024, the overall run time is unchanged.

These timings are fairly typical of parallel run-times—as we increase the problem
size, the run-times increase, and this is true regardless of the number of processes.
The rate of increase can be fairly constant (e.g., the one-process times) or it can
vary wildly (e.g., the 16-process times). As we increase the number of processes, the
run-times typically decrease for a while. However, at some point, the run-times can
actually start to get worse. The closest we came to this behavior was going from 8 to
16 processes when the matrix had order 1024.

The explanation for this is that there is a fairly common relation between the
run-times of serial programs and the run-times of corresponding parallel programs.
Recall that we denote the serial run-time by Tserial. Since it typically depends on the
size of the input, n, we’ll frequently denote it as Tserial(n). Also recall that we denote
the parallel run-time by Tparallel. Since it depends on both the input size, n, and the
number of processes, comm sz = p, we’ll frequently denote it as Tparallel(n,p). As we
noted in Chapter 2, it’s often the case that the parallel program will divide the work
of the serial program among the processes, and add in some overhead time, which we
denoted Toverhead:

Tparallel(n,p) = Tserial(n)/p + Toverhead.

In MPI programs, the parallel overhead typically comes from communication, and it
can depend on both the problem size and the number of processes.

Reminder: Speedup and Efficiency

89

3.6 Performance Evaluation of MPI Programs 125

Tserial(8192) = 4.2 ⇥ Tserial(4096)

Tparallel(8192,2) = 4.2 ⇥ Tparallel(4096,2)

Tparallel(8192,4) = 3.9 ⇥ Tparallel(8192,4)

These observations suggest that the parallel run-times are behaving much as the run-
times of the serial program—that is, Tparallel(n,p) is approximately Tserial(n)/p—so
the overhead Tallgather has little effect on the performance.

On the other hand, for small n and large p these patterns break down. For example,

Tparallel(1024,8) = 1.0 ⇥ Tparallel(1024,16)

Tparallel(2048,16) = 1.5 ⇥ Tparallel(1024,16)

Thus, it appears that for small n and large p, the dominant term in our formula for
Tparallel is Tallgather.

3.6.3 Speedup and efficiency
Recall that the most widely used measure of the relation between the serial and the
parallel run-times is the speedup. It’s just the ratio of the serial run-time to the parallel
run-time:

S(n,p) = Tserial(n)

Tparallel(n,p)
.

The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel program with
comm sz = p processes is running p times faster than the serial program. In practice,
this speedup, sometimes called linear speedup, is rarely achieved. Our matrix-vector
multiplication program got the speedups shown in Table 3.6. For small p and large n,
our program obtained nearly linear speedup. On the other hand, for large p and
small n, the speedup was considerably less than p. The worst case was n = 1024
and p = 16, when we only managed a speedup of 2.4.

Table 3.6 Speedups of Parallel Matrix-Vector

Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.0 1.0 1.0 1.0 1.0
2 1.8 1.9 1.9 1.9 2.0
4 2.1 3.1 3.6 3.9 3.9
8 2.4 4.8 6.5 7.5 7.9
16 2.4 6.2 10.8 14.2 15.5

126 CHAPTER 3 Distributed-Memory Programming with MPI

Table 3.7 Efficiencies of Parallel

Matrix-Vector Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.00 1.00 1.00 1.00 1.00
2 0.89 0.94 0.97 0.96 0.98
4 0.51 0.78 0.89 0.96 0.98
8 0.30 0.61 0.82 0.94 0.98
16 0.15 0.39 0.68 0.89 0.97

Also recall that another widely used measure of parallel performance is parallel
efficiency. This is “per process” speedup:

E(n,p) = S(n,p)

p
= Tserial(n)

p ⇥ Tparallel(n,p)
.

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in general, we
expect that our efficiencies will be less than 1.

The efficiencies for the matrix-vector multiplication program are shown in
Table 3.7. Once again, for small p and large n our parallel efficiencies are near linear,
and for large p and small n, they are very far from linear.

3.6.4 Scalability
Our parallel matrix-vector multiplication program doesn’t come close to obtaining
linear speedup for small n and large p. Does this mean that it’s not a good program?
Many computer scientists answer this question by looking at the “scalability” of the
program. Recall that very roughly speaking, a program is scalable if the problem
size can be increased at a rate so that the efficiency doesn’t decrease as the number
of processes increase.

The problem with this definition is the phrase “the problem size can be increased
at a rate . . . ” Consider two parallel programs: program A and program B. Suppose that
if p � 2, the efficiency of program A is 0.75, regardless of problem size. Also suppose
that the efficiency of program B is n/(625p), provided p � 2 and 1000 n 625p.
Then according to our “definition,” both programs are scalable. For program A, the
rate of increase needed to maintain constant efficiency is 0, while for program B if
we increase n at the same rate as we increase p, we’ll maintain a constant efficiency.
For example, if n = 1000 and p = 2, the efficiency of B is 0.80. If we then double p

to 4 and we leave the problem size at n = 1000, the efficiency will drop to 0.40, but
if we also double the problem size to n = 2000, the efficiency will remain constant
at 0.80. Program A is thus more scalable than B, but both satisfy our definition of
scalability.

Speedups and Efficiency of Parallel Matrix-
Vector Multiplication

90

3.6 Performance Evaluation of MPI Programs 125

Tserial(8192) = 4.2 ⇥ Tserial(4096)

Tparallel(8192,2) = 4.2 ⇥ Tparallel(4096,2)

Tparallel(8192,4) = 3.9 ⇥ Tparallel(8192,4)

These observations suggest that the parallel run-times are behaving much as the run-
times of the serial program—that is, Tparallel(n,p) is approximately Tserial(n)/p—so
the overhead Tallgather has little effect on the performance.

On the other hand, for small n and large p these patterns break down. For example,

Tparallel(1024,8) = 1.0 ⇥ Tparallel(1024,16)

Tparallel(2048,16) = 1.5 ⇥ Tparallel(1024,16)

Thus, it appears that for small n and large p, the dominant term in our formula for
Tparallel is Tallgather.

3.6.3 Speedup and efficiency
Recall that the most widely used measure of the relation between the serial and the
parallel run-times is the speedup. It’s just the ratio of the serial run-time to the parallel
run-time:

S(n,p) = Tserial(n)

Tparallel(n,p)
.

The ideal value for S(n,p) is p. If S(n,p) = p, then our parallel program with
comm sz = p processes is running p times faster than the serial program. In practice,
this speedup, sometimes called linear speedup, is rarely achieved. Our matrix-vector
multiplication program got the speedups shown in Table 3.6. For small p and large n,
our program obtained nearly linear speedup. On the other hand, for large p and
small n, the speedup was considerably less than p. The worst case was n = 1024
and p = 16, when we only managed a speedup of 2.4.

Table 3.6 Speedups of Parallel Matrix-Vector

Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.0 1.0 1.0 1.0 1.0
2 1.8 1.9 1.9 1.9 2.0
4 2.1 3.1 3.6 3.9 3.9
8 2.4 4.8 6.5 7.5 7.9
16 2.4 6.2 10.8 14.2 15.5

126 CHAPTER 3 Distributed-Memory Programming with MPI

Table 3.7 Efficiencies of Parallel

Matrix-Vector Multiplication

Order of Matrix

comm sz 1024 2048 4096 8192 16,384

1 1.00 1.00 1.00 1.00 1.00
2 0.89 0.94 0.97 0.96 0.98
4 0.51 0.78 0.89 0.96 0.98
8 0.30 0.61 0.82 0.94 0.98
16 0.15 0.39 0.68 0.89 0.97

Also recall that another widely used measure of parallel performance is parallel
efficiency. This is “per process” speedup:

E(n,p) = S(n,p)

p
= Tserial(n)

p ⇥ Tparallel(n,p)
.

Linear speedup corresponds to a parallel efficiency of p/p = 1.0, and, in general, we
expect that our efficiencies will be less than 1.

The efficiencies for the matrix-vector multiplication program are shown in
Table 3.7. Once again, for small p and large n our parallel efficiencies are near linear,
and for large p and small n, they are very far from linear.

3.6.4 Scalability
Our parallel matrix-vector multiplication program doesn’t come close to obtaining
linear speedup for small n and large p. Does this mean that it’s not a good program?
Many computer scientists answer this question by looking at the “scalability” of the
program. Recall that very roughly speaking, a program is scalable if the problem
size can be increased at a rate so that the efficiency doesn’t decrease as the number
of processes increase.

The problem with this definition is the phrase “the problem size can be increased
at a rate . . . ” Consider two parallel programs: program A and program B. Suppose that
if p � 2, the efficiency of program A is 0.75, regardless of problem size. Also suppose
that the efficiency of program B is n/(625p), provided p � 2 and 1000 n 625p.
Then according to our “definition,” both programs are scalable. For program A, the
rate of increase needed to maintain constant efficiency is 0, while for program B if
we increase n at the same rate as we increase p, we’ll maintain a constant efficiency.
For example, if n = 1000 and p = 2, the efficiency of B is 0.80. If we then double p

to 4 and we leave the problem size at n = 1000, the efficiency will drop to 0.40, but
if we also double the problem size to n = 2000, the efficiency will remain constant
at 0.80. Program A is thus more scalable than B, but both satisfy our definition of
scalability.

speedup efficiency

Scalability
▪ A program is scalable if the problem size can be increased at a rate so that

the efficiency doesn’t decrease as the number of processes increase
- strongly scalable: programs can maintain a constant efficiency without increasing the problem

size
- weakly scalable: program maintain a constant efficiency if the problem size increases at the

same rate as the number of processes

91

Parallelizing a Sorting Algorithm
▪ n keys and p = comm sz processes
▪ n/p keys assigned to each process
▪ No restrictions on which keys are assigned to which processes
▪ When the algorithm terminates:

- The keys assigned to each process should be sorted in (say) increasing order
- If 0 ≤ q < r < p, then each key assigned to process q should be less than or equal to every key

assigned to process r

92

Serial Bubble Sort

93

128 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Bubble sort(
2 int a[] /⇤ in/out ⇤/,
3 int n /⇤ in ⇤/) {
4 int list length, i, temp;
5
6 for (list length = n; list length >= 2; list length��)
7 for (i = 0; i < list length�1; i++)
8 if (a[i] > a[i+1]) {
9 temp = a[i];

10 a[i] = a[i+1];
11 a[i+1] = temp;
12 }
13
14 } /⇤ Bubble sort ⇤/

Program 3.14: Serial bubble sort

the elements of the list a pairwise: a[0] is compared to a[1], a[1] is compared to
a[2], and so on. Whenever a pair is out of order, the entries are swapped, so in the
first pass through the outer loop, when list length = n, the largest value in the list
will be moved into a[n�1]. The next pass will ignore this last element and it will
move the next-to-the-largest element into a[n�2]. Thus, as list length decreases,
successively more elements get assigned to their final positions in the sorted list.

There isn’t much point in trying to parallelize this algorithm because of the inher-
ently sequential ordering of the comparisons. To see this, suppose that a[i�1] = 9,
a[i] = 5, and a[i+1] = 7. The algorithm will first compare 9 and 5 and swap them, it
will then compare 9 and 7 and swap them, and we’ll have the sequence 5,7,9. If we
try to do the comparisons out of order, that is, if we compare the 5 and 7 first and then
compare the 9 and 5, we’ll wind up with the sequence 5,9,7. Therefore, the order in
which the “compare-swaps” take place is essential to the correctness of the algorithm.

A variant of bubble sort known as odd-even transposition sort has considerably
more opportunities for parallelism. The key idea is to “decouple” the compare-swaps.
The algorithm consists of a sequence of phases, of two different types. During even

phases, compare-swaps are executed on the pairs

(a[0],a[1]),(a[2],a[3]),(a[4],a[5]), . . . ,

and during odd phases, compare-swaps are executed on the pairs

(a[1],a[2]),(a[3],a[4]),(a[5],a[6]),

Here’s a small example:

Start: 5,9,4,3
Even phase: Compare-swap (5,9) and (4,3), getting the list 5,9,3,4.
Odd phase: Compare-swap (9,3), getting the list 5,3,9,4.
Even phase: Compare-swap (5,3) and (9,4), getting the list 3,5,4,9.
Odd phase: Compare-swap (5,4), getting the list 3,4,5,9.

Odd-Even Transposition Sort
▪ A sequence of phases
▪ Even phases, compare swaps:

▪ Odd phases, compare swaps:

94

128 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Bubble sort(
2 int a[] /⇤ in/out ⇤/,
3 int n /⇤ in ⇤/) {
4 int list length, i, temp;
5
6 for (list length = n; list length >= 2; list length��)
7 for (i = 0; i < list length�1; i++)
8 if (a[i] > a[i+1]) {
9 temp = a[i];

10 a[i] = a[i+1];
11 a[i+1] = temp;
12 }
13
14 } /⇤ Bubble sort ⇤/

Program 3.14: Serial bubble sort

the elements of the list a pairwise: a[0] is compared to a[1], a[1] is compared to
a[2], and so on. Whenever a pair is out of order, the entries are swapped, so in the
first pass through the outer loop, when list length = n, the largest value in the list
will be moved into a[n�1]. The next pass will ignore this last element and it will
move the next-to-the-largest element into a[n�2]. Thus, as list length decreases,
successively more elements get assigned to their final positions in the sorted list.

There isn’t much point in trying to parallelize this algorithm because of the inher-
ently sequential ordering of the comparisons. To see this, suppose that a[i�1] = 9,
a[i] = 5, and a[i+1] = 7. The algorithm will first compare 9 and 5 and swap them, it
will then compare 9 and 7 and swap them, and we’ll have the sequence 5,7,9. If we
try to do the comparisons out of order, that is, if we compare the 5 and 7 first and then
compare the 9 and 5, we’ll wind up with the sequence 5,9,7. Therefore, the order in
which the “compare-swaps” take place is essential to the correctness of the algorithm.

A variant of bubble sort known as odd-even transposition sort has considerably
more opportunities for parallelism. The key idea is to “decouple” the compare-swaps.
The algorithm consists of a sequence of phases, of two different types. During even

phases, compare-swaps are executed on the pairs

(a[0],a[1]),(a[2],a[3]),(a[4],a[5]), . . . ,

and during odd phases, compare-swaps are executed on the pairs

(a[1],a[2]),(a[3],a[4]),(a[5],a[6]),

Here’s a small example:

Start: 5,9,4,3
Even phase: Compare-swap (5,9) and (4,3), getting the list 5,9,3,4.
Odd phase: Compare-swap (9,3), getting the list 5,3,9,4.
Even phase: Compare-swap (5,3) and (9,4), getting the list 3,5,4,9.
Odd phase: Compare-swap (5,4), getting the list 3,4,5,9.

128 CHAPTER 3 Distributed-Memory Programming with MPI

1 void Bubble sort(
2 int a[] /⇤ in/out ⇤/,
3 int n /⇤ in ⇤/) {
4 int list length, i, temp;
5
6 for (list length = n; list length >= 2; list length��)
7 for (i = 0; i < list length�1; i++)
8 if (a[i] > a[i+1]) {
9 temp = a[i];

10 a[i] = a[i+1];
11 a[i+1] = temp;
12 }
13
14 } /⇤ Bubble sort ⇤/

Program 3.14: Serial bubble sort

the elements of the list a pairwise: a[0] is compared to a[1], a[1] is compared to
a[2], and so on. Whenever a pair is out of order, the entries are swapped, so in the
first pass through the outer loop, when list length = n, the largest value in the list
will be moved into a[n�1]. The next pass will ignore this last element and it will
move the next-to-the-largest element into a[n�2]. Thus, as list length decreases,
successively more elements get assigned to their final positions in the sorted list.

There isn’t much point in trying to parallelize this algorithm because of the inher-
ently sequential ordering of the comparisons. To see this, suppose that a[i�1] = 9,
a[i] = 5, and a[i+1] = 7. The algorithm will first compare 9 and 5 and swap them, it
will then compare 9 and 7 and swap them, and we’ll have the sequence 5,7,9. If we
try to do the comparisons out of order, that is, if we compare the 5 and 7 first and then
compare the 9 and 5, we’ll wind up with the sequence 5,9,7. Therefore, the order in
which the “compare-swaps” take place is essential to the correctness of the algorithm.

A variant of bubble sort known as odd-even transposition sort has considerably
more opportunities for parallelism. The key idea is to “decouple” the compare-swaps.
The algorithm consists of a sequence of phases, of two different types. During even

phases, compare-swaps are executed on the pairs

(a[0],a[1]),(a[2],a[3]),(a[4],a[5]), . . . ,

and during odd phases, compare-swaps are executed on the pairs

(a[1],a[2]),(a[3],a[4]),(a[5],a[6]),

Here’s a small example:

Start: 5,9,4,3
Even phase: Compare-swap (5,9) and (4,3), getting the list 5,9,3,4.
Odd phase: Compare-swap (9,3), getting the list 5,3,9,4.
Even phase: Compare-swap (5,3) and (9,4), getting the list 3,5,4,9.
Odd phase: Compare-swap (5,4), getting the list 3,4,5,9.

Example
▪ Start: 5, 9, 4, 3
▪ Even phase

- compare-swap (5,9) and (4,3)
- result: 5, 9, 3, 4

▪ Odd phase
- compare-swap (9,3)
- result: 5, 3, 9, 4

▪ Even phase
- compare-swap (5,3) and (9,4)
- result: 3, 5, 4, 9

▪ Odd phase
- compare-swap (5,4)
- result: 3, 4, 5, 9

95

Serial Odd-Even Transposition Sort

96

3.7 A Parallel Sorting Algorithm 129

This example required four phases to sort a four-element list. In general, it may
require fewer phases, but the following theorem guarantees that we can sort a list
of n elements in at most n phases:

Theorem. Suppose A is a list with n keys, and A is the input to the odd-even transposition

sort algorithm. Then, after n phases A will be sorted.

Program 3.15 shows code for a serial odd-even transposition sort function.

1 void Odd even sort(
2 int a[] /⇤ in/out ⇤/,
3 int n /⇤ in ⇤/) {
4 int phase, i, temp;
5
6 for (phase = 0; phase < n; phase++)
7 if (phase % 2 == 0) { /⇤ Even phase ⇤/
8 for (i = 1; i < n; i += 2)
9 if (a[i�1] > a[i]) {

10 temp = a[i];
11 a[i] = a[i�1];
12 a[i�1] = temp;
13 }
14 } else { /⇤ Odd phase ⇤/
15 for (i = 1; i < n�1; i += 2)
16 if (a[i] > a[i+1]) {
17 temp = a[i];
18 a[i] = a[i+1];
19 a[i+1] = temp;
20 }
21 }
22 } /⇤ Odd even sort ⇤/

Program 3.15: Serial odd-even transposition sort

3.7.2 Parallel odd-even transposition sort
It should be clear that odd-even transposition sort has considerably more opportu-
nities for parallelism than bubble sort, because all of the compare-swaps in a single
phase can happen simultaneously. Let’s try to exploit this.

There are a number of possible ways to apply Foster’s methodology. Here’s one:

. Tasks: Determine the value of a[i] at the end of phase j.. Communications: The task that’s determining the value of a[i] needs to commu-
nicate with either the task determining the value of a[i�1] or a[i+1]. Also the
value of a[i] at the end of phase j needs to be available for determining the value
of a[i] at the end of phase j + 1.

This is illustrated in Figure 3.12, where we’ve labeled the tasks determining the value
of a[i] with a[i].

Communications Among Tasks in Odd-Even Sort

Tasks determining a[i] are labeled with a[i]

a[i-1]

a[i-1] phase j + 1

phase ja[i]

a[i] a[i+1]

a[i+1]

Figure 3.11

97

Parallel Odd-Even Transposition Sort

98

3.7 A Parallel Sorting Algorithm 131

Table 3.8 Parallel Odd-Even Transposition Sort

Process

Time 0 1 2 3

Start 15, 11, 9, 16 3, 14, 8, 7 4, 6, 12, 10 5, 2, 13, 1
After Local Sort 9, 11, 15, 16 3, 7, 8, 14 4, 6, 10, 12 1, 2, 5, 13
After Phase 0 3, 7, 8, 9 11, 14, 15, 16 1, 2, 4, 5 6, 10, 12, 13
After Phase 1 3, 7, 8, 9 1, 2, 4, 5 11, 14, 15, 16 6, 10, 12, 13
After Phase 2 1, 2, 3, 4 5, 7, 8, 9 6, 10, 11, 12 13, 14, 15, 16
After Phase 3 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16

then the keys assigned to process q are less than or equal to the keys assigned to
process r.

In fact, our example illustrates the worst-case performance of this algorithm:

Theorem. If parallel odd-even transposition sort is run with p processes, then after p

phases, the input list will be sorted.

The parallel algorithm is clear to a human computer:

Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

However, there are some details that we need to clear up before we can convert the
algorithm into an MPI program.

First, how do we compute the partner rank? And what is the partner rank when
a process is idle? If the phase is even, then odd-ranked partners exchange with
my rank�1 and even-ranked partners exchange with my rank+1. In odd phases, the
calculations are reversed. However, these calculations can return some invalid ranks:
if my rank = 0 or my rank = comm sz�1, the partner rank can be �1 or comm sz.
But when either partner = �1 or partner = comm sz, the process should be idle.
We can use the rank computed by Compute partner to determine whether a process
is idle:

if (phase % 2 == 0) /⇤ Even phase ⇤/
if (my rank % 2 != 0) /⇤ Odd rank ⇤/

partner = my rank � 1;
else /⇤ Even rank ⇤/

partner = my rank + 1;

Theorem: If parallel odd-even transposition sort is run with p processes, then after p
phases the list will be sorted.

Pseudo-Code

99

3.7 A Parallel Sorting Algorithm 131

Table 3.8 Parallel Odd-Even Transposition Sort

Process

Time 0 1 2 3

Start 15, 11, 9, 16 3, 14, 8, 7 4, 6, 12, 10 5, 2, 13, 1
After Local Sort 9, 11, 15, 16 3, 7, 8, 14 4, 6, 10, 12 1, 2, 5, 13
After Phase 0 3, 7, 8, 9 11, 14, 15, 16 1, 2, 4, 5 6, 10, 12, 13
After Phase 1 3, 7, 8, 9 1, 2, 4, 5 11, 14, 15, 16 6, 10, 12, 13
After Phase 2 1, 2, 3, 4 5, 7, 8, 9 6, 10, 11, 12 13, 14, 15, 16
After Phase 3 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16

then the keys assigned to process q are less than or equal to the keys assigned to
process r.

In fact, our example illustrates the worst-case performance of this algorithm:

Theorem. If parallel odd-even transposition sort is run with p processes, then after p

phases, the input list will be sorted.

The parallel algorithm is clear to a human computer:

Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

However, there are some details that we need to clear up before we can convert the
algorithm into an MPI program.

First, how do we compute the partner rank? And what is the partner rank when
a process is idle? If the phase is even, then odd-ranked partners exchange with
my rank�1 and even-ranked partners exchange with my rank+1. In odd phases, the
calculations are reversed. However, these calculations can return some invalid ranks:
if my rank = 0 or my rank = comm sz�1, the partner rank can be �1 or comm sz.
But when either partner = �1 or partner = comm sz, the process should be idle.
We can use the rank computed by Compute partner to determine whether a process
is idle:

if (phase % 2 == 0) /⇤ Even phase ⇤/
if (my rank % 2 != 0) /⇤ Odd rank ⇤/

partner = my rank � 1;
else /⇤ Even rank ⇤/

partner = my rank + 1;

Compute_partner

100

3.7 A Parallel Sorting Algorithm 131

Table 3.8 Parallel Odd-Even Transposition Sort

Process

Time 0 1 2 3

Start 15, 11, 9, 16 3, 14, 8, 7 4, 6, 12, 10 5, 2, 13, 1
After Local Sort 9, 11, 15, 16 3, 7, 8, 14 4, 6, 10, 12 1, 2, 5, 13
After Phase 0 3, 7, 8, 9 11, 14, 15, 16 1, 2, 4, 5 6, 10, 12, 13
After Phase 1 3, 7, 8, 9 1, 2, 4, 5 11, 14, 15, 16 6, 10, 12, 13
After Phase 2 1, 2, 3, 4 5, 7, 8, 9 6, 10, 11, 12 13, 14, 15, 16
After Phase 3 1, 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16

then the keys assigned to process q are less than or equal to the keys assigned to
process r.

In fact, our example illustrates the worst-case performance of this algorithm:

Theorem. If parallel odd-even transposition sort is run with p processes, then after p

phases, the input list will be sorted.

The parallel algorithm is clear to a human computer:

Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

However, there are some details that we need to clear up before we can convert the
algorithm into an MPI program.

First, how do we compute the partner rank? And what is the partner rank when
a process is idle? If the phase is even, then odd-ranked partners exchange with
my rank�1 and even-ranked partners exchange with my rank+1. In odd phases, the
calculations are reversed. However, these calculations can return some invalid ranks:
if my rank = 0 or my rank = comm sz�1, the partner rank can be �1 or comm sz.
But when either partner = �1 or partner = comm sz, the process should be idle.
We can use the rank computed by Compute partner to determine whether a process
is idle:

if (phase % 2 == 0) /⇤ Even phase ⇤/
if (my rank % 2 != 0) /⇤ Odd rank ⇤/

partner = my rank � 1;
else /⇤ Even rank ⇤/

partner = my rank + 1;

132 CHAPTER 3 Distributed-Memory Programming with MPI

else /⇤ Odd phase ⇤/
if (my rank % 2 != 0) /⇤ Odd rank ⇤/

partner = my rank + 1;
else /⇤ Even rank ⇤/

partner = my rank � 1;
if (partner == �1 | | partner == comm sz)

partner = MPI PROC NULL;

MPI PROC NULL is a constant defined by MPI. When it’s used as the source or destina-
tion rank in a point-to-point communication, no communication will take place and
the call to the communication will simply return.

3.7.3 Safety in MPI programs
If a process is not idle, we might try to implement the communication with a call to
MPI Send and a call to MPI Recv:

MPI Send(my keys, n/comm sz, MPI INT, partner, 0, comm);
MPI Recv(temp keys, n/comm sz, MPI INT, partner, 0, comm,

MPI STATUS IGNORE);

This, however, might result in the programs’ hanging or crashing. Recall that the MPI
standard allows MPI Send to behave in two different ways: it can simply copy the
message into an MPI-managed buffer and return, or it can block until the matching
call to MPI Recv starts. Furthermore, many implementations of MPI set a threshold
at which the system switches from buffering to blocking. That is, messages that are
relatively small will be buffered by MPI Send, but for larger messages, it will block.
If the MPI Send executed by each process blocks, no process will be able to start
executing a call to MPI Recv, and the program will hang or deadlock, that is, each
process is blocked waiting for an event that will never happen.

A program that relies on MPI-provided buffering is said to be unsafe. Such a
program may run without problems for various sets of input, but it may hang or
crash with other sets. If we use MPI Send and MPI Recv in this way, our program
will be unsafe, and it’s likely that for small values of n the program will run without
problems, while for larger values of n, it’s likely that it will hang or crash.

There are a couple of questions that arise here:

1. In general, how can we tell if a program is safe?
2. How can we modify the communication in the parallel odd-even sort program so

that it is safe?

To answer the first question, we can use an alternative to MPI Send defined by the MPI
standard. It’s called MPI Ssend. The extra “s” stands for synchronous and MPI Ssend
is guaranteed to block until the matching receive starts. So, we can check whether
a program is safe by replacing the calls to MPI Send with calls to MPI Ssend. If the
program doesn’t hang or crash when it’s run with appropriate input and comm sz,
then the original program was safe. The arguments to MPI Ssend are the same as the
arguments to MPI Send:

MPI_PROC_NULL is a constant defined by MPI. If used as source or destination, no
communication will take place and the communication call will simply return

Watch Out for Deadlocks
▪ A straight-forward implementation would communicate as follows

▪ Problem

101

3.7 A Parallel Sorting Algorithm 133

int MPI Ssend(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q + 1, except that process comm sz� 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz = 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz = 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void⇤ send buf p /⇤ in ⇤/,
int send buf size /⇤ in ⇤/,
MPI Datatype send buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,

MPI_Send(… dest=2, ...) MPI_Send(… dest=1, ...)

MPI rank 1 MPI rank 2

may block until received by rank 2 may block until received by rank 1

Safety in MPI programs
▪ The MPI standard allows MPI_Send to behave in two different ways:

- it can simply copy the message into an MPI managed buffer and return,
- or it can block until the matching call to MPI_Recv starts

▪ Many implementations of MPI set a threshold at which the system
switches from buffering to blocking.
- relatively small messages will be buffered by MPI_Send
- larger messages, will cause it to block

▪ Hence, if MPI_Send executed by each process blocks, no process will be
able to start executing a call to MPI_Recv
- the program will hang or deadlock
- each process is blocked waiting for an event that will never happen.

102

Safety in MPI programs
▪ A program that relies on MPI provided buffering is said to be unsafe

▪ Such a program may run without problems for various sets of input, but it
may hang or crash with other sets.

103

MPI_Ssend
▪ An alternative to MPI_Send defined by the MPI standard
▪ The extra “s” stands for synchronous and MPI_Ssend is guaranteed to

block until the matching receive starts

▪ We can experimentally check whether a program is safe by replacing all
MPI_Send calls with MPI_Ssend and check for crashes or deadlocks

104

3.7 A Parallel Sorting Algorithm 133

int MPI Ssend(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q + 1, except that process comm sz� 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz = 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz = 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void⇤ send buf p /⇤ in ⇤/,
int send buf size /⇤ in ⇤/,
MPI Datatype send buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,

MPI_Ssend function signature

Restructuring Communication

Manual communication scheduling:
change order of send and receive for every
other process

105

3.7 A Parallel Sorting Algorithm 133

int MPI Ssend(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q + 1, except that process comm sz� 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz = 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz = 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void⇤ send buf p /⇤ in ⇤/,
int send buf size /⇤ in ⇤/,
MPI Datatype send buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,

3.7 A Parallel Sorting Algorithm 133

int MPI Ssend(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q + 1, except that process comm sz� 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz = 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz = 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void⇤ send buf p /⇤ in ⇤/,
int send buf size /⇤ in ⇤/,
MPI Datatype send buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,

MPI_Sendrecv
▪ An alternative to scheduling the communications ourselves
▪ Carries out a blocking send and a receive in a single call
▪ The dest and the source can be the same or different
▪ Especially useful because MPI schedules the communications so that the

program won’t hang or crash

106

MPI_Sendrecv

107

3.7 A Parallel Sorting Algorithm 133

int MPI Ssend(
void⇤ msg buf p /⇤ in ⇤/,
int msg size /⇤ in ⇤/,
MPI Datatype msg type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/);

The answer to the second question is that the communication must be restructured.
The most common cause of an unsafe program is multiple processes simultaneously
first sending to each other and then receiving. Our exchanges with partners is one
example. Another example is a “ring pass,” in which each process q sends to the
process with rank q + 1, except that process comm sz� 1 sends to 0:

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).

In both settings, we need to restructure the communications so that some of the pro-
cesses receive before sending. For example, the preceding communications could be
restructured as follows:

if (my rank % 2 == 0) {
MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,

0, comm, MPI STATUS IGNORE).
} else {

MPI Recv(new msg, size, MPI INT, (my rank+comm sz�1) % comm sz,
0, comm, MPI STATUS IGNORE).

MPI Send(msg, size, MPI INT, (my rank+1) % comm sz, 0, comm);
}

It’s fairly clear that this will work if comm sz is even. If, say, comm sz = 4, then
processes 0 and 2 will first send to 1 and 3, respectively, while processes 1 and 3 will
receive from 0 and 2, respectively. The roles are reversed for the next send-receive
pairs: processes 1 and 3 will send to 2 and 0, respectively, while 2 and 0 will receive
from 1 and 3.

However, it may not be clear that this scheme is also safe if comm sz is odd (and
greater than 1). Suppose, for example, that comm sz = 5. Then, Figure 3.13 shows a
possible sequence of events. The solid arrows show a completed communication, and
the dashed arrows show a communication waiting to complete.

MPI provides an alternative to scheduling the communications ourselves—we
can call the function MPI Sendrecv:

int MPI Sendrecv(
void⇤ send buf p /⇤ in ⇤/,
int send buf size /⇤ in ⇤/,
MPI Datatype send buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,

134 CHAPTER 3 Distributed-Memory Programming with MPI

0

4 3

Time 0 Time 1

Time 2

1

2

0

4 3

1

2

0

4 3

1

2

FIGURE 3.13

Safe communication with five processes

void⇤ recv buf p /⇤ out ⇤/,
int recv buf size /⇤ in ⇤/,
MPI Datatype recv buf type /⇤ in ⇤/,
int source /⇤ in ⇤/,
int recv tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/,
MPI Status⇤ status p /⇤ in ⇤/);

This function carries out a blocking send and a receive in a single call. The dest
and the source can be the same or different. What makes it especially useful is that
the MPI implementation schedules the communications so that the program won’t
hang or crash. The complex code we used earlier—the code that checks whether the
process rank is odd or even—can be replaced with a single call to MPI Sendrecv. If
it happens that the send and the receive buffers should be the same, MPI provides the
alternative:

int MPI Sendrecv replace(
void⇤ buf p /⇤ in/out ⇤/,
int buf size /⇤ in ⇤/,
MPI Datatype buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,
int source /⇤ in ⇤/,
int recv tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/,
MPI Status⇤ status p /⇤ in ⇤/);

3.7.4 Final details of parallel odd-even sort
Recall that we had developed the following parallel odd-even transposition sort
algorithm:

MPI_Sendrecv function signature

MPI_Sendrecv_replace

108

134 CHAPTER 3 Distributed-Memory Programming with MPI

0

4 3

Time 0 Time 1

Time 2

1

2

0

4 3

1

2

0

4 3

1

2

FIGURE 3.13

Safe communication with five processes

void⇤ recv buf p /⇤ out ⇤/,
int recv buf size /⇤ in ⇤/,
MPI Datatype recv buf type /⇤ in ⇤/,
int source /⇤ in ⇤/,
int recv tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/,
MPI Status⇤ status p /⇤ in ⇤/);

This function carries out a blocking send and a receive in a single call. The dest
and the source can be the same or different. What makes it especially useful is that
the MPI implementation schedules the communications so that the program won’t
hang or crash. The complex code we used earlier—the code that checks whether the
process rank is odd or even—can be replaced with a single call to MPI Sendrecv. If
it happens that the send and the receive buffers should be the same, MPI provides the
alternative:

int MPI Sendrecv replace(
void⇤ buf p /⇤ in/out ⇤/,
int buf size /⇤ in ⇤/,
MPI Datatype buf type /⇤ in ⇤/,
int dest /⇤ in ⇤/,
int send tag /⇤ in ⇤/,
int source /⇤ in ⇤/,
int recv tag /⇤ in ⇤/,
MPI Comm communicator /⇤ in ⇤/,
MPI Status⇤ status p /⇤ in ⇤/);

3.7.4 Final details of parallel odd-even sort
Recall that we had developed the following parallel odd-even transposition sort
algorithm:

same functionality as MPI_Sendrecv but replaces data in send buffer
with received data

MPI_Sendrecv_replace function signature

Parallel Odd-Even Transposition Sort
▪ Further optimization, sort local lists only once

109

136 CHAPTER 3 Distributed-Memory Programming with MPI

void Merge low(
int my keys[], /⇤ in/out ⇤/
int recv keys[], /⇤ in ⇤/
int temp keys[], /⇤ scratch ⇤/
int local n /⇤ = n/p, in ⇤/) {

int m i, r i, t i;

m i = r i = t i = 0;
while (t i < local n) {

if (my keys[m i] <= recv keys[r i]) {
temp keys[t i] = my keys[m i];
t i++; m i++;

} else {
temp keys[t i] = recv keys[r i];
t i++; r i++;

}
}

for (m i = 0; m i < local n; m i++)
my keys[m i] = temp keys[m i];

} /⇤ Merge low ⇤/

Program 3.16: The Merge low function in parallel odd-even transposition sort

3.8 SUMMARY
MPI, or the Message-Passing Interface, is a library of functions that can be called
from C, C++, or Fortran programs. Many systems use mpicc to compile MPI pro-
grams and mpiexec to run them. C MPI programs should include the mpi.h header
file to get function prototypes and macros defined by MPI.

MPI Init does the setup needed to run MPI. It should be called before other MPI
functions are called. When your program doesn’t use argc and argv, NULL can be
passed for both arguments.

In MPI a communicator is a collection of processes that can send messages to
each other. After an MPI program is started, MPI always creates a communicator
consisting of all the processes. It’s called MPI COMM WORLD.

Many parallel programs use the single program, multiple data, or SPMD,
approach, whereby running a single program obtains the effect of running multiple
different programs by including branches on data such as the process rank. When
you’re done using MPI, you should call MPI Finalize.

To send a message from one MPI process to another, you can use MPI Send. To
receive a message, you can use MPI Recv. The arguments to MPI Send describe the
contents of the message and its destination. The arguments to MPI Recv describe
the storage that the message can be received into, and where the message should be
received from. MPI Recv is blocking, that is, a call to MPI Recv won’t return until the

merging avoids sorting lists that are already sorted

Run-times of Parallel Odd-Even Sort

(times are in milliseconds)

110

3.7 A Parallel Sorting Algorithm 135

Sort local keys;
for (phase = 0; phase < comm sz; phase++) {

partner = Compute partner(phase, my rank);
if (I’m not idle) {

Send my keys to partner;
Receive keys from partner;
if (my rank < partner)

Keep smaller keys;
else

Keep larger keys;
}

}

In light of our discussion of safety in MPI, it probably makes sense to implement the
send and the receive with a single call to MPI Sendrecv:

MPI Sendrecv(my keys, n/comm sz, MPI INT, partner, 0,
recv keys, n/comm sz, MPI INT, partner, 0, comm,
MPI Status ignore);

It only remains to identify which keys we keep. Suppose for the moment that
we want to keep the smaller keys. Then we want to keep the smallest n/p keys in a
collection of 2n/p keys. An obvious approach to doing this is to sort (using a serial
sorting algorithm) the list of 2n/p keys and keep the first half of the list. However,
sorting is a relatively expensive operation, and we can exploit the fact that we already
have two sorted lists of n/p keys to reduce the cost by merging the two lists into a
single list. In fact, we can do even better, because we don’t need a fully general
merge: once we’ve found the smallest n/p keys, we can quit. See Program 3.16.

To get the largest n/p keys, we simply reverse the order of the merge, that is, start
with local n�1 and work backwards through the arrays. A final improvement avoids
copying the arrays and simply swaps pointers (see Exercise 3.28).

Run-times for the version of parallel odd-even sort with the “final improvement”
are shown in Table 3.9. Note that if parallel odd-even sort is run on a single processor,
it will use whatever serial sorting algorithm we use to sort the local keys, so the times
for a single process use serial quicksort, not serial odd-even sort, which would be
much slower. We’ll take a closer look at these times in Exercise 3.27.

Table 3.9 Run-Times of Parallel Odd-Even

Sort (times are in milliseconds)

Number of Keys (in thousands)

Processes 200 400 800 1600 3200

1 88 190 390 830 1800
2 43 91 190 410 860
4 22 46 96 200 430
8 12 24 51 110 220
16 7.5 14 29 60 130

Concluding Remarks (1)
▪ MPI or the Message-Passing Interface is a library of functions that can be

called from C, C++, or Fortran programs
▪ A communicator is a collection of processes that can send messages to

each other
▪ Many parallel programs use the single-program multiple data or SPMD

approach

111

Concluding Remarks (2)
▪ Most serial programs are deterministic: if we run the same program with

the same input we’ll get the same output
▪ Parallel programs often don’t possess this property
▪ Collective communications involve all the processes in a communicator

112

Concluding Remarks (3)
▪ When we time parallel programs, we’re usually interested in elapsed time

or “wall clock time”
▪ Speedup is the ratio of the serial run-time to the parallel run-time
▪ Efficiency is the speedup divided by the number of parallel processes
▪ If it’s possible to increase the problem size (n) so that the efficiency

doesn’t decrease as p is increased, a parallel program is said to be
(strongly) scalable
▪ An MPI program is unsafe if its correct behavior depends on the fact that

MPI_Send is buffering its input

113

Acknowledgements
▪ Peter S. Pacheco / Elsevier

- for providing the lecture slides on which this presentation is based

▪ Illustrations for MPI collectives taken from the excellent MPI tutorial
published by Lawrence Livermore National Lab
- https://computing.llnl.gov/tutorials/mpi/

114

Change log
▪ 1.2.3 (2017-11-20)

- add slide 102 to clarify deadlock situation
- clarify slides 108, 109

▪ 1.2.2 (2017-11-06)
- clarify slides 49, 72
- remove slide 102 (safe communication with 5 processes)

▪ 1.2.1 (2017-10-24)
- extend table of contents (teaser for Advanced MPI section)
- clarify slide 20, 22
- fix error on slide 38 (also in book) Get_input instead of Get_data
- correction of spelling and grammatical errors

▪ 1.2.0 (2017-10-23)
- updated for winter term 2017/18
- clarify slide 16
- add information on wildcards slide 21
- cosmetics (title case)

115

Change log
▪ 1.1.0 (2017-07-13)

- fix typos on slide 40

▪ 1.0.3 (2016-12-01)
- add slide 71 for clarification of matrix / vector distribution
- cosmetics and correction of minor typos

▪ 1.0.2 (2016-11-29)
- slide 49, clarify kind of reduction and receiver in example
- add slide numbers everywhere

▪ 1.0.1 (2016-11-24)
- cosmetic changes to part 1, initial version of remaining slides

▪ 1.0.0 (2016-11-24)
- initial version of slides (part 1)

116

