
version 1.1.2 2017-11-24

High-Performance
Computing

– Shared Memory Programming with Pthreads –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

Outline
▪Problems programming shared memory systems

- controlling access to a critical section
- thread synchronization

▪Programming with POSIX threads
- mutexes
- producer-consumer synchronization and semaphores
- barriers and condition variables
- read-write locks

▪ Thread safety

2

A Shared Memory System

Interconnect

CPU CPU CPU CPU

Memory

3

Processes and Threads
▪ A process is an instance of a running (or suspended) program
▪ Threads are analogous to “light-weight” processes
▪ In a shared memory program a single process may have multiple threads

of control
▪ Threads are not restricted to HPC

- can be used for parallel processing (share computational work, performance is key)
- can be used for concurrent processing (e.g. producer/consumer, background processing,

interactive user interfaces, etc.)

4

POSIX Threads
▪ Also known as Pthreads
▪ A standard for Unix-like operating systems
▪ A library that can be linked with C programs
▪ Specifies an application programming interface (API) for multi-threaded

programming
▪ Availability

- widely available in Unix-derived systems: Linux, macOS, BSD, Solaris
- not available on Windows, but compatibility libraries exist

▪ Pthreads are general-purpose basic building blocks for multi-threaded
applications
- low level of abstraction, but explicit control over threads
- in future lectures we will also look at higher-level approaches that use multi-threading under

the hood (e.g. OpenMP tasking)

5

Hello World (1)
154 CHAPTER 4 Shared-Memory Programming with Pthreads

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 /⇤ Global variable: accessible to all threads ⇤/
6 int thread count;
7
8 void⇤ Hello(void⇤ rank); /⇤ Thread function ⇤/
9

10 int main(int argc, char⇤ argv[]) {
11 long thread; /⇤ Use long in case of a 64�bit system ⇤/
12 pthread t⇤ thread handles;
13
14 /⇤ Get number of threads from command line ⇤/
15 thread count = strtol(argv[1], NULL, 10);
16
17 thread handles = malloc (thread count⇤sizeof(pthread t));
18
19 for (thread = 0; thread < thread count; thread++)
20 pthread create(&thread handles[thread], NULL,
21 Hello, (void⇤) thread);
22
23 printf("Hello from the main thread\n");
24
25 for (thread = 0; thread < thread count; thread++)
26 pthread join(thread handles[thread], NULL);
27
28 free(thread handles);
29 return 0;
30 } /⇤ main ⇤/
31
32 void⇤ Hello(void⇤ rank) {
33 long my rank = (long) rank

/⇤ Use long in case of 64�bit system ⇤/
34
35 printf("Hello from thread %ld of %d\n", my rank,

thread count);
36
37 return NULL;
38 } /⇤ Hello ⇤/

Program 4.1: A Pthreads “hello, world” program

For example, to run the program with one thread, we type

$./pth hello 1

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 1

declares the various Pthreads
functions, constants, types, etc.

allocate memory in master thread to store
handles to child threads

6

Hello World (2)

154 CHAPTER 4 Shared-Memory Programming with Pthreads

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 /⇤ Global variable: accessible to all threads ⇤/
6 int thread count;
7
8 void⇤ Hello(void⇤ rank); /⇤ Thread function ⇤/
9

10 int main(int argc, char⇤ argv[]) {
11 long thread; /⇤ Use long in case of a 64�bit system ⇤/
12 pthread t⇤ thread handles;
13
14 /⇤ Get number of threads from command line ⇤/
15 thread count = strtol(argv[1], NULL, 10);
16
17 thread handles = malloc (thread count⇤sizeof(pthread t));
18
19 for (thread = 0; thread < thread count; thread++)
20 pthread create(&thread handles[thread], NULL,
21 Hello, (void⇤) thread);
22
23 printf("Hello from the main thread\n");
24
25 for (thread = 0; thread < thread count; thread++)
26 pthread join(thread handles[thread], NULL);
27
28 free(thread handles);
29 return 0;
30 } /⇤ main ⇤/
31
32 void⇤ Hello(void⇤ rank) {
33 long my rank = (long) rank

/⇤ Use long in case of 64�bit system ⇤/
34
35 printf("Hello from thread %ld of %d\n", my rank,

thread count);
36
37 return NULL;
38 } /⇤ Hello ⇤/

Program 4.1: A Pthreads “hello, world” program

For example, to run the program with one thread, we type

$./pth hello 1

and the output will look something like this:

Hello from the main thread
Hello from thread 0 of 1

spawn threads
in master

join threads

7

Compiling a Pthread program

gcc −g −Wall −pthread pth_hello pth_hello.c

enable Pthread macros and
link with the Pthreads
library

8

Running a Pthreads program
./pth_hello <number of threads>

./pth_hello 1

Hello from the main thread
Hello from thread 0 of 1

./pth_hello 4

Hello from the main thread
Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

9

Global Variables
▪ Threads share the same memory space, i.e. all variables of the master are

accessible (read and write) in the spawned threads
▪ Use of global variables (in particular inadvertent use) can introduce subtle

and confusing bugs because of race conditions
- limit use of global variables to situations in which they are really needed (shared data)
- use local variables wherever possible

10

Starting the Threads
▪ Processes in MPI are usually started by a launcher program (e.g. mpirun)
▪ In Pthreads the threads are explicitly started by the program executable

int pthread_create (
pthread_t* thread_p /* out */,
const pthread_attr_t* attr_p /* in */,
void* (*start_routine) (void) /* in */,
void* arg_p /* in */

) ;

pthread_t: one object (handle) for each thread for
referencing thread after creation

11

pthread_t Objects
▪ Implemented as opaque data structure
▪ The actual data that they store is system-specific
▪ Their data members aren’t directly accessible to user code
▪ However, the Pthreads standard guarantees that a pthread_t object does

store enough information to uniquely identify the thread with which it is
associated

12

pthread_create in Detail (1)

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

attributes to control configurable thread attributes
(stack size, scheduling policy, etc.) Typically the default
behavior is OK, can pass in NULL for this case.

returns handle to thread, memory must be allocate before calling

1
2

2

1

13

pthread_create in Detail (2)

int pthread_create (
pthread_t* thread_p /* out */ ,
const pthread_attr_t* attr_p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg_p /* in */) ;

pointer to function that is executed by the thread

pointer to the argument(s) that are passed to the thread
function start_routine

3
4

3

4

14

Function Started by pthread_create
▪ Function to be executed is passed as a function pointer to a function with

void arguments and void return value
▪ Prototype

▪ Argument void* can be cast to any pointer type in C
- e.g. if the thread_function needs more than one argument args_p can also point to a list

containing one or more values

▪ Return value void*
- can point to a list of one or more values.

void* thread_function (void* args_p) ;

15

Running and Joining Threads
▪ Lifecycle of threads

▪ Joining a thread
- call pthread_join once for each thread (identify thread with pthread_t handle)
- blocks until the associated thread terminates

Thread 0

Thread 1

Main
pthread_join

pthread_create

16

Use Case: Matrix-Vector Multiplication w/ Pthreads

a00 a01 · · · a0,n−1

a10 a11 · · · a1,n−1

...
...

...

ai0 ai1 · · · ai,n−1

...
...

...

am−1,0 am−1,1 · · · am−1,n−1

x0

x1

.

.

.

xn−1

=

y0

y1

...

yi = ai0x0 + ai1x1 + ·· ·ai,n−1xn−1

...

ym−1

17

Serial Pseudo-Code

160 CHAPTER 4 Shared-Memory Programming with Pthreads

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 4.3

Matrix-vector multiplication

the dot product of the ith row of A with x:

yi =
n�1X

j=0

aijxj.

See Figure 4.3. Thus, pseudo-code for a serial program for matrix-vector multipli-
cation might look like this:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

y[i] = 0.0;
/⇤ For each element of the row and each element of x ⇤/
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤ x[j];
}

We want to parallelize this by dividing the work among the threads. One pos-
sibility is to divide the iterations of the outer loop among the threads. If we do
this, each thread will compute some of the components of y. For example, suppose
that m = n = 6 and the number of threads, thread count or t, is three. Then the
computation could be divided among the threads as follows:

Thread Components of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y[0] = 0.0;
for (j = 0; j < n; j++)

y[0] += A[0][j]⇤ x[j];

Thread 0 will therefore need to access every element of row 0 of A and every element
of x. More generally, the thread that has been assigned y[i] will need to execute
the code

160 CHAPTER 4 Shared-Memory Programming with Pthreads

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 4.3

Matrix-vector multiplication

the dot product of the ith row of A with x:

yi =
n�1X

j=0

aijxj.

See Figure 4.3. Thus, pseudo-code for a serial program for matrix-vector multipli-
cation might look like this:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

y[i] = 0.0;
/⇤ For each element of the row and each element of x ⇤/
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤ x[j];
}

We want to parallelize this by dividing the work among the threads. One pos-
sibility is to divide the iterations of the outer loop among the threads. If we do
this, each thread will compute some of the components of y. For example, suppose
that m = n = 6 and the number of threads, thread count or t, is three. Then the
computation could be divided among the threads as follows:

Thread Components of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y[0] = 0.0;
for (j = 0; j < n; j++)

y[0] += A[0][j]⇤ x[j];

Thread 0 will therefore need to access every element of row 0 of A and every element
of x. More generally, the thread that has been assigned y[i] will need to execute
the code

18

Using 3 Threads

thread 0

general case

160 CHAPTER 4 Shared-Memory Programming with Pthreads

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 4.3

Matrix-vector multiplication

the dot product of the ith row of A with x:

yi =
n�1X

j=0

aijxj.

See Figure 4.3. Thus, pseudo-code for a serial program for matrix-vector multipli-
cation might look like this:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

y[i] = 0.0;
/⇤ For each element of the row and each element of x ⇤/
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤ x[j];
}

We want to parallelize this by dividing the work among the threads. One pos-
sibility is to divide the iterations of the outer loop among the threads. If we do
this, each thread will compute some of the components of y. For example, suppose
that m = n = 6 and the number of threads, thread count or t, is three. Then the
computation could be divided among the threads as follows:

Thread Components of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y[0] = 0.0;
for (j = 0; j < n; j++)

y[0] += A[0][j]⇤ x[j];

Thread 0 will therefore need to access every element of row 0 of A and every element
of x. More generally, the thread that has been assigned y[i] will need to execute
the code

160 CHAPTER 4 Shared-Memory Programming with Pthreads

a00 a01 · · · a0,n�1
a10 a11 · · · a1,n�1

...
...

...

ai0 ai1 · · · ai,n�1

...
...

...
am�1,0 am�1,1 · · · am�1,n�1

x0

x1

...

xn�1

=

y0
y1
...

yi = ai0x0 + ai1x1 + ·· ·ai,n�1xn�1

...
ym�1

FIGURE 4.3

Matrix-vector multiplication

the dot product of the ith row of A with x:

yi =
n�1X

j=0

aijxj.

See Figure 4.3. Thus, pseudo-code for a serial program for matrix-vector multipli-
cation might look like this:

/⇤ For each row of A ⇤/
for (i = 0; i < m; i++) {

y[i] = 0.0;
/⇤ For each element of the row and each element of x ⇤/
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤ x[j];
}

We want to parallelize this by dividing the work among the threads. One pos-
sibility is to divide the iterations of the outer loop among the threads. If we do
this, each thread will compute some of the components of y. For example, suppose
that m = n = 6 and the number of threads, thread count or t, is three. Then the
computation could be divided among the threads as follows:

Thread Components of y

0 y[0], y[1]
1 y[2], y[3]
2 y[4], y[5]

To compute y[0], thread 0 will need to execute the code

y[0] = 0.0;
for (j = 0; j < n; j++)

y[0] += A[0][j]⇤ x[j];

Thread 0 will therefore need to access every element of row 0 of A and every element
of x. More generally, the thread that has been assigned y[i] will need to execute
the code

4.3 Matrix-Vector Multiplication 161

y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];

Thus, this thread will need to access every element of row i of A and every element of x.
We see that each thread needs to access every component of x, while each thread only
needs to access its assigned rows of A and assigned components of y. This suggests
that, at a minimum, x should be shared. Let’s also make A and y shared. This might
seem to violate our principle that we should only make variables global that need to
be global. However, in the exercises, we’ll take a closer look at some of the issues
involved in making the A and y variables local to the thread function, and we’ll see
that making them global can make good sense. At this point, we’ll just observe that if
they are global, the main thread can easily initialize all of A by just reading its entries
from stdin, and the product vector y can be easily printed by the main thread.

Having made these decisions, we only need to write the code that each thread
will use for deciding which components of y it will compute. In order to simplify
the code, let’s assume that both m and n are evenly divisible by t. Our example with
m = 6 and t = 3 suggests that each thread gets m/t components. Furthermore, thread
0 gets the first m/t, thread 1 gets the next m/t, and so on. Thus, the formulas for the
components assigned to thread q might be

first component: q ⇥ m
t

and

last component: (q + 1) ⇥ m
t

� 1.

With these formulas, we can write the thread function that carries out matrix-vector
multiplication. See Program 4.2. Note that in this code, we’re assuming that A, x, y,
m, and n are all global and shared.

void⇤ Pth mat vect(void⇤ rank) {
long my rank = (long) rank;
int i, j;
int local m = m/thread count;
int my first row = my rank⇤local m;
int my last row = (my rank+1)⇤local m � 1;

for (i = my first row; i <= my last row; i++) {
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];
}

return NULL;
} /⇤ Pth mat vect ⇤/

Program 4.2: Pthreads matrix-vector multiplication

19

Pthreads Matrix-Vector Multiplication

4.3 Matrix-Vector Multiplication 161

y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];

Thus, this thread will need to access every element of row i of A and every element of x.
We see that each thread needs to access every component of x, while each thread only
needs to access its assigned rows of A and assigned components of y. This suggests
that, at a minimum, x should be shared. Let’s also make A and y shared. This might
seem to violate our principle that we should only make variables global that need to
be global. However, in the exercises, we’ll take a closer look at some of the issues
involved in making the A and y variables local to the thread function, and we’ll see
that making them global can make good sense. At this point, we’ll just observe that if
they are global, the main thread can easily initialize all of A by just reading its entries
from stdin, and the product vector y can be easily printed by the main thread.

Having made these decisions, we only need to write the code that each thread
will use for deciding which components of y it will compute. In order to simplify
the code, let’s assume that both m and n are evenly divisible by t. Our example with
m = 6 and t = 3 suggests that each thread gets m/t components. Furthermore, thread
0 gets the first m/t, thread 1 gets the next m/t, and so on. Thus, the formulas for the
components assigned to thread q might be

first component: q ⇥ m
t

and

last component: (q + 1) ⇥ m
t

� 1.

With these formulas, we can write the thread function that carries out matrix-vector
multiplication. See Program 4.2. Note that in this code, we’re assuming that A, x, y,
m, and n are all global and shared.

void⇤ Pth mat vect(void⇤ rank) {
long my rank = (long) rank;
int i, j;
int local m = m/thread count;
int my first row = my rank⇤local m;
int my last row = (my rank+1)⇤local m � 1;

for (i = my first row; i <= my last row; i++) {
y[i] = 0.0;
for (j = 0; j < n; j++)

y[i] += A[i][j]⇤x[j];
}

return NULL;
} /⇤ Pth mat vect ⇤/

Program 4.2: Pthreads matrix-vector multiplication

rank passed as argument
to pthread_create

m: number of rows

20

Critical Sections

21

Estimating π

162 CHAPTER 4 Shared-Memory Programming with Pthreads

If you have already read the MPI chapter, you may recall that it took more work
to write a matrix-vector multiplication program using MPI. This was because of the
fact that the data structures were necessarily distributed, that is, each MPI process
only has direct access to its own local memory. Thus, for the MPI code, we need to
explicitly gather all of x into each process’ memory. We see from this example that
there are instances in which writing shared-memory programs is easier than writing
distributed-memory programs. However, we’ll shortly see that there are situations in
which shared-memory programs can be more complex.

4.4 CRITICAL SECTIONS
Matrix-vector multiplication was very easy to code because the shared-memory
locations were accessed in a highly desirable way. After initialization, all of the
variables—except y—are only read by the threads. That is, except for y, none of the
shared variables are changed after they’ve been initialized by the main thread. Fur-
thermore, although the threads do make changes to y, only one thread makes changes
to any individual component, so there are no attempts by two (or more) threads to
modify any single component. What happens if this isn’t the case? That is, what hap-
pens when multiple threads update a single memory location? We also discuss this
in Chapters 2 and 5, so if you’ve read one of these chapters, you already know the
answer. But let’s look at an example.

Let’s try to estimate the value of ⇡ . There are lots of different formulas we could
use. One of the simplest is

⇡ = 4
✓

1 � 1
3

+ 1
5

� 1
7

+ ·· · + (�1)n 1
2n + 1

+ ·· ·
◆

.

This isn’t the best formula for computing ⇡ , because it takes a lot of terms on the
right-hand side before it is very accurate. However, for our purposes, lots of terms
will be better.

The following serial code uses this formula:

double factor = 1.0;
double sum = 0.0;
for (i = 0; i < n; i++, factor = �factor) {

sum += factor/(2⇤i+1);
}
pi = 4.0⇤sum;

We can try to parallelize this in the same way we parallelized the matrix-vector mul-
tiplication program: divide up the iterations in the for loop among the threads and
make sum a shared variable. To simplify the computations, let’s assume that the num-
ber of threads, thread count or t, evenly divides the number of terms in the sum, n.
Then, if n̄ = n/t, thread 0 can add the first n̄ terms. Therefore, for thread 0, the loop
variable i will range from 0 to n̄ � 1. Thread 1 will add the next n̄ terms, so for thread
1, the loop variable will range from n̄ to 2n̄ � 1. More generally, for thread q the loop

162 CHAPTER 4 Shared-Memory Programming with Pthreads

If you have already read the MPI chapter, you may recall that it took more work
to write a matrix-vector multiplication program using MPI. This was because of the
fact that the data structures were necessarily distributed, that is, each MPI process
only has direct access to its own local memory. Thus, for the MPI code, we need to
explicitly gather all of x into each process’ memory. We see from this example that
there are instances in which writing shared-memory programs is easier than writing
distributed-memory programs. However, we’ll shortly see that there are situations in
which shared-memory programs can be more complex.

4.4 CRITICAL SECTIONS
Matrix-vector multiplication was very easy to code because the shared-memory
locations were accessed in a highly desirable way. After initialization, all of the
variables—except y—are only read by the threads. That is, except for y, none of the
shared variables are changed after they’ve been initialized by the main thread. Fur-
thermore, although the threads do make changes to y, only one thread makes changes
to any individual component, so there are no attempts by two (or more) threads to
modify any single component. What happens if this isn’t the case? That is, what hap-
pens when multiple threads update a single memory location? We also discuss this
in Chapters 2 and 5, so if you’ve read one of these chapters, you already know the
answer. But let’s look at an example.

Let’s try to estimate the value of ⇡ . There are lots of different formulas we could
use. One of the simplest is

⇡ = 4
✓

1 � 1
3

+ 1
5

� 1
7

+ ·· · + (�1)n 1
2n + 1

+ ·· ·
◆

.

This isn’t the best formula for computing ⇡ , because it takes a lot of terms on the
right-hand side before it is very accurate. However, for our purposes, lots of terms
will be better.

The following serial code uses this formula:

double factor = 1.0;
double sum = 0.0;
for (i = 0; i < n; i++, factor = �factor) {

sum += factor/(2⇤i+1);
}
pi = 4.0⇤sum;

We can try to parallelize this in the same way we parallelized the matrix-vector mul-
tiplication program: divide up the iterations in the for loop among the threads and
make sum a shared variable. To simplify the computations, let’s assume that the num-
ber of threads, thread count or t, evenly divides the number of terms in the sum, n.
Then, if n̄ = n/t, thread 0 can add the first n̄ terms. Therefore, for thread 0, the loop
variable i will range from 0 to n̄ � 1. Thread 1 will add the next n̄ terms, so for thread
1, the loop variable will range from n̄ to 2n̄ � 1. More generally, for thread q the loop

series expansion

serial code

22

Multithreaded Computation of π
▪ simple parallelization strategy

- each thread computes n/thread_count terms
- make sum a shared variable

4.4 Critical Sections 163

1 void⇤ Thread sum(void⇤ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n⇤my rank;
7 long long my last i = my first i + my n;
8
9 if (my first i % 2 == 0) /⇤ my first i is even ⇤/

10 factor = 1.0;
11 else /⇤ my first i is odd ⇤/
12 factor = �1.0;
13
14 for (i = my first i; i < my last i; i++, factor = �factor) {
15 sum += factor/(2⇤i+1);
16 }
17
18 return NULL;
19 } /⇤ Thread sum ⇤/

Program 4.3: An attempt at a thread function for computing ⇡

variable will range over

qn̄,qn̄ + 1,qn̄ + 2, . . . ,(q + 1)n̄ � 1.

Furthermore, the sign of the first term, term qn̄, will be positive if qn̄ is even and
negative if qn̄ is odd. The thread function might use the code shown in Program 4.3.

If we run the Pthreads program with two threads and n is relatively small,
we find that the results of the Pthreads program are in agreement with the
serial sum program. However, as n gets larger, we start getting some peculiar
results. For example, with a dual-core processor we get the following results:

n

105 106 107 108

⇡ 3.14159 3.141593 3.1415927 3.14159265

1 Thread 3.14158 3.141592 3.1415926 3.14159264

2 Threads 3.14158 3.141480 3.1413692 3.14164686

Notice that as we increase n, the estimate with one thread gets better and better. In
fact, with each factor of 10 increase in n we get another correct digit. With n = 105,
the result as computed by a single thread has five correct digits. With n = 106, it has
six correct digits, and so on. The result computed by two threads agrees with the

code for each thread
23

Results from Multi-Threaded Execution

▪ Different results for single and multi-threaded execution
- with increasing n the estimate of the single-threaded code is getting

better and better

▪ Race condition
- both threads write to global variable sum

4.4 Critical Sections 163

1 void⇤ Thread sum(void⇤ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n⇤my rank;
7 long long my last i = my first i + my n;
8
9 if (my first i % 2 == 0) /⇤ my first i is even ⇤/

10 factor = 1.0;
11 else /⇤ my first i is odd ⇤/
12 factor = �1.0;
13
14 for (i = my first i; i < my last i; i++, factor = �factor) {
15 sum += factor/(2⇤i+1);
16 }
17
18 return NULL;
19 } /⇤ Thread sum ⇤/

Program 4.3: An attempt at a thread function for computing ⇡

variable will range over

qn̄,qn̄ + 1,qn̄ + 2, . . . ,(q + 1)n̄ � 1.

Furthermore, the sign of the first term, term qn̄, will be positive if qn̄ is even and
negative if qn̄ is odd. The thread function might use the code shown in Program 4.3.

If we run the Pthreads program with two threads and n is relatively small,
we find that the results of the Pthreads program are in agreement with the
serial sum program. However, as n gets larger, we start getting some peculiar
results. For example, with a dual-core processor we get the following results:

n

105 106 107 108

⇡ 3.14159 3.141593 3.1415927 3.14159265

1 Thread 3.14158 3.141592 3.1415926 3.14159264

2 Threads 3.14158 3.141480 3.1413692 3.14164686

Notice that as we increase n, the estimate with one thread gets better and better. In
fact, with each factor of 10 increase in n we get another correct digit. With n = 105,
the result as computed by a single thread has five correct digits. With n = 106, it has
six correct digits, and so on. The result computed by two threads agrees with the

⚡

24

Prevent Data Races with Busy-Waiting
▪ A thread repeatedly tests a condition, but, effectively, does no useful

work until the condition has the appropriate value.
▪ Beware of optimizing compilers, though!
▪ Drawback: wastes computing resources because a waiting thread

continually uses the CPU accomplishing nothing

flag initialized to 0
by main thread

4.5 Busy-Waiting 165

This example illustrates a fundamental problem in shared-memory programming:
when multiple threads attempt to update a shared resource—in our case a shared
variable—the result may be unpredictable. Recall that more generally, when multiple
threads attempt to access a shared resource such as a shared variable or a shared
file, at least one of the accesses is an update, and the accesses can result in an error,
we have a race condition. In our example, in order for our code to produce the
correct result, we need to make sure that once one of the threads starts executing the
statement x = x + y, it finishes executing the statement before the other thread starts
executing the statement. Therefore, the code x = x + y is a critical section, that is,
it’s a block of code that updates a shared resource that can only be updated by one
thread at a time.

4.5 BUSY-WAITING
When, say, thread 0 wants to execute the statement x = x + y, it needs to first make
sure that thread 1 is not already executing the statement. Once thread 0 makes sure of
this, it needs to provide some way for thread 1 to determine that it, thread 0, is execut-
ing the statement, so that thread 1 won’t attempt to start executing the statement until
thread 0 is done. Finally, after thread 0 has completed execution of the statement, it
needs to provide some way for thread 1 to determine that it is done, so that thread 1
can safely start executing the statement.

A simple approach that doesn’t involve any new concepts is the use of a flag
variable. Suppose flag is a shared int that is set to 0 by the main thread. Further,
suppose we add the following code to our example:

1 y = Compute(my rank);
2 while (flag != my rank);
3 x = x + y;
4 flag++;

Let’s suppose that thread 1 finishes the assignment in Line 1 before thread 0. What
happens when it reaches the while statement in Line 2? If you look at the while
statement for a minute, you’ll see that it has the somewhat peculiar property that its
body is empty. So if the test flag != my rank is true, then thread 1 will just execute
the test a second time. In fact, it will keep re-executing the test until the test is false.
When the test is false, thread 1 will go on to execute the code in the critical section
x = x + y.

Since we’re assuming that the main thread has initialized flag to 0, thread 1 won’t
proceed to the critical section in Line 3 until thread 0 executes the statement flag++.
In fact, we see that unless some catastrophe befalls thread 0, it will eventually catch
up to thread 1. However, when thread 0 executes its first test of flag != my rank,
the condition is false, and it will go on to execute the code in the critical section
x = x + y. When it’s done with this, we see that it will execute flag++, and thread
1 can finally enter the critical section.

while (flag != my_rank) {
// do nothing

}

compact but somehow obscure,
better write loop like this

25

Pthreads Global Sum with Busy-Waiting
4.5 Busy-Waiting 167

1 void⇤ Thread sum(void⇤ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n⇤my rank;
7 long long my last i = my first i + my n;
8
9 if (my first i % 2 == 0)

10 factor = 1.0;
11 else
12 factor = �1.0;
13
14 for (i = my first i; i < my last i; i++, factor = �factor) {
15 while (flag != my rank);
16 sum += factor/(2⇤i+1);
17 flag = (flag+1) % thread count;
18 }
19
20 return NULL;
21 } /⇤ Thread sum ⇤/

Program 4.4: Pthreads global sum with busy-waiting

increment flag. Rather, the last thread, thread t � 1, should reset flag to zero. This
can be accomplished by replacing flag++ with

flag = (flag + 1) % thread count;

With this change, we get the thread function shown in Program 4.4. If we compile
the program and run it with two threads, we see that it is computing the correct
results. However, if we add in code for computing elapsed time, we see that when
n = 108, the serial sum is consistently faster than the parallel sum. For example, on
the dual-core system, the elapsed time for the sum as computed by two threads is
about 19.5 seconds, while the elapsed time for the serial sum is about 2.8 seconds!

Why is this? Of course, there’s overhead associated with starting up and joining
the threads. However, we can estimate this overhead by writing a Pthreads program
in which the thread function simply returns:

void⇤ Thread function(void⇤ ignore) {
return NULL;

} /⇤ Thread function ⇤/

When we find the time that’s elapsed between starting the first thread and joining
the second thread, we see that on this particular system, the overhead is less than
0.3 milliseconds, so the slowdown isn’t due to thread overhead. If we look closely at

high overhead, because busy-
waiting in every loop
iteration

26

Optimization: Critical Section After Loop

1) perform local sum reduction
on local variable first

2) perform global sum
reduction on local variable first

168 CHAPTER 4 Shared-Memory Programming with Pthreads

void⇤ Thread sum(void⇤ rank) {
long my rank = (long) rank;
double factor, my sum = 0.0;
long long i;
long long my n = n/thread count;
long long my first i = my n⇤my rank;
long long my last i = my first i + my n;

if (my first i % 2 == 0)
factor = 1.0;

else
factor = �1.0;

for (i = my first i; i < my last i; i++, factor = �factor)
my sum += factor/(2⇤i+1);

while (flag != my rank);
sum += my sum;
flag = (flag+1) % thread count;

return NULL;
} /⇤ Thread sum ⇤/

Program 4.5: Global sum function with critical section after loop

the thread function that uses busy-waiting, we see that the threads alternate between
executing the critical section code in Line 16. Initially flag is 0, so thread 1 must
wait until thread 0 executes the critical section and increments flag. Then, thread 0
must wait until thread 1 executes and increments. The threads will alternate between
waiting and executing, and evidently the waiting and the incrementing increase the
overall run time by a factor of seven.

As we’ll see, busy-waiting isn’t the only solution to protecting a critical section.
In fact, there are much better solutions. However, since the code in a critical section
can only be executed by one thread at a time, no matter how we limit access to the
critical section, we’ll effectively serialize the code in the critical section. Therefore,
if it’s at all possible, we should minimize the number of times we execute critical
section code. One way to greatly improve the performance of the sum function is to
have each thread use a private variable to store its total contribution to the sum. Then,
each thread can add in its contribution to the global sum once, after the for loop. See
Program 4.5. When we run this on the dual-core system with n = 108, the elapsed
time is reduced to 1.5 seconds for two threads, a substantial improvement.

4.6 MUTEXES
Since a thread that is busy-waiting may continually use the CPU, busy-waiting is gen-
erally not an ideal solution to the problem of limiting access to a critical section. Two

27

Mutexes
▪ Mutex (mutual exclusion) special type of variable for restricting access to a

critical section to a single thread at a time
▪ Guarantees that one thread “excludes” all other threads

while it executes the critical section
▪ No waste of computing resources, in contrast to busy-waiting

- excluded threads wait in blocking queue

▪ The Pthreads standard includes a special (opaque) type
pthread_mutex_t for mutexes
▪ Manipulation of mutexes with dedicated function

28

Mutex Handling in the Pthreads library
▪ A mutex needs to be created and initialized before the first use

▪ To enter a critical section a thread calls

▪ To leave a critical section a thread calls

▪ When a Pthreads program finishes using a mutex, it should call

4.6 Mutexes 169

better solutions are mutexes and semaphores. Mutex is an abbreviation of mutual
exclusion, and a mutex is a special type of variable that, together with a couple of
special functions, can be used to restrict access to a critical section to a single thread
at a time. Thus, a mutex can be used to guarantee that one thread “excludes” all other
threads while it executes the critical section. Hence, the mutex guarantees mutually
exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread mutex t.
A variable of type pthread mutex t needs to be initialized by the system before it’s
used. This can be done with a call to

int pthread mutex init(
pthread mutex t⇤ mutex p /⇤ out ⇤/,
const pthread mutexattr t⇤ attr p /⇤ in ⇤/);

We won’t make use of the second argument, so we’ll just pass in NULL. When a
Pthreads program finishes using a mutex, it should call

int pthread mutex destroy(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

To gain access to a critical section, a thread calls

int pthread mutex lock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

When a thread is finished executing the code in a critical section, it should call

int pthread mutex unlock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

The call to pthread mutex lock will cause the thread to wait until no other thread is
in the critical section, and the call to pthread mutex unlock notifies the system that
the calling thread has completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declar-
ing a global mutex variable, having the main thread initialize it, and then, instead
of busy-waiting and incrementing a flag, the threads call pthread mutex lock
before entering the critical section, and they call pthread mutex unlock when
they’re done with the critical section. See Program 4.6. The first thread to call
pthread mutex lock will, effectively, “lock the door” to the critical section. Any
other thread that attempts to execute the critical section code must first also call
pthread mutex lock, and until the first thread calls pthread mutex unlock, all the
threads that have called pthread mutex lock will block in their calls—they’ll just
wait until the first thread is done. After the first thread calls pthread mutex unlock,
the system will choose one of the blocked threads and allow it to execute the code in
the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only
metaphor that’s used in connection with mutexes. Programmers often say that the
thread that has returned from a call to pthread mutex lock has “obtained the
mutex” or “obtained the lock.” When this terminology is used, a thread that calls
pthread mutex unlock “relinquishes” the mutex or lock.

4.6 Mutexes 169

better solutions are mutexes and semaphores. Mutex is an abbreviation of mutual
exclusion, and a mutex is a special type of variable that, together with a couple of
special functions, can be used to restrict access to a critical section to a single thread
at a time. Thus, a mutex can be used to guarantee that one thread “excludes” all other
threads while it executes the critical section. Hence, the mutex guarantees mutually
exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread mutex t.
A variable of type pthread mutex t needs to be initialized by the system before it’s
used. This can be done with a call to

int pthread mutex init(
pthread mutex t⇤ mutex p /⇤ out ⇤/,
const pthread mutexattr t⇤ attr p /⇤ in ⇤/);

We won’t make use of the second argument, so we’ll just pass in NULL. When a
Pthreads program finishes using a mutex, it should call

int pthread mutex destroy(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

To gain access to a critical section, a thread calls

int pthread mutex lock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

When a thread is finished executing the code in a critical section, it should call

int pthread mutex unlock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

The call to pthread mutex lock will cause the thread to wait until no other thread is
in the critical section, and the call to pthread mutex unlock notifies the system that
the calling thread has completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declar-
ing a global mutex variable, having the main thread initialize it, and then, instead
of busy-waiting and incrementing a flag, the threads call pthread mutex lock
before entering the critical section, and they call pthread mutex unlock when
they’re done with the critical section. See Program 4.6. The first thread to call
pthread mutex lock will, effectively, “lock the door” to the critical section. Any
other thread that attempts to execute the critical section code must first also call
pthread mutex lock, and until the first thread calls pthread mutex unlock, all the
threads that have called pthread mutex lock will block in their calls—they’ll just
wait until the first thread is done. After the first thread calls pthread mutex unlock,
the system will choose one of the blocked threads and allow it to execute the code in
the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only
metaphor that’s used in connection with mutexes. Programmers often say that the
thread that has returned from a call to pthread mutex lock has “obtained the
mutex” or “obtained the lock.” When this terminology is used, a thread that calls
pthread mutex unlock “relinquishes” the mutex or lock.

4.6 Mutexes 169

better solutions are mutexes and semaphores. Mutex is an abbreviation of mutual
exclusion, and a mutex is a special type of variable that, together with a couple of
special functions, can be used to restrict access to a critical section to a single thread
at a time. Thus, a mutex can be used to guarantee that one thread “excludes” all other
threads while it executes the critical section. Hence, the mutex guarantees mutually
exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread mutex t.
A variable of type pthread mutex t needs to be initialized by the system before it’s
used. This can be done with a call to

int pthread mutex init(
pthread mutex t⇤ mutex p /⇤ out ⇤/,
const pthread mutexattr t⇤ attr p /⇤ in ⇤/);

We won’t make use of the second argument, so we’ll just pass in NULL. When a
Pthreads program finishes using a mutex, it should call

int pthread mutex destroy(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

To gain access to a critical section, a thread calls

int pthread mutex lock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

When a thread is finished executing the code in a critical section, it should call

int pthread mutex unlock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

The call to pthread mutex lock will cause the thread to wait until no other thread is
in the critical section, and the call to pthread mutex unlock notifies the system that
the calling thread has completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declar-
ing a global mutex variable, having the main thread initialize it, and then, instead
of busy-waiting and incrementing a flag, the threads call pthread mutex lock
before entering the critical section, and they call pthread mutex unlock when
they’re done with the critical section. See Program 4.6. The first thread to call
pthread mutex lock will, effectively, “lock the door” to the critical section. Any
other thread that attempts to execute the critical section code must first also call
pthread mutex lock, and until the first thread calls pthread mutex unlock, all the
threads that have called pthread mutex lock will block in their calls—they’ll just
wait until the first thread is done. After the first thread calls pthread mutex unlock,
the system will choose one of the blocked threads and allow it to execute the code in
the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only
metaphor that’s used in connection with mutexes. Programmers often say that the
thread that has returned from a call to pthread mutex lock has “obtained the
mutex” or “obtained the lock.” When this terminology is used, a thread that calls
pthread mutex unlock “relinquishes” the mutex or lock.

4.6 Mutexes 169

better solutions are mutexes and semaphores. Mutex is an abbreviation of mutual
exclusion, and a mutex is a special type of variable that, together with a couple of
special functions, can be used to restrict access to a critical section to a single thread
at a time. Thus, a mutex can be used to guarantee that one thread “excludes” all other
threads while it executes the critical section. Hence, the mutex guarantees mutually
exclusive access to the critical section.

The Pthreads standard includes a special type for mutexes: pthread mutex t.
A variable of type pthread mutex t needs to be initialized by the system before it’s
used. This can be done with a call to

int pthread mutex init(
pthread mutex t⇤ mutex p /⇤ out ⇤/,
const pthread mutexattr t⇤ attr p /⇤ in ⇤/);

We won’t make use of the second argument, so we’ll just pass in NULL. When a
Pthreads program finishes using a mutex, it should call

int pthread mutex destroy(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

To gain access to a critical section, a thread calls

int pthread mutex lock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

When a thread is finished executing the code in a critical section, it should call

int pthread mutex unlock(pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

The call to pthread mutex lock will cause the thread to wait until no other thread is
in the critical section, and the call to pthread mutex unlock notifies the system that
the calling thread has completed execution of the code in the critical section.

We can use mutexes instead of busy-waiting in our global sum program by declar-
ing a global mutex variable, having the main thread initialize it, and then, instead
of busy-waiting and incrementing a flag, the threads call pthread mutex lock
before entering the critical section, and they call pthread mutex unlock when
they’re done with the critical section. See Program 4.6. The first thread to call
pthread mutex lock will, effectively, “lock the door” to the critical section. Any
other thread that attempts to execute the critical section code must first also call
pthread mutex lock, and until the first thread calls pthread mutex unlock, all the
threads that have called pthread mutex lock will block in their calls—they’ll just
wait until the first thread is done. After the first thread calls pthread mutex unlock,
the system will choose one of the blocked threads and allow it to execute the code in
the critical section. This process will be repeated until all the threads have completed
executing the critical section.

“Locking” and “unlocking” the door to the critical section isn’t the only
metaphor that’s used in connection with mutexes. Programmers often say that the
thread that has returned from a call to pthread mutex lock has “obtained the
mutex” or “obtained the lock.” When this terminology is used, a thread that calls
pthread mutex unlock “relinquishes” the mutex or lock.

29

Global Sum Function using a Mutex
170 CHAPTER 4 Shared-Memory Programming with Pthreads

1 void⇤ Thread sum(void⇤ rank) {
2 long my rank = (long) rank;
3 double factor;
4 long long i;
5 long long my n = n/thread count;
6 long long my first i = my n⇤my rank;
7 long long my last i = my first i + my n;
8 double my sum = 0.0;
9

10 if (my first i % 2 == 0)
11 factor = 1.0;
12 else
13 factor = �1.0;
14
15 for (i = my first i; i < my last i; i++, factor = �factor) {
16 my sum += factor/(2⇤i+1);
17 }
18 pthread mutex lock(&mutex);
19 sum += my sum;
20 pthread mutex unlock(&mutex);
21
22 return NULL;
23 } /⇤ Thread sum ⇤/

Program 4.6: Global sum function that uses a mutex

Notice that with mutexes (unlike our busy-waiting solution), the order in which
the threads execute the code in the critical section is more or less random: the first
thread to call pthread mutex lock will be the first to execute the code in the critical
section. Subsequent accesses will be scheduled by the system. Pthreads doesn’t guar-
antee (for example) that the threads will obtain the lock in the order in which they
called Pthread mutex lock. However, in our setting, only finitely many threads will
try to acquire the lock. Eventually each thread will obtain the lock.

If we look at the (unoptimized) performance of the busy-wait ⇡ program (with
the critical section after the loop) and the mutex program, we see that for both ver-
sions the ratio of the run-time of the single-threaded program with the multithreaded
program is equal to the number of threads, as long as the number of threads is no
greater than the number of cores. (See Table 4.1.) That is,

Tserial

Tparallel
⇡ thread count,

provided thread count is less than or equal to the number of cores. Recall that
Tserial/Tparallel is called the speedup, and when the speedup is equal to the number of
threads, we have achieved more or less “ideal” performance or linear speedup.

If we compare the performance of the version that uses busy-waiting with the
version that uses mutexes, we don’t see much difference in the overall run-time when
the programs are run with fewer threads than cores. This shouldn’t be surprising,

assumption: main thread has created and
initialized a global variable for the mutex

pthread_mutex_t mutex;
pthread_mutex_init(&mutex,NULL);

30

Run-times (in seconds) of π programs using n = 108 terms on a
system with two four-core processors.

4.7 Producer-Consumer Synchronization and Semaphores 171

Table 4.1 Run-Times (in Seconds) of ⇡

Programs Using n = 108 Terms on a System
with Two Four-Core Processors

Threads Busy-Wait Mutex

1 2.90 2.90

2 1.45 1.45

4 0.73 0.73

8 0.38 0.38

16 0.50 0.38

32 0.80 0.40

64 3.56 0.38

as each thread only enters the critical section once; so unless the critical section is
very long, or the Pthreads functions are very slow, we wouldn’t expect the threads to
be delayed very much by waiting to enter the critical section. However, if we start
increasing the number of threads beyond the number of cores, the performance of the
version that uses mutexes remains pretty much unchanged, while the performance of
the busy-wait version degrades.

We see that when we use busy-waiting, performance can degrade if there are
more threads than cores.4 This should make sense. For example, suppose we have
two cores and five threads. Also suppose that thread 0 is in the critical section, thread
1 is in the busy-wait loop, and threads 2, 3, and 4 have been descheduled by the
operating system. After thread 0 completes the critical section and sets flag = 1, it
will be terminated, and thread 1 can enter the critical section so the operating system
can schedule thread 2, thread 3, or thread 4. Suppose it schedules thread 3, which will
spin in the while loop. When thread 1 finishes the critical section and sets flag = 2,
the operating system can schedule thread 2 or thread 4. If it schedules thread 4, then
both thread 3 and thread 4, will be busily spinning in the busy-wait loop until the
operating system deschedules one of them and schedules thread 2. See Table 4.2.

4.7 PRODUCER-CONSUMER SYNCHRONIZATION
AND SEMAPHORES

Although busy-waiting is generally wasteful of CPU resources, it has the property
by which we know, in advance, the order in which the threads will execute the code
in the critical section: thread 0 is first, then thread 1, then thread 2, and so on. With

4These are typical run-times. When using busy-waiting and the number of threads is greater than the
number of cores, the run-times vary considerably.

critical section only entered
once, hardly any difference
between busy-wait and
mutex if threads <= cores

significant differences if
threads > cores why?

Global Sum: Busy-Wait vs. Mutex

31

172 CHAPTER 4 Shared-Memory Programming with Pthreads

Table 4.2 Possible Sequence of Events with Busy-Waiting
and More Threads than Cores

Thread

Time flag 0 1 2 3 4

0 0 crit sect busy-wait susp susp susp

1 1 terminate crit sect susp busy-wait susp

2 2 — terminate susp busy-wait busy-wait

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

? 2 — — crit sect susp busy-wait

mutexes, the order in which the threads execute the critical section is left to chance
and the system. Since addition is commutative, this doesn’t matter in our program for
estimating ⇡ . However, it’s not difficult to think of situations in which we also want
to control the order in which the threads execute the code in the critical section. For
example, suppose each thread generates an n ⇥ n matrix, and we want to multiply the
matrices together in thread-rank order. Since matrix multiplication isn’t commutative,
our mutex solution would have problems:

/⇤ n and product matrix are shared and initialized by the main

thread ⇤/
/⇤ product matrix is initialized to be the identity matrix ⇤/
void⇤ Thread work(void⇤ rank) {

long my rank = (long) rank;
matrix t my mat = Allocate matrix(n);
Generate matrix(my mat);
pthread mutex lock(&mutex);
Multiply matrix(product mat, my mat);
pthread mutex unlock(&mutex);
Free matrix(&my mat);
return NULL;

} /⇤ Thread work ⇤/

A somewhat more complicated example involves having each thread “send a mes-
sage” to another thread. For example, suppose we have thread count or t threads
and we want thread 0 to send a message to thread 1, thread 1 to send a message to
thread 2, . . . , thread t � 2 to send a message to thread t � 1 and thread t � 1 to send
a message to thread 0. After a thread “receives” a message, it can print the message
and terminate. In order to implement the message transfer, we can allocate a shared
array of char⇤. Then each thread can allocate storage for the message it’s sending,
and, after it has initialized the message, set a pointer in the shared array to refer to
it. In order to avoid dereferencing undefined pointers, the main thread can set the
individual entries in the shared array to NULL. See Program 4.7. When we run the
program with more than a couple of threads on a dual-core system, we see that some
of the messages are never received. For example, thread 0, which is started first,

Global Sum: Busy-Wait vs. Mutex (2)
▪ Possible sequence of events with busy-waiting and more threads than

cores
▪ Busy-waiting enforces a fixed order of tasks entering the critical section
▪ Thread scheduling may cause delays

no task makes any progress

scheduler runs task 2 again

32

Semaphores for Producer-Consumer Synchronization

33

Issues
▪ Busy-waiting enforces the order threads access a critical section
▪ Using mutexes, the order is left to chance and the system
▪ There are applications where we need to control the order threads access

the critical section
- for example, reductions where the order of operations must not be changed (e.g. floating-

point operations)

34

Attempt: Synchronize Messages Passing with Pthreads
▪ Each thread should receive exactly one message
▪ Problem: the more threads are used (#threads > cores) the higher the

chance that the message is still uninitialized because the thread has not
been scheduled yet

4.7 Producer-Consumer Synchronization and Semaphores 173

1 /⇤ messages has type char⇤⇤. It’s allocated in main. ⇤/
2 /⇤ Each entry is set to NULL in main. ⇤/
3 void⇤ Send msg(void⇤ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 long source = (my rank + thread count � 1) % thread count;
7 char⇤ my msg = malloc(MSG MAX⇤sizeof(char));
8
9 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);

10 messages[dest] = my msg;
11
12 if (messages[my rank] != NULL)
13 printf("Thread %ld > %s\n", my rank, messages[my rank]);
14 else
15 printf("Thread %ld > No message from %ld\n", my rank,

source);
16
17 return NULL;
18 } /⇤ Send msg ⇤/

Program 4.7: A first attempt at sending messages using Pthreads

will typically finish before thread t � 1 has copied the message into the messages
array. This isn’t surprising, and we could fix the problem by replacing the if
statement in Line 12 with a busy-wait while statement:

while (messages[my rank] == NULL);
printf("Thread %ld > %s\n", my rank, messages[my rank]);

Of course, this solution would have the same problems that any busy-waiting solution
has, so we’d prefer a different approach.

After executing the assignment in Line 10, we’d like to “notify” the thread with
rank dest that it can proceed to print the message. We’d like to do something
like this:

. . .
messages[dest] = my msg;
Notify thread dest that it can proceed;

Await notification from thread source
printf("Thread %ld > %s\n", my rank, messages[my rank]);
. . .

It’s not at all clear how mutexes can be of help here. We might try calling
pthread mutex unlock to “notify” the thread with rank dest. However, mutexes
are initialized to be unlocked, so we’d need to add a call before initializing
messages[dest] to lock the mutex. This will be a problem since we don’t know
when the threads will reach the calls to pthread mutex lock.

35

Attempt: Synchronize Messages Passing with Pthreads (2)

▪ Busy-waiting solves problem, but enforces order and wastes computing
time

▪ What we actually would like to achieve is informing thread dest that a
message is available after executing line 10

4.7 Producer-Consumer Synchronization and Semaphores 173

1 /⇤ messages has type char⇤⇤. It’s allocated in main. ⇤/
2 /⇤ Each entry is set to NULL in main. ⇤/
3 void⇤ Send msg(void⇤ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 long source = (my rank + thread count � 1) % thread count;
7 char⇤ my msg = malloc(MSG MAX⇤sizeof(char));
8
9 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);

10 messages[dest] = my msg;
11
12 if (messages[my rank] != NULL)
13 printf("Thread %ld > %s\n", my rank, messages[my rank]);
14 else
15 printf("Thread %ld > No message from %ld\n", my rank,

source);
16
17 return NULL;
18 } /⇤ Send msg ⇤/

Program 4.7: A first attempt at sending messages using Pthreads

will typically finish before thread t � 1 has copied the message into the messages
array. This isn’t surprising, and we could fix the problem by replacing the if
statement in Line 12 with a busy-wait while statement:

while (messages[my rank] == NULL);
printf("Thread %ld > %s\n", my rank, messages[my rank]);

Of course, this solution would have the same problems that any busy-waiting solution
has, so we’d prefer a different approach.

After executing the assignment in Line 10, we’d like to “notify” the thread with
rank dest that it can proceed to print the message. We’d like to do something
like this:

. . .
messages[dest] = my msg;
Notify thread dest that it can proceed;

Await notification from thread source
printf("Thread %ld > %s\n", my rank, messages[my rank]);
. . .

It’s not at all clear how mutexes can be of help here. We might try calling
pthread mutex unlock to “notify” the thread with rank dest. However, mutexes
are initialized to be unlocked, so we’d need to add a call before initializing
messages[dest] to lock the mutex. This will be a problem since we don’t know
when the threads will reach the calls to pthread mutex lock.

while(messages[my_rank] == NULL) {};

36

Syntax of Semaphore Manipulation Functions
semaphores are port of POSIX but not
part of Pthreads library

4.7 Producer-Consumer Synchronization and Semaphores 175

1 /⇤ messages is allocated and initialized to NULL in main ⇤/
2 /⇤ semaphores is allocated and initialized to 0 (locked) in

main ⇤/
3 void⇤ Send msg(void⇤ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 char⇤ my msg = malloc(MSG MAX⇤sizeof(char));
7
8 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);
9 messages[dest] = my msg;

10 sem post(&semaphores[dest])
/⇤ ‘‘Unlock’’ the semaphore of dest ⇤/

11
12 /⇤ Wait for our semaphore to be unlocked ⇤/
13 sem wait(&semaphores[my rank]);
14 printf("Thread %ld > %s\n", my rank, messages[my rank]);
15
16 return NULL;
17 } /⇤ Send msg ⇤/

Program 4.8: Using semaphores so that threads can send messages

The syntax of the various semaphore functions is

int sem init(
sem t⇤ semaphore p /⇤ out ⇤/,
int shared /⇤ in ⇤/,
unsigned initial val /⇤ in ⇤/);

int sem destroy(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem post(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem wait(sem t⇤ semaphore p /⇤ in/out ⇤/);

We won’t make use of the second argument to sem init: the constant 0 can be passed
in. Note that semaphores are not part of Pthreads. Hence, it’s necessary to add the
following preprocessor directive to any program that uses them:5

#include <semaphore.h>

Finally, note that the message-sending problem didn’t involve a critical section.
The problem wasn’t that there was a block of code that could only be executed by
one thread at a time. Rather, thread my rank couldn’t proceed until thread source
had finished creating the message. This type of synchronization, when a thread can’t

5Some systems (e.g., some versions of Mac OS X) don’t support this version of semaphores. They
support something called “named” semaphores. The functions sem wait and sem post can be used
in the same way. However, sem init should be replaced by sem open, and sem destroy should be
replaced by sem close and sem unlink. See the book’s website for an example.

4.7 Producer-Consumer Synchronization and Semaphores 175

1 /⇤ messages is allocated and initialized to NULL in main ⇤/
2 /⇤ semaphores is allocated and initialized to 0 (locked) in

main ⇤/
3 void⇤ Send msg(void⇤ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 char⇤ my msg = malloc(MSG MAX⇤sizeof(char));
7
8 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);
9 messages[dest] = my msg;

10 sem post(&semaphores[dest])
/⇤ ‘‘Unlock’’ the semaphore of dest ⇤/

11
12 /⇤ Wait for our semaphore to be unlocked ⇤/
13 sem wait(&semaphores[my rank]);
14 printf("Thread %ld > %s\n", my rank, messages[my rank]);
15
16 return NULL;
17 } /⇤ Send msg ⇤/

Program 4.8: Using semaphores so that threads can send messages

The syntax of the various semaphore functions is

int sem init(
sem t⇤ semaphore p /⇤ out ⇤/,
int shared /⇤ in ⇤/,
unsigned initial val /⇤ in ⇤/);

int sem destroy(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem post(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem wait(sem t⇤ semaphore p /⇤ in/out ⇤/);

We won’t make use of the second argument to sem init: the constant 0 can be passed
in. Note that semaphores are not part of Pthreads. Hence, it’s necessary to add the
following preprocessor directive to any program that uses them:5

#include <semaphore.h>

Finally, note that the message-sending problem didn’t involve a critical section.
The problem wasn’t that there was a block of code that could only be executed by
one thread at a time. Rather, thread my rank couldn’t proceed until thread source
had finished creating the message. This type of synchronization, when a thread can’t

5Some systems (e.g., some versions of Mac OS X) don’t support this version of semaphores. They
support something called “named” semaphores. The functions sem wait and sem post can be used
in the same way. However, sem init should be replaced by sem open, and sem destroy should be
replaced by sem close and sem unlink. See the book’s website for an example.

37

Synchronize Message-Passing w/ Semaphores
4.7 Producer-Consumer Synchronization and Semaphores 175

1 /⇤ messages is allocated and initialized to NULL in main ⇤/
2 /⇤ semaphores is allocated and initialized to 0 (locked) in

main ⇤/
3 void⇤ Send msg(void⇤ rank) {
4 long my rank = (long) rank;
5 long dest = (my rank + 1) % thread count;
6 char⇤ my msg = malloc(MSG MAX⇤sizeof(char));
7
8 sprintf(my msg, "Hello to %ld from %ld", dest, my rank);
9 messages[dest] = my msg;

10 sem post(&semaphores[dest])
/⇤ ‘‘Unlock’’ the semaphore of dest ⇤/

11
12 /⇤ Wait for our semaphore to be unlocked ⇤/
13 sem wait(&semaphores[my rank]);
14 printf("Thread %ld > %s\n", my rank, messages[my rank]);
15
16 return NULL;
17 } /⇤ Send msg ⇤/

Program 4.8: Using semaphores so that threads can send messages

The syntax of the various semaphore functions is

int sem init(
sem t⇤ semaphore p /⇤ out ⇤/,
int shared /⇤ in ⇤/,
unsigned initial val /⇤ in ⇤/);

int sem destroy(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem post(sem t⇤ semaphore p /⇤ in/out ⇤/);
int sem wait(sem t⇤ semaphore p /⇤ in/out ⇤/);

We won’t make use of the second argument to sem init: the constant 0 can be passed
in. Note that semaphores are not part of Pthreads. Hence, it’s necessary to add the
following preprocessor directive to any program that uses them:5

#include <semaphore.h>

Finally, note that the message-sending problem didn’t involve a critical section.
The problem wasn’t that there was a block of code that could only be executed by
one thread at a time. Rather, thread my rank couldn’t proceed until thread source
had finished creating the message. This type of synchronization, when a thread can’t

5Some systems (e.g., some versions of Mac OS X) don’t support this version of semaphores. They
support something called “named” semaphores. The functions sem wait and sem post can be used
in the same way. However, sem init should be replaced by sem open, and sem destroy should be
replaced by sem close and sem unlink. See the book’s website for an example.

38

Barriers and Condition Variables

39

Barriers
▪ Synchronizing the threads to make sure that they all are at the same

point in a program is called a barrier
▪ No thread can cross the barrier until all the threads have reached it
▪ Many Pthreads implementations do not contain ready to use barriers
▪ Hence, we have to build barriers from other mechanisms

- busy-waiting and mutex
- semaphores
- condition variables

40

Use-Cases for Barriers
▪ Measure execution time of slowest thread

▪ Debugging

176 CHAPTER 4 Shared-Memory Programming with Pthreads

proceed until another thread has taken some action, is sometimes called producer-
consumer synchronization.

4.8 BARRIERS AND CONDITION VARIABLES
Let’s take a look at another problem in shared-memory programming: synchronizing
the threads by making sure that they all are at the same point in a program. Such a
point of synchronization is called a barrier because no thread can proceed beyond
the barrier until all the threads have reached it.

Barriers have numerous applications. As we discussed in Chapter 2, if we’re tim-
ing some part of a multithreaded program, we’d like for all the threads to start the
timed code at the same instant, and then report the time taken by the last thread to
finish, that is, the “slowest” thread. We’d therefore like to do something like this:

/⇤ Shared ⇤/
double elapsed time;
. . .
/⇤ Private ⇤/
double my start, my finish, my elapsed;
. . .
Synchronize threads;
Store current time in my start;
/⇤ Execute timed code ⇤/
. . .
Store current time in my finish;
my elapsed = my finish � my start;

elapsed = Maximum of my elapsed values;

Using this approach, we’re sure that all of the threads will record my start at
approximately the same time.

Another very important use of barriers is in debugging. As you’ve probably
already seen, it can be very difficult to determine where an error is occuring in a
parallel program. We can, of course, have each thread print a message indicating
which point it’s reached in the program, but it doesn’t take long for the volume of the
output to become overwhelming. Barriers provide an alternative:

point in program we want to reach;
barrier;
if (my rank == 0) {

printf("All threads reached this point\n");
fflush(stdout);

}

Many implementations of Pthreads don’t provide barriers, so if our code is to be
portable, we need to develop our own implementation. There are a number of options;
we’ll look at three. The first two only use constructs that we’ve already studied. The
third uses a new type of Pthreads object: a condition variable.

176 CHAPTER 4 Shared-Memory Programming with Pthreads

proceed until another thread has taken some action, is sometimes called producer-
consumer synchronization.

4.8 BARRIERS AND CONDITION VARIABLES
Let’s take a look at another problem in shared-memory programming: synchronizing
the threads by making sure that they all are at the same point in a program. Such a
point of synchronization is called a barrier because no thread can proceed beyond
the barrier until all the threads have reached it.

Barriers have numerous applications. As we discussed in Chapter 2, if we’re tim-
ing some part of a multithreaded program, we’d like for all the threads to start the
timed code at the same instant, and then report the time taken by the last thread to
finish, that is, the “slowest” thread. We’d therefore like to do something like this:

/⇤ Shared ⇤/
double elapsed time;
. . .
/⇤ Private ⇤/
double my start, my finish, my elapsed;
. . .
Synchronize threads;
Store current time in my start;
/⇤ Execute timed code ⇤/
. . .
Store current time in my finish;
my elapsed = my finish � my start;

elapsed = Maximum of my elapsed values;

Using this approach, we’re sure that all of the threads will record my start at
approximately the same time.

Another very important use of barriers is in debugging. As you’ve probably
already seen, it can be very difficult to determine where an error is occuring in a
parallel program. We can, of course, have each thread print a message indicating
which point it’s reached in the program, but it doesn’t take long for the volume of the
output to become overwhelming. Barriers provide an alternative:

point in program we want to reach;
barrier;
if (my rank == 0) {

printf("All threads reached this point\n");
fflush(stdout);

}

Many implementations of Pthreads don’t provide barriers, so if our code is to be
portable, we need to develop our own implementation. There are a number of options;
we’ll look at three. The first two only use constructs that we’ve already studied. The
third uses a new type of Pthreads object: a condition variable.

41

Barrier with Busy-waiting and Mutex
▪ Implementing a barrier using busy-waiting and a mutex is

straightforward
▪ We use a shared counter protected by the mutex
▪ When the counter indicates that every thread has entered the critical

section, threads can leave the critical section

42

Barrier with Busy-waiting and Mutex (2)

▪ Problem 1: busy-waiting wastes CPU resources
▪ Problem 2: reusing barrier safely is not possible

- resetting counter in master thread may lead to the situation that not all threads have seen
counter == thread_count and are stuck in the waiting loop

- hence, we need one counter for each barrier instance

4.8 Barriers and Condition Variables 177

4.8.1 Busy-waiting and a mutex
Implementing a barrier using busy-waiting and a mutex is straightforward: we use a
shared counter protected by the mutex. When the counter indicates that every thread
has entered the critical section, threads can leave a busy-wait loop.

/⇤ Shared and initialized by the main thread ⇤/
int counter; /⇤ Initialize to 0 ⇤/
int thread count;
pthread mutex t barrier mutex;
. . .

void⇤ Thread work(. . .) {
. . .
/⇤ Barrier ⇤/
pthread mutex lock(&barrier mutex);
counter++;
pthread mutex unlock(&barrier mutex);
while (counter < thread count);
. . .

}

Of course, this implementation will have the same problems that our other busy-
wait codes had: we’ll waste CPU cycles when threads are in the busy-wait loop, and,
if we run the program with more threads than cores, we may find that the performance
of the program seriously degrades.

Another issue is the shared variable counter. What happens if we want to
implement a second barrier and we try to reuse the counter? When the first
barrier is completed, counter will have the value thread count. Unless we
can somehow reset counter, the while condition we used for our first barrier
counter < thread count will be false, and the barrier won’t cause the threads to
block. Furthermore, any attempt to reset counter to zero is almost certainly doomed
to failure. If the last thread to enter the loop tries to reset it, some thread in the busy-
wait may never see the fact that counter == thread count, and that thread may
hang in the busy-wait. If some thread tries to reset the counter after the barrier, some
other thread may enter the second barrier before the counter is reset and its increment
to the counter will be lost. This will have the unfortunate effect of causing all the
threads to hang in the second busy-wait loop. So if we want to use this barrier, we
need one counter variable for each instance of the barrier.

4.8.2 Semaphores
A natural question is whether we can implement a barrier with semaphores, and, if so,
whether we can reduce the number of problems we encountered with busy-waiting.
The answer to the first question is yes:

/⇤ Shared variables ⇤/
int counter; /⇤ Initialize to 0 ⇤/

counter counts
how many
threads have
reached the
barrier

43

Implementing a Barrier with Semaphores

▪ Much more efficient than busy-waiting
▪ Problem: Reusing the barrier safely is still not possible, race condition for

barrier_sem (see Pacheco Chapter 4)

4.8 Barriers and Condition Variables 177

4.8.1 Busy-waiting and a mutex
Implementing a barrier using busy-waiting and a mutex is straightforward: we use a
shared counter protected by the mutex. When the counter indicates that every thread
has entered the critical section, threads can leave a busy-wait loop.

/⇤ Shared and initialized by the main thread ⇤/
int counter; /⇤ Initialize to 0 ⇤/
int thread count;
pthread mutex t barrier mutex;
. . .

void⇤ Thread work(. . .) {
. . .
/⇤ Barrier ⇤/
pthread mutex lock(&barrier mutex);
counter++;
pthread mutex unlock(&barrier mutex);
while (counter < thread count);
. . .

}

Of course, this implementation will have the same problems that our other busy-
wait codes had: we’ll waste CPU cycles when threads are in the busy-wait loop, and,
if we run the program with more threads than cores, we may find that the performance
of the program seriously degrades.

Another issue is the shared variable counter. What happens if we want to
implement a second barrier and we try to reuse the counter? When the first
barrier is completed, counter will have the value thread count. Unless we
can somehow reset counter, the while condition we used for our first barrier
counter < thread count will be false, and the barrier won’t cause the threads to
block. Furthermore, any attempt to reset counter to zero is almost certainly doomed
to failure. If the last thread to enter the loop tries to reset it, some thread in the busy-
wait may never see the fact that counter == thread count, and that thread may
hang in the busy-wait. If some thread tries to reset the counter after the barrier, some
other thread may enter the second barrier before the counter is reset and its increment
to the counter will be lost. This will have the unfortunate effect of causing all the
threads to hang in the second busy-wait loop. So if we want to use this barrier, we
need one counter variable for each instance of the barrier.

4.8.2 Semaphores
A natural question is whether we can implement a barrier with semaphores, and, if so,
whether we can reduce the number of problems we encountered with busy-waiting.
The answer to the first question is yes:

/⇤ Shared variables ⇤/
int counter; /⇤ Initialize to 0 ⇤/

178 CHAPTER 4 Shared-Memory Programming with Pthreads

sem t count sem; /⇤ Initialize to 1 ⇤/
sem t barrier sem; /⇤ Initialize to 0 ⇤/
. . .
void⇤ Thread work(...) {

. . .
/⇤ Barrier ⇤/
sem wait(&count sem);
if (counter == thread count�1) {

counter = 0;
sem post(&count sem);
for (j = 0; j < thread count�1; j++)

sem post(&barrier sem);
} else {

counter++;
sem post(&count sem);
sem wait(&barrier sem);

}
. . .

}

As with the busy-wait barrier, we have a counter that we use to determine how
many threads have entered the barrier. We use two semaphores: count sem pro-
tects the counter, and barrier sem is used to block threads that have entered the
barrier. The count sem semaphore is initialized to 1 (that is, “unlocked”), so the
first thread to reach the barrier will be able to proceed past the call to sem wait.
Subsequent threads, however, will block until they can have exclusive access to
the counter. When a thread has exclusive access to the counter, it checks to see if
counter < thread count-1. If it is, the thread increments counter “relinquishes
the lock” (sem post(&count sem)) and blocks in sem wait(&barrier sem).
On the other hand, if counter == thread count-1, the thread is the last to enter
the barrier, so it can reset counter to zero and “unlock” count sem by calling
sem post(&count sem). Now, it wants to notify all the other threads that they can
proceed, so it executes sem post(&barrier sem) for each of the thread count-1
threads that are blocked in sem wait(&barrier sem).

Note that it doesn’t matter if the thread executing the loop of calls to sem post(&
barrier sem) races ahead and executes multiple calls to sem post before a thread
can be unblocked from sem wait(&barrier sem). For recall that a semaphore is an
unsigned int, and the calls to sem post increment it, while the calls to sem wait
decrement it—unless it’s already 0, in which case the calling threads will block
until it’s positive again, and they’ll decrement it when they unblock. Therefore, it
doesn’t matter if the thread executing the loop of calls to sem post(&barrier sem)
gets ahead of the threads blocked in the calls to sem wait(&barrier sem), because
eventually the blocked threads will see that barrier sem is positive, and they’ll
decrement it and proceed.

It should be clear that this implementation of a barrier is superior to the busy-wait
barrier, since the threads don’t need to consume CPU cycles when they’re blocked

count_sem initialized to unlocked, first
thread calling sem_wait on this
semaphore is not blocked

last thread reaches the barrier, notify
all waiting threads

there are still threads that need to
reach the barrier, block until then

44

Condition Variables
▪ A condition variable is a data object that allows a thread to suspend

execution until a certain event or condition occurs
▪ When the event or condition occurs another thread can signal the thread

to “wake up”
▪ A condition variable is always associated with a mutex
▪ Typically use in code like this

4.8 Barriers and Condition Variables 179

in sem wait. Can we reuse the data structures from the first barrier if we want to
execute a second barrier?

The counter can be reused, since we were careful to reset it before releas-
ing any of the threads from the barrier. Also, count sem can be reused, since it is
reset to 1 before any threads can leave the barrier. This leaves barrier sem. Since
there’s exactly one sem post for each sem wait, it might appear that the value of
barrier sem will be 0 when the threads start executing a second barrier. However,
suppose we have two threads, and thread 0 is blocked in sem wait(&barrier sem)
in the first barrier, while thread 1 is executing the loop of sem post. Also suppose
that the operating system has seen that thread 0 is idle, and descheduled it out. Then
thread 1 can go on to the second barrier. Since counter == 0, it will execute the
else clause. After incrementing counter, it executes sem post(&count sem), and
then executes sem wait(&barrier sem).

However, if thread 0 is still descheduled, it will not have decremented
barrier sem. Thus when thread 1 reaches sem wait(&barrier sem), barrier sem
will still be 1, so it will simply decrement barrier sem and proceed. This will have
the unfortunate consequence that when thread 0 starts executing again, it will still be
blocked in the first sem wait(&barrier sem), and thread 1 will proceed through the
second barrier before thread 0 has entered it. Reusing barrier sem therefore results
in a race condition.

4.8.3 Condition variables
A somewhat better approach to creating a barrier in Pthreads is provided by condition
variables. A condition variable is a data object that allows a thread to suspend exe-
cution until a certain event or condition occurs. When the event or condition occurs
another thread can signal the thread to “wake up.” A condition variable is always
associated with a mutex.

Typically, condition variables are used in constructs similar to this pseudocode:

lock mutex;
if condition has occurred

signal thread(s);
else {

unlock the mutex and block;
/⇤ when thread is unblocked, mutex is relocked ⇤/

}
unlock mutex;

Condition variables in Pthreads have type pthread cond t. The function

int pthread cond signal(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

will unblock one of the blocked threads, and

int pthread cond broadcast(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

45

Condition Variable Handling in the Pthreads library
▪ Condition variables have type pthread_cond_t
▪ The function pthread_cond_wait

atomically blocks the current thread on the condition variable
cond_var_p and releases the mutex specified by mutex_p. The waiting
thread unblocks only after another thread calls pthread_cond_signal
or pthread_cond_broadcast for the same condition variable and the
thread reacquires the lock on mutex_p again
▪ Essentially pthead_cond_wait performs these functions atomically:

180 CHAPTER 4 Shared-Memory Programming with Pthreads

will unblock all of the blocked threads. The function

int pthread cond wait(
pthread cond t⇤ cond var p /⇤ in/out ⇤/,
pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

will unlock the mutex referred to by mutex p and cause the executing thread
to block until it is unblocked by another thread’s call to pthread cond signal
or pthread cond broadcast. When the thread is unblocked, it reacquires the
mutex. So in effect, pthread cond wait implements the following sequence of
functions:

pthread mutex unlock(&mutex p);
wait on signal(&cond var p);
pthread mutex lock(&mutex p);

The following code implements a barrier with a condition variable:

/⇤ Shared ⇤/
int counter = 0;
pthread mutex t mutex;
pthread cond t cond var;
. . .
void⇤ Thread work(. . .) {

. . .
/⇤ Barrier ⇤/
pthread mutex lock(&mutex);
counter++;
if (counter == thread count) {

counter = 0;
pthread cond broadcast(&cond var);

} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}
pthread mutex unlock(&mutex);
. . .

}

Note that it is possible that events other than the call to pthread cond broadcast
can cause a suspended thread to unblock (see, for example, Butenhof [6], page 80).
Hence, the call to pthread cond wait is usually placed in a while loop. If the
thread is unblocked by some event other than a call to pthread cond signal or
pthread cond broadcast, then the return value of pthread cond wait will be
nonzero, and the unblocked thread will call pthread cond wait again.

If a single thread is being awakened, it’s also a good idea to check that the
condition has, in fact, been satisfied before proceeding. In our example, if a single
thread were being released from the barrier with a call to pthread cond signal,
then that thread should verify that counter == 0 before proceeding. This can be
dangerous with the broadcast, though. After being awakened, some thread may
race ahead and change the condition, and if each thread is checking the condition,

180 CHAPTER 4 Shared-Memory Programming with Pthreads

will unblock all of the blocked threads. The function

int pthread cond wait(
pthread cond t⇤ cond var p /⇤ in/out ⇤/,
pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

will unlock the mutex referred to by mutex p and cause the executing thread
to block until it is unblocked by another thread’s call to pthread cond signal
or pthread cond broadcast. When the thread is unblocked, it reacquires the
mutex. So in effect, pthread cond wait implements the following sequence of
functions:

pthread mutex unlock(&mutex p);
wait on signal(&cond var p);
pthread mutex lock(&mutex p);

The following code implements a barrier with a condition variable:

/⇤ Shared ⇤/
int counter = 0;
pthread mutex t mutex;
pthread cond t cond var;
. . .
void⇤ Thread work(. . .) {

. . .
/⇤ Barrier ⇤/
pthread mutex lock(&mutex);
counter++;
if (counter == thread count) {

counter = 0;
pthread cond broadcast(&cond var);

} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}
pthread mutex unlock(&mutex);
. . .

}

Note that it is possible that events other than the call to pthread cond broadcast
can cause a suspended thread to unblock (see, for example, Butenhof [6], page 80).
Hence, the call to pthread cond wait is usually placed in a while loop. If the
thread is unblocked by some event other than a call to pthread cond signal or
pthread cond broadcast, then the return value of pthread cond wait will be
nonzero, and the unblocked thread will call pthread cond wait again.

If a single thread is being awakened, it’s also a good idea to check that the
condition has, in fact, been satisfied before proceeding. In our example, if a single
thread were being released from the barrier with a call to pthread cond signal,
then that thread should verify that counter == 0 before proceeding. This can be
dangerous with the broadcast, though. After being awakened, some thread may
race ahead and change the condition, and if each thread is checking the condition,

46

Condition Variable Handling in the Pthreads library (2)
▪ Condition variables are initialized and destroyed using the functions

▪ One of the threads waiting for the condition variable can be unblocked
with

▪ All of the threads waiting for the conditional variable can be unblocked
with

4.9 Read-Write Locks 181

a thread that awakened later may find the condition is no longer satisfied and go back
to sleep.

Note that in order for our barrier to function correctly, it’s essential that the call
to pthread cond wait unlock the mutex. If it didn’t unlock the mutex, then only
one thread could enter the barrier; all of the other threads would block in the call to
pthread mutex lock, the first thread to enter the barrier would block in the call to
pthread cond wait, and our program would hang.

Also note that the semantics of mutexes requires that the mutex be relocked before
we return from the call to pthread cond wait. We “obtained” the lock when we
returned from the call to pthread mutex lock. Hence, we should at some point
“relinquish” the lock through a call to pthread mutex unlock.

Like mutexes and semaphores, condition variables should be initialized and
destroyed. In this case, the functions are

int pthread cond init(
pthread cond t⇤ cond p /⇤ out ⇤/,
const pthread condattr t⇤ cond attr p /⇤ in ⇤/);

int pthread cond destroy(pthread cond t⇤ cond p /⇤ in/out ⇤/);

We won’t be using the second argument to pthread cond init (we’ll call it with
second argument NULL).

4.8.4 Pthreads barriers
Before proceeding we should note that the Open Group, the standards group that
is continuing to develop the POSIX standard, does define a barrier interface for
Pthreads. However, as we noted earlier, it is not universally available, so we haven’t
discussed it in the text. See Exercise 4.9 for some of the details of the API.

4.9 READ-WRITE LOCKS
Let’s take a look at the problem of controlling access to a large, shared data struc-
ture, which can be either simply searched or updated by the threads. For the sake of
explicitness, let’s suppose the shared data structure is a sorted linked list of ints, and
the operations of interest are Member, Insert, and Delete.

4.9.1 Linked list functions
The list itself is composed of a collection of list nodes, each of which is a struct with
two members: an int and a pointer to the next node. We can define such a struct with
the definition

struct list node s {
int data;
struct list node s⇤ next;

}

4.8 Barriers and Condition Variables 179

in sem wait. Can we reuse the data structures from the first barrier if we want to
execute a second barrier?

The counter can be reused, since we were careful to reset it before releas-
ing any of the threads from the barrier. Also, count sem can be reused, since it is
reset to 1 before any threads can leave the barrier. This leaves barrier sem. Since
there’s exactly one sem post for each sem wait, it might appear that the value of
barrier sem will be 0 when the threads start executing a second barrier. However,
suppose we have two threads, and thread 0 is blocked in sem wait(&barrier sem)
in the first barrier, while thread 1 is executing the loop of sem post. Also suppose
that the operating system has seen that thread 0 is idle, and descheduled it out. Then
thread 1 can go on to the second barrier. Since counter == 0, it will execute the
else clause. After incrementing counter, it executes sem post(&count sem), and
then executes sem wait(&barrier sem).

However, if thread 0 is still descheduled, it will not have decremented
barrier sem. Thus when thread 1 reaches sem wait(&barrier sem), barrier sem
will still be 1, so it will simply decrement barrier sem and proceed. This will have
the unfortunate consequence that when thread 0 starts executing again, it will still be
blocked in the first sem wait(&barrier sem), and thread 1 will proceed through the
second barrier before thread 0 has entered it. Reusing barrier sem therefore results
in a race condition.

4.8.3 Condition variables
A somewhat better approach to creating a barrier in Pthreads is provided by condition
variables. A condition variable is a data object that allows a thread to suspend exe-
cution until a certain event or condition occurs. When the event or condition occurs
another thread can signal the thread to “wake up.” A condition variable is always
associated with a mutex.

Typically, condition variables are used in constructs similar to this pseudocode:

lock mutex;
if condition has occurred

signal thread(s);
else {

unlock the mutex and block;
/⇤ when thread is unblocked, mutex is relocked ⇤/

}
unlock mutex;

Condition variables in Pthreads have type pthread cond t. The function

int pthread cond signal(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

will unblock one of the blocked threads, and

int pthread cond broadcast(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

4.8 Barriers and Condition Variables 179

in sem wait. Can we reuse the data structures from the first barrier if we want to
execute a second barrier?

The counter can be reused, since we were careful to reset it before releas-
ing any of the threads from the barrier. Also, count sem can be reused, since it is
reset to 1 before any threads can leave the barrier. This leaves barrier sem. Since
there’s exactly one sem post for each sem wait, it might appear that the value of
barrier sem will be 0 when the threads start executing a second barrier. However,
suppose we have two threads, and thread 0 is blocked in sem wait(&barrier sem)
in the first barrier, while thread 1 is executing the loop of sem post. Also suppose
that the operating system has seen that thread 0 is idle, and descheduled it out. Then
thread 1 can go on to the second barrier. Since counter == 0, it will execute the
else clause. After incrementing counter, it executes sem post(&count sem), and
then executes sem wait(&barrier sem).

However, if thread 0 is still descheduled, it will not have decremented
barrier sem. Thus when thread 1 reaches sem wait(&barrier sem), barrier sem
will still be 1, so it will simply decrement barrier sem and proceed. This will have
the unfortunate consequence that when thread 0 starts executing again, it will still be
blocked in the first sem wait(&barrier sem), and thread 1 will proceed through the
second barrier before thread 0 has entered it. Reusing barrier sem therefore results
in a race condition.

4.8.3 Condition variables
A somewhat better approach to creating a barrier in Pthreads is provided by condition
variables. A condition variable is a data object that allows a thread to suspend exe-
cution until a certain event or condition occurs. When the event or condition occurs
another thread can signal the thread to “wake up.” A condition variable is always
associated with a mutex.

Typically, condition variables are used in constructs similar to this pseudocode:

lock mutex;
if condition has occurred

signal thread(s);
else {

unlock the mutex and block;
/⇤ when thread is unblocked, mutex is relocked ⇤/

}
unlock mutex;

Condition variables in Pthreads have type pthread cond t. The function

int pthread cond signal(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

will unblock one of the blocked threads, and

int pthread cond broadcast(pthread cond t⇤ cond var p /⇤ in/out ⇤/);

47

Implementing a Barrier with Condition Variables

180 CHAPTER 4 Shared-Memory Programming with Pthreads

will unblock all of the blocked threads. The function

int pthread cond wait(
pthread cond t⇤ cond var p /⇤ in/out ⇤/,
pthread mutex t⇤ mutex p /⇤ in/out ⇤/);

will unlock the mutex referred to by mutex p and cause the executing thread
to block until it is unblocked by another thread’s call to pthread cond signal
or pthread cond broadcast. When the thread is unblocked, it reacquires the
mutex. So in effect, pthread cond wait implements the following sequence of
functions:

pthread mutex unlock(&mutex p);
wait on signal(&cond var p);
pthread mutex lock(&mutex p);

The following code implements a barrier with a condition variable:

/⇤ Shared ⇤/
int counter = 0;
pthread mutex t mutex;
pthread cond t cond var;
. . .
void⇤ Thread work(. . .) {

. . .
/⇤ Barrier ⇤/
pthread mutex lock(&mutex);
counter++;
if (counter == thread count) {

counter = 0;
pthread cond broadcast(&cond var);

} else {
while (pthread cond wait(&cond var, &mutex) != 0);

}
pthread mutex unlock(&mutex);
. . .

}

Note that it is possible that events other than the call to pthread cond broadcast
can cause a suspended thread to unblock (see, for example, Butenhof [6], page 80).
Hence, the call to pthread cond wait is usually placed in a while loop. If the
thread is unblocked by some event other than a call to pthread cond signal or
pthread cond broadcast, then the return value of pthread cond wait will be
nonzero, and the unblocked thread will call pthread cond wait again.

If a single thread is being awakened, it’s also a good idea to check that the
condition has, in fact, been satisfied before proceeding. In our example, if a single
thread were being released from the barrier with a call to pthread cond signal,
then that thread should verify that counter == 0 before proceeding. This can be
dangerous with the broadcast, though. After being awakened, some thread may
race ahead and change the condition, and if each thread is checking the condition,

pthread_cond_wait is called in a loop checking for success, because
there are other events that may cause the thread to unblock (e.g. cancel)

48

Read-Write Locks

49

Controlling access shared data structures
▪ How can we control concurrent access to large shared data structures?
▪ Example

- shared data structure is a sorted linked list of integers
- operations of interest are Member, Insert, and Delete

head_p 2 5 8

4.9 Read-Write Locks 181

a thread that awakened later may find the condition is no longer satisfied and go back
to sleep.

Note that in order for our barrier to function correctly, it’s essential that the call
to pthread cond wait unlock the mutex. If it didn’t unlock the mutex, then only
one thread could enter the barrier; all of the other threads would block in the call to
pthread mutex lock, the first thread to enter the barrier would block in the call to
pthread cond wait, and our program would hang.

Also note that the semantics of mutexes requires that the mutex be relocked before
we return from the call to pthread cond wait. We “obtained” the lock when we
returned from the call to pthread mutex lock. Hence, we should at some point
“relinquish” the lock through a call to pthread mutex unlock.

Like mutexes and semaphores, condition variables should be initialized and
destroyed. In this case, the functions are

int pthread cond init(
pthread cond t⇤ cond p /⇤ out ⇤/,
const pthread condattr t⇤ cond attr p /⇤ in ⇤/);

int pthread cond destroy(pthread cond t⇤ cond p /⇤ in/out ⇤/);

We won’t be using the second argument to pthread cond init (we’ll call it with
second argument NULL).

4.8.4 Pthreads barriers
Before proceeding we should note that the Open Group, the standards group that
is continuing to develop the POSIX standard, does define a barrier interface for
Pthreads. However, as we noted earlier, it is not universally available, so we haven’t
discussed it in the text. See Exercise 4.9 for some of the details of the API.

4.9 READ-WRITE LOCKS
Let’s take a look at the problem of controlling access to a large, shared data struc-
ture, which can be either simply searched or updated by the threads. For the sake of
explicitness, let’s suppose the shared data structure is a sorted linked list of ints, and
the operations of interest are Member, Insert, and Delete.

4.9.1 Linked list functions
The list itself is composed of a collection of list nodes, each of which is a struct with
two members: an int and a pointer to the next node. We can define such a struct with
the definition

struct list node s {
int data;
struct list node s⇤ next;

}

50

Linked List: Member
▪ Check whether element is part of the list

- traverse list from beginning until the end is reached or a larger element is found

182 CHAPTER 4 Shared-Memory Programming with Pthreads

head_p 2 5 8

FIGURE 4.4

A linked list

1 int Member(int value, struct list node s⇤ head p) {
2 struct list node s⇤ curr p = head p;
3
4 while (curr p != NULL && curr p�>data < value)
5 curr p = curr p�>next;
6
7 if (curr p == NULL | | curr p�>data > value) {
8 return 0;
9 } else {

10 return 1;
11 }
12 } /⇤ Member ⇤/

Program 4.9: The Member function

A typical list is shown in Figure 4.4. A pointer, head p, with type struct
list node s⇤ refers to the first node in the list. The next member of the last node is
NULL (which is indicated by a slash (/) in the next member).

The Member function (Program 4.9) uses a pointer to traverse the list until it
either finds the desired value or determines that the desired value cannot be in the
list. Since the list is sorted, the latter condition occurs when the curr p pointer
is NULL or when the data member of the current node is larger than the desired
value.

The Insert function (Program 4.10) begins by searching for the correct position
in which to insert the new node. Since the list is sorted, it must search until it finds a
node whose data member is greater than the value to be inserted. When it finds this
node, it needs to insert the new node in the position preceding the node that’s been
found. Since the list is singly-linked, we can’t “back up” to this position without
traversing the list a second time. There are several approaches to dealing with this:
the approach we use is to define a second pointer pred p, which, in general, refers
to the predecessor of the current node. When we exit the loop that searches for the
position to insert, the next member of the node referred to by pred p can be updated
so that it refers to the new node. See Figure 4.5.

The Delete function (Program 4.11) is similar to the Insert function in that it
also needs to keep track of the predecessor of the current node while it’s searching
for the node to be deleted. The predecessor node’s next member can then be updated
after the search is completed. See Figure 4.6.

head_p 2 5 8

51

Linked List: Insert
▪ Insert a new element into the sorted linked list

pred_p

temp_p

curr_p

head_p 2 5 8

7

4.9 Read-Write Locks 183

1 int Insert(int value, struct list node s⇤⇤ head p) {
2 struct list node s⇤ curr p = ⇤head p;
3 struct list node s⇤ pred p = NULL;
4 struct list node s⇤ temp p;
5
6 while (curr p != NULL && curr p�>data < value) {
7 pred p = curr p;
8 curr p = curr p�>next;
9 }

10
11 if (curr p == NULL | | curr p�>data > value) {
12 temp p = malloc(sizeof(struct list node s));
13 temp p�>data = value;
14 temp p�>next = curr p;
15 if (pred p == NULL) /⇤ New first node ⇤/
16 ⇤head p = temp p;
17 else
18 pred p�>next = temp p;
19 return 1;
20 } else { /⇤ Value already in list ⇤/
21 return 0;
22 }
23 } /⇤ Insert ⇤/

Program 4.10: The Insert function

pred_p

temp_p

curr_p

head_p 2 5 8

7

FIGURE 4.5

Inserting a new node into a list

4.9.2 A multithreaded linked list
Now let’s try to use these functions in a Pthreads program. In order to share access
to the list, we can define head p to be a global variable. This will simplify the
function headers for Member, Insert, and Delete, since we won’t need to pass in
either head p or a pointer to head p, we’ll only need to pass in the value of interest.

52

Linked List: Delete
▪ Delete an existing element from the list

pred_p curr_p

head_p 2 5 8

184 CHAPTER 4 Shared-Memory Programming with Pthreads

1 int Delete(int value, struct list node s⇤⇤ head p) {
2 struct list node s⇤ curr p = ⇤head p;
3 struct list node s⇤ pred p = NULL;
4
5 while (curr p != NULL && curr p�>data < value) {
6 pred p = curr p;
7 curr p = curr p�>next;
8 }
9

10 if (curr p != NULL && curr p�>data == value) {
11 if (pred p == NULL) { /⇤ Deleting first node in list ⇤/
12 ⇤head p = curr p�>next;
13 free(curr p);
14 } else {
15 pred p�>next = curr p�>next;
16 free(curr p);
17 }
18 return 1;
19 } else { /⇤ Value isn’t in list ⇤/
20 return 0;
21 }
22 } /⇤ Delete ⇤/

Program 4.11: The Delete function

pred_p curr_p

head_p 2 5 8

FIGURE 4.6

Deleting a node from the list

What now are the consequences of having multiple threads simultaneously execute
the three functions?

Since multiple threads can simultaneously read a memory location without con-
flict, it should be clear that multiple threads can simultaneously execute Member. On
the other hand, Delete and Insert also write to memory locations, so there may be
problems if we try to execute either of these operations at the same time as another
operation. As an example, suppose that thread 0 is executing Member (5) at the same
time that thread 1 is executing Delete (5). The current state of the list is shown in
Figure 4.7. An obvious problem is that if thread 0 is executing Member (5), it is going
to report that 5 is in the list, when, in fact, it may be deleted even before thread 0

53

A Multi-Threaded Linked List
▪ Let’s try to use these functions in a Pthreads program

- to share access to the list, we define head_p to be a global variable
- this simplifies the Member, Insert, and Delete functions, because no pointer to head_p is

needed, only the value of interest

▪ What happens if the Member, Insert, Delete functions are called
simultaneously from different threads?

Thread 1:

pred_p
Thread 1:

curr_p

Thread 0:

curr_p

head_p 2 5 8

54

Solution #1: Coarse-Grained Locking
▪ Obvious solution

- simply lock the list any time that a thread attempts to access it
- protect call to the Member, Insert, Delete function by mutex

▪ Problems
- access to list is serialized
- fail to exploit opportunity for parallelism for read-only operations (Member), hurts

performance if this is the frequent case
- if most of our operations are calls to Insert and Delete, then this may be the best solution

because we need to serialize access for these operations and the solution is simple to
implement

Instead of calling
Member(value)

4.9 Read-Write Locks 185

Thread 1:
pred_p

Thread 1:
curr_p

Thread 0:
curr_p

head_p 2 5 8

FIGURE 4.7

Simultaneous access by two threads

returns. A second obvious problem is if thread 0 is executing Member (8), thread 1
may free the memory used for the node storing 5 before thread 0 can advance to the
node storing 8. Although typical implementations of free don’t overwrite the freed
memory, if the memory is reallocated before thread 0 advances, there can be serious
problems. For example, if the memory is reallocated for use in something other than
a list node, what thread 0 “thinks” is the next member may be set to utter garbage,
and after it executes

curr p = curr p�>next;

dereferencing curr p may result in a segmentation violation.
More generally, we can run into problems if we try to simultaneously execute

another operation while we’re executing an Insert or a Delete. It’s OK for multi-
ple threads to simultaneously execute Member—that is, read the list nodes—but it’s
unsafe for multiple threads to access the list if at least one of the threads is executing
an Insert or a Delete—that is, is writing to the list nodes (see Exercise 4.11).

How can we deal with this problem? An obvious solution is to simply lock the list
any time that a thread attempts to access it. For example, a call to each of the three
functions can be protected by a mutex, so we might execute

Pthread mutex lock(&list mutex);
Member(value);
Pthread mutex unlock(&list mutex);

instead of simply calling Member(value).
An equally obvious problem with this solution is that we are serializing access to

the list, and if the vast majority of our operations are calls to Member, we’ll fail to
exploit this opportunity for parallelism. On the other hand, if most of our operations
are calls to Insert and Delete, then this may be the best solution, since we’ll need
to serialize access to the list for most of the operations, and this solution will certainly
be easy to implement.

55

Solution #2: Fine-Grained Locking
▪ Lock individual elements instead of entire list
▪ Requires modification to list elements, each element is protected by

mutex

186 CHAPTER 4 Shared-Memory Programming with Pthreads

An alternative to this approach involves “finer-grained” locking. Instead of lock-
ing the entire list, we could try to lock individual nodes. We would add, for example,
a mutex to the list node struct:

struct list node s {
int data;
struct list node s⇤ next;
pthread mutex t mutex;

}

Now each time we try to access a node we must first lock the mutex associated
with the node. Note that this will also require that we have a mutex associated
with the head p pointer. So, for example, we might implement Member as shown
in Program 4.12. Admittedly this implementation is much more complex than the
original Member function. It is also much slower, since, in general, each time a node
is accessed, a mutex must be locked and unlocked. At a minimum it will add two
function calls to the node access, but it can also add a substantial delay if a thread has

int Member(int value) {
struct list node s⇤ temp p;

pthread mutex lock(&head p mutex);
temp p = head p;
while (temp p != NULL && temp p�>data < value) {

if (temp p�>next != NULL)
pthread mutex lock(&(temp p�>next�>mutex));

if (temp p == head p)
pthread mutex unlock(&head p mutex);

pthread mutex unlock(&(temp p�>mutex));
temp p = temp p�>next;

}

if (temp p == NULL | | temp p�>data > value) {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
if (temp p != NULL)

pthread mutex unlock(&(temp p�>mutex));
return 0;

} else {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
pthread mutex unlock(&(temp p�>mutex));
return 1;

}
} /⇤ Member ⇤/

Program 4.12: Implementation of Member with one mutex per list node

56

Member function w/ Fine-Grained Locking

57

186 CHAPTER 4 Shared-Memory Programming with Pthreads

An alternative to this approach involves “finer-grained” locking. Instead of lock-
ing the entire list, we could try to lock individual nodes. We would add, for example,
a mutex to the list node struct:

struct list node s {
int data;
struct list node s⇤ next;
pthread mutex t mutex;

}

Now each time we try to access a node we must first lock the mutex associated
with the node. Note that this will also require that we have a mutex associated
with the head p pointer. So, for example, we might implement Member as shown
in Program 4.12. Admittedly this implementation is much more complex than the
original Member function. It is also much slower, since, in general, each time a node
is accessed, a mutex must be locked and unlocked. At a minimum it will add two
function calls to the node access, but it can also add a substantial delay if a thread has

int Member(int value) {
struct list node s⇤ temp p;

pthread mutex lock(&head p mutex);
temp p = head p;
while (temp p != NULL && temp p�>data < value) {

if (temp p�>next != NULL)
pthread mutex lock(&(temp p�>next�>mutex));

if (temp p == head p)
pthread mutex unlock(&head p mutex);

pthread mutex unlock(&(temp p�>mutex));
temp p = temp p�>next;

}

if (temp p == NULL | | temp p�>data > value) {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
if (temp p != NULL)

pthread mutex unlock(&(temp p�>mutex));
return 0;

} else {
if (temp p == head p)

pthread mutex unlock(&head p mutex);
pthread mutex unlock(&(temp p�>mutex));
return 1;

}
} /⇤ Member ⇤/

Program 4.12: Implementation of Member with one mutex per list node

idea: always hold
mutex to currently
used elements, lots of
special case handling
(beginning/end of
list)

Problems with Fine-Grained Locking
▪ Implementation much more complex and error prone than the original

Member function
▪ Much slower, because for each access to a node a mutex must be locked

and unlocked
▪ The addition mutex field for each node substantially increases the

amount of storage needed for the list

58

Pthreads Read-Write Locks
▪ Neither of our multi-threaded linked lists exploits the potential for

simultaneous access to any node by threads that are executing Member
- coarse-grained locking only allows one thread to access the entire list at any instant
- fine-grained locking only allows one thread to access any given node at any instant

▪ A read-write lock is somewhat like a mutex except that it provides two
lock functions
- the first lock function locks the read-write lock for reading
- the second locks it for writing

▪ Usage
- multiple threads can simultaneously obtain the read
- only one thread can obtain the write lock
- if any threads own the lock for reading, any threads that want to obtain the lock for writing

will block in the call to the write-lock function
- if any thread owns the lock for writing, any threads that want to obtain the lock for reading or

writing will block in their respective locking functions

59

Pthreads Read-Write Lock Functions
▪ The following functions are available for acquiring a read lock, acquiring a

read/write lock, and releasing a lock:

▪ Like mutexes, read/write locks need to be initialized and destroyed:

4.9 Read-Write Locks 187

to wait for a lock. A further problem is that the addition of a mutex field to each node
will substantially increase the amount of storage needed for the list. On the other
hand, the finer-grained locking might be a closer approximation to what we want.
Since we’re only locking the nodes of current interest, multiple threads can simul-
taneously access different parts of the list, regardless of which operations they’re
executing.

4.9.3 Pthreads read-write locks
Neither of our multithreaded linked lists exploits the potential for simultaneous
access to any node by threads that are executing Member. The first solution only
allows one thread to access the entire list at any instant, and the second only allows
one thread to access any given node at any instant. An alternative is provided by
Pthreads’ read-write locks. A read-write lock is somewhat like a mutex except that
it provides two lock functions. The first lock function locks the read-write lock for
reading, while the second locks it for writing. Multiple threads can thereby simul-
taneously obtain the lock by calling the read-lock function, while only one thread
can obtain the lock by calling the write-lock function. Thus, if any threads own the
lock for reading, any threads that want to obtain the lock for writing will block in
the call to the write-lock function. Furthermore, if any thread owns the lock for writ-
ing, any threads that want to obtain the lock for reading or writing will block in their
respective locking functions.

Using Pthreads read-write locks, we can protect our linked list functions with the
following code (we’re ignoring function return values):

pthread rwlock rdlock(&rwlock);
Member(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Insert(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Delete(value);
pthread rwlock unlock(&rwlock);

The syntax for the new Pthreads functions is

int pthread rwlock rdlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);
int pthread rwlock wrlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);
int pthread rwlock unlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);

As their names suggest, the first function locks the read-write lock for reading, the
second locks it for writing, and the last unlocks it.

188 CHAPTER 4 Shared-Memory Programming with Pthreads

As with mutexes, read-write locks should be initialized before use and destroyed
after use. The following function can be used for initialization:

int pthread rwlock init(
pthread rwlock t⇤ rwlock p /⇤ out ⇤/,
const pthread rwlockattr t⇤ attr p /⇤ in ⇤/);

Also as with mutexes, we’ll not use the second argument, so we’ll just pass NULL.
The following function can be used for destruction of a read-write lock:

int pthread rwlock destroy(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);

4.9.4 Performance of the various implementations
Of course, we really want to know which of the three implementations is “best,” so
we included our implementations in a small program in which the main thread first
inserts a user-specified number of randomly generated keys into an empty list. After
being started by the main thread, each thread carries out a user-specified number of
operations on the list. The user also specifies the percentages of each type of oper-
ation (Member, Insert, Delete). However, which operation occurs when and on
which key is determined by a random number generator. Thus, for example, the user
might specify that 1000 keys should be inserted into an initially empty list and a
total of 100,000 operations are to be carried out by the threads. Further, she might
specify that 80% of the operations should be Member, 15% should be Insert, and
the remaining 5% should be Delete. However, since the operations are randomly
generated, it might happen that the threads execute a total of, say, 79,000 calls to
Member, 15,500 calls to Insert, and 5500 calls to Delete.

Tables 4.3 and 4.4 show the times (in seconds) that it took for 100,000 operations
on a list that was initialized to contain 1000 keys. Both sets of data were taken on a
system containing four dual-core processors.

Table 4.3 shows the times when 99.9% of the operations are Member and the
remaining 0.1% are divided equally between Insert and Delete. Table 4.4 shows
the times when 80% of the operations are Member, 10% are Insert, and 10% are
Delete. Note that in both tables when one thread is used, the run-times for the

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops,
99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 0.123 0.098 0.115

One Mutex for Entire List 0.211 0.450 0.385 0.457

One Mutex per Node 1.680 5.700 3.450 2.700

188 CHAPTER 4 Shared-Memory Programming with Pthreads

As with mutexes, read-write locks should be initialized before use and destroyed
after use. The following function can be used for initialization:

int pthread rwlock init(
pthread rwlock t⇤ rwlock p /⇤ out ⇤/,
const pthread rwlockattr t⇤ attr p /⇤ in ⇤/);

Also as with mutexes, we’ll not use the second argument, so we’ll just pass NULL.
The following function can be used for destruction of a read-write lock:

int pthread rwlock destroy(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);

4.9.4 Performance of the various implementations
Of course, we really want to know which of the three implementations is “best,” so
we included our implementations in a small program in which the main thread first
inserts a user-specified number of randomly generated keys into an empty list. After
being started by the main thread, each thread carries out a user-specified number of
operations on the list. The user also specifies the percentages of each type of oper-
ation (Member, Insert, Delete). However, which operation occurs when and on
which key is determined by a random number generator. Thus, for example, the user
might specify that 1000 keys should be inserted into an initially empty list and a
total of 100,000 operations are to be carried out by the threads. Further, she might
specify that 80% of the operations should be Member, 15% should be Insert, and
the remaining 5% should be Delete. However, since the operations are randomly
generated, it might happen that the threads execute a total of, say, 79,000 calls to
Member, 15,500 calls to Insert, and 5500 calls to Delete.

Tables 4.3 and 4.4 show the times (in seconds) that it took for 100,000 operations
on a list that was initialized to contain 1000 keys. Both sets of data were taken on a
system containing four dual-core processors.

Table 4.3 shows the times when 99.9% of the operations are Member and the
remaining 0.1% are divided equally between Insert and Delete. Table 4.4 shows
the times when 80% of the operations are Member, 10% are Insert, and 10% are
Delete. Note that in both tables when one thread is used, the run-times for the

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops,
99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 0.123 0.098 0.115

One Mutex for Entire List 0.211 0.450 0.385 0.457

One Mutex per Node 1.680 5.700 3.450 2.700

60

Protecting the Linked-List Functions w/ Locks

4.9 Read-Write Locks 187

to wait for a lock. A further problem is that the addition of a mutex field to each node
will substantially increase the amount of storage needed for the list. On the other
hand, the finer-grained locking might be a closer approximation to what we want.
Since we’re only locking the nodes of current interest, multiple threads can simul-
taneously access different parts of the list, regardless of which operations they’re
executing.

4.9.3 Pthreads read-write locks
Neither of our multithreaded linked lists exploits the potential for simultaneous
access to any node by threads that are executing Member. The first solution only
allows one thread to access the entire list at any instant, and the second only allows
one thread to access any given node at any instant. An alternative is provided by
Pthreads’ read-write locks. A read-write lock is somewhat like a mutex except that
it provides two lock functions. The first lock function locks the read-write lock for
reading, while the second locks it for writing. Multiple threads can thereby simul-
taneously obtain the lock by calling the read-lock function, while only one thread
can obtain the lock by calling the write-lock function. Thus, if any threads own the
lock for reading, any threads that want to obtain the lock for writing will block in
the call to the write-lock function. Furthermore, if any thread owns the lock for writ-
ing, any threads that want to obtain the lock for reading or writing will block in their
respective locking functions.

Using Pthreads read-write locks, we can protect our linked list functions with the
following code (we’re ignoring function return values):

pthread rwlock rdlock(&rwlock);
Member(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Insert(value);
pthread rwlock unlock(&rwlock);
. . .
pthread rwlock wrlock(&rwlock);
Delete(value);
pthread rwlock unlock(&rwlock);

The syntax for the new Pthreads functions is

int pthread rwlock rdlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);
int pthread rwlock wrlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);
int pthread rwlock unlock(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);

As their names suggest, the first function locks the read-write lock for reading, the
second locks it for writing, and the last unlocks it.

61

Linked List Performance

4.9 Read-Write Locks 189

Table 4.4 Linked List Times: 1000 Initial Keys, 100,000 ops,
80% Member, 10% Insert, 10% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 2.48 4.97 4.69 4.71

One Mutex for Entire List 2.50 5.13 5.04 5.11

One Mutex per Node 12.00 29.60 17.00 12.00

read-write locks and the single-mutex implementations are about the same. This
makes sense: the operations are serialized, and since there is no contention for the
read-write lock or the mutex, the overhead associated with both implementations
should consist of a function call before the list operation and a function call after the
operation. On the other hand, the implementation that uses one mutex per node is
much slower. This also makes sense, since each time a single node is accessed there
will be two function calls—one to lock the node mutex and one to unlock it. Thus,
there’s considerably more overhead for this implementation.

The inferiority of the implementation that uses one mutex per node persists when
we use multiple threads. There is far too much overhead associated with all the
locking and unlocking to make this implementation competitive with the other two
implementations.

Perhaps the most striking difference between the two tables is the relative perfor-
mance of the read-write lock implementation and the single-mutex implementation
when multiple threads are used. When there are very few Inserts and Deletes, the
read-write lock implementation is far better than the single-mutex implementation.
Since the single-mutex implementation will serialize all the operations, this suggests
that if there are very few Inserts and Deletes, the read-write locks do a very good
job of allowing concurrent access to the list. On the other hand, if there are a relatively
large number of Inserts and Deletes (for example, 10% each), there’s very little
difference between the performance of the read-write lock implementation and the
single-mutex implementation. Thus, for linked list operations, read-write locks can
provide a considerable increase in performance, but only if the number of Inserts
and Deletes is quite small.

Also notice that if we use one mutex or one mutex per node, the program
is always as fast or faster when it’s run with one thread. Furthermore, when the
number of inserts and deletes is relatively large, the read-write lock program
is also faster with one thread. This isn’t surprising for the one mutex implemen-
tation, since effectively accesses to the list are serialized. For the read-write lock
implementation, it appears that when there are a substantial number of write-locks,
there is too much contention for the locks and overall performance deteriorates
significantly.

188 CHAPTER 4 Shared-Memory Programming with Pthreads

As with mutexes, read-write locks should be initialized before use and destroyed
after use. The following function can be used for initialization:

int pthread rwlock init(
pthread rwlock t⇤ rwlock p /⇤ out ⇤/,
const pthread rwlockattr t⇤ attr p /⇤ in ⇤/);

Also as with mutexes, we’ll not use the second argument, so we’ll just pass NULL.
The following function can be used for destruction of a read-write lock:

int pthread rwlock destroy(pthread rwlock t⇤ rwlock p /⇤ in/out ⇤/);

4.9.4 Performance of the various implementations
Of course, we really want to know which of the three implementations is “best,” so
we included our implementations in a small program in which the main thread first
inserts a user-specified number of randomly generated keys into an empty list. After
being started by the main thread, each thread carries out a user-specified number of
operations on the list. The user also specifies the percentages of each type of oper-
ation (Member, Insert, Delete). However, which operation occurs when and on
which key is determined by a random number generator. Thus, for example, the user
might specify that 1000 keys should be inserted into an initially empty list and a
total of 100,000 operations are to be carried out by the threads. Further, she might
specify that 80% of the operations should be Member, 15% should be Insert, and
the remaining 5% should be Delete. However, since the operations are randomly
generated, it might happen that the threads execute a total of, say, 79,000 calls to
Member, 15,500 calls to Insert, and 5500 calls to Delete.

Tables 4.3 and 4.4 show the times (in seconds) that it took for 100,000 operations
on a list that was initialized to contain 1000 keys. Both sets of data were taken on a
system containing four dual-core processors.

Table 4.3 shows the times when 99.9% of the operations are Member and the
remaining 0.1% are divided equally between Insert and Delete. Table 4.4 shows
the times when 80% of the operations are Member, 10% are Insert, and 10% are
Delete. Note that in both tables when one thread is used, the run-times for the

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops,
99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 0.123 0.098 0.115

One Mutex for Entire List 0.211 0.450 0.385 0.457

One Mutex per Node 1.680 5.700 3.450 2.700

62

Caches, Cache-Coherence, and False Sharing
▪ Cache memory can have a huge impact on shared-memory

- significant performance difference between cache access and main memory access
- cache coherency protocols ensure correct cache access for multi-threaded applications
- threads influence each other indirectly through cache memory (eviction, dirty cache lines, etc.)

192 CHAPTER 4 Shared-Memory Programming with Pthreads

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads:

E = S
t

=

⇣
Tserial

Tparallel

⌘

t
= Tserial

t ⇥ Tparallel
.

Since S  t, E  1. Table 4.5 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000, so an analysis that only considers arithmetic operations would predict
that a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. With one thread, the 8,000,000 ⇥ 8
system requires about 14% more time than the 8000 ⇥ 8000 system, and the 8 ⇥
8,000,000 system requires about 28% more time than the 8000 ⇥ 8000 system. Both
of these differences are at least partially attributable to cache performance.

1 void ⇤Pth mat vect(void⇤ rank) {
2 long my rank = (long) rank;
3 int i, j;
4 int local m = m/thread count;
5 int my first row = my rank⇤local m;
6 int my last row = (my rank+1)⇤local m � 1;
7
8 for (i = my first row; i <= my last row; i++) {
9 y[i] = 0.0;

10 for (j = 0; j < n; j++)
11 y[i] += A[i][j]⇤x[j];
12 }
13
14 return NULL;
15 } /⇤ Pth mat vect ⇤/

Program 4.13: Pthreads matrix-vector multiplication

Table 4.5 Run-Times and Efficiencies of Matrix-Vector
Multiplication (times are in seconds)

Matrix Dimension

8,000,000 ⇥ 8 8000 ⇥ 8000 8 ⇥ 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.393 1.000 0.345 1.000 0.441 1.000

2 0.217 0.906 0.188 0.918 0.300 0.735

4 0.139 0.707 0.115 0.750 0.388 0.290

shared variables

Pthreads matrix-vector multiplication
63

Pthreads Matrix-Vector Multiplication
▪ Number of operations in matrix-vector multiplication

- matrix dimensions: m ⨉ n, vector dimension: p
- number of multiplications and additions ≈ m*n*p

▪ Experiment
- multi-threaded matrix-vector multiplication with a constant number of operations (m*n*p)
- different “aspect ratios” of matrix and vector
- efficiency for increasing number of threads varies widely with aspect ratio

▪ What is going on?

192 CHAPTER 4 Shared-Memory Programming with Pthreads

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads:

E = S
t

=

⇣
Tserial

Tparallel

⌘

t
= Tserial

t ⇥ Tparallel
.

Since S  t, E  1. Table 4.5 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000, so an analysis that only considers arithmetic operations would predict
that a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. With one thread, the 8,000,000 ⇥ 8
system requires about 14% more time than the 8000 ⇥ 8000 system, and the 8 ⇥
8,000,000 system requires about 28% more time than the 8000 ⇥ 8000 system. Both
of these differences are at least partially attributable to cache performance.

1 void ⇤Pth mat vect(void⇤ rank) {
2 long my rank = (long) rank;
3 int i, j;
4 int local m = m/thread count;
5 int my first row = my rank⇤local m;
6 int my last row = (my rank+1)⇤local m � 1;
7
8 for (i = my first row; i <= my last row; i++) {
9 y[i] = 0.0;

10 for (j = 0; j < n; j++)
11 y[i] += A[i][j]⇤x[j];
12 }
13
14 return NULL;
15 } /⇤ Pth mat vect ⇤/

Program 4.13: Pthreads matrix-vector multiplication

Table 4.5 Run-Times and Efficiencies of Matrix-Vector
Multiplication (times are in seconds)

Matrix Dimension

8,000,000 ⇥ 8 8000 ⇥ 8000 8 ⇥ 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.393 1.000 0.345 1.000 0.441 1.000

2 0.217 0.906 0.188 0.918 0.300 0.735

4 0.139 0.707 0.115 0.750 0.388 0.290

64

Pthreads Matrix-Vector Multiplication (2)
▪ Assumptions

- x, y, A store values of type double
- cache line stores 8 doubles

▪ Each thread computes a part of y[]
- result vector y[] fits into a single cache line
- each thread has its own copy of y[]

▪ Cache coherency
- cache coherency protocols work on the

granularity of a a cache line
- whenever a thread writes to y[] the cached

copy of y[] stored by other threads must be
invalidated

- but y[] is not actually shared, each thread
always writes to a distinct part of y[]

- this effect is called false sharing and causes
unnecessary overheads

8

8’000’000
1

8’
00

0’
00

0

⨉ =

thread 0
thread 1
thread 2
thread 3

A x y

1

8

192 CHAPTER 4 Shared-Memory Programming with Pthreads

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads:

E = S
t

=

⇣
Tserial

Tparallel

⌘

t
= Tserial

t ⇥ Tparallel
.

Since S  t, E  1. Table 4.5 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000, so an analysis that only considers arithmetic operations would predict
that a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. With one thread, the 8,000,000 ⇥ 8
system requires about 14% more time than the 8000 ⇥ 8000 system, and the 8 ⇥
8,000,000 system requires about 28% more time than the 8000 ⇥ 8000 system. Both
of these differences are at least partially attributable to cache performance.

1 void ⇤Pth mat vect(void⇤ rank) {
2 long my rank = (long) rank;
3 int i, j;
4 int local m = m/thread count;
5 int my first row = my rank⇤local m;
6 int my last row = (my rank+1)⇤local m � 1;
7
8 for (i = my first row; i <= my last row; i++) {
9 y[i] = 0.0;

10 for (j = 0; j < n; j++)
11 y[i] += A[i][j]⇤x[j];
12 }
13
14 return NULL;
15 } /⇤ Pth mat vect ⇤/

Program 4.13: Pthreads matrix-vector multiplication

Table 4.5 Run-Times and Efficiencies of Matrix-Vector
Multiplication (times are in seconds)

Matrix Dimension

8,000,000 ⇥ 8 8000 ⇥ 8000 8 ⇥ 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.393 1.000 0.345 1.000 0.441 1.000

2 0.217 0.906 0.188 0.918 0.300 0.735

4 0.139 0.707 0.115 0.750 0.388 0.290

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

cache of core 0

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

y[0] y[1] y[2] y[3] y[4] y[5] y[6] y[7]

cache of core 1

cache of core 2

cache of core 3
65

Thread-Safety

66

Thread-Safety
▪ A block of code is thread-safe if it can be simultaneously executed by

multiple threads without causing problems
▪ Example

- we want to “tokenize” a file of text using multiple threads
- tokens are contiguous sequences of characters separated from the rest of the text by white-

space like spaces, tabs, or newlines

▪ Simple approach
- divide input file into lines of text, assign lines to threads in a round-robin fashion
- first line goes to thread 0, the second goes to thread 1, . . . , the t-th goes to thread t, the t +1st

goes to thread 0, etc
- serialize access to the file using semaphores
- after a thread has read a single line of input, it can tokenize the line using the strtok function

67

The strtok Function
▪ Function is called repeatedly until the the complete string is tokenized

- at the first call, the string argument must be the text to be tokenized
- for subsequent calls, the first argument should be NULL
- the second argument is a string containing all separators e.g. “\n\r\t “

▪ The idea is that strtok does the bookkeeping
- keeps track of the progress of tokenization
- works from a cached copy of the string

4.11 Thread-Safety 195

at the beginning of its for i loop. So it’s very likely that when thread 2 accesses
(say) y[5996], thread 3 will be long done with all four of

y[6000], y[6001], y[6002], y[6003].

Similarly, when thread 3 accesses, say, y[6003], it’s very likely that thread 2 won’t
be anywhere near starting to access

y[5996], y[5997], y[5998], y[5999].

It’s therefore unlikely that false sharing of the elements of y will be a significant
problem with the 8000 ⇥ 8000 input. Similar reasoning suggests that false sharing of
y is unlikely to be a problem with the 8,000,000 ⇥ 8 input. Also note that we don’t
need to worry about false sharing of A or x, since their values are never updated by
the matrix-vector multiplication code.

This brings up the question of how we might avoid false sharing in our matrix-
vector multiplication program. One possible solution is to “pad” the y vector with
dummy elements in order to insure that any update by one thread won’t affect another
thread’s cache line. Another alternative is to have each thread use its own private stor-
age during the multiplication loop, and then update the shared storage when they’re
done. See Exercise 4.18.

4.11 THREAD-SAFETY8

Let’s look at another potential problem that occurs in shared-memory programming:
thread-safety. A block of code is thread-safe if it can be simultaneously executed by
multiple threads without causing problems.

As an example, suppose we want to use multiple threads to “tokenize” a file.
Let’s suppose that the file consists of ordinary English text, and that the tokens are
just contiguous sequences of characters separated from the rest of the text by white
space—a space, a tab, or a newline. A simple approach to this problem is to divide
the input file into lines of text and assign the lines to the threads in a round-robin
fashion: the first line goes to thread 0, the second goes to thread 1, . . . , the tth goes to
thread t, the t + 1st goes to thread 0, and so on.

We can serialize access to the lines of input using semaphores. Then, after a thread
has read a single line of input, it can tokenize the line. One way to do this is to use
the strtok function in string.h, which has the following prototype:

char⇤ strtok(
char⇤ string /⇤ in/out ⇤/,
const char⇤ separators /⇤ in ⇤/);

Its usage is a little unusual: the first time it’s called the string argument should be the
text to be tokenized, so in our example it should be the line of input. For subsequent

8This material is also covered in Chapter 5, so if you’ve already read that chapter, you may want to
skim this section.

68

Multi-Threaded Tokenizer (Incorrect)

196 CHAPTER 4 Shared-Memory Programming with Pthreads

calls, the first argument should be NULL. The idea is that in the first call, strtok
caches a pointer to string, and for subsequent calls it returns successive tokens
taken from the cached copy. The characters that delimit tokens should be passed
in separators. We should pass in the string " \t\n" as the separators
argument.

Given these assumptions, we can write the thread function shown in Pro-
gram 4.14. The main thread has initialized an array of t semaphores—one for
each thread. Thread 0’s semaphore is initialized to 1. All the other semaphores are
initialized to 0. So the code in Lines 9 to 11 will force the threads to sequentially
access the lines of input. Thread 0 will immediately read the first line, but all the
other threads will block in sem wait. When thread 0 executes the sem post, thread
1 can read a line of input. After each thread has read its first line of input (or end-
of-file), any additional input is read in Lines 24 to 26. The fgets function reads a
single line of input and Lines 15 to 22 identify the tokens in the line. When we run the

1 void⇤ Tokenize(void⇤ rank) {
2 long my rank = (long) rank;
3 int count;
4 int next = (my rank + 1) % thread count;
5 char ⇤fg rv;
6 char my line[MAX];
7 char ⇤my string;
8
9 sem wait(&sems[my rank]);

10 fg rv = fgets(my line, MAX, stdin);
11 sem post(&sems[next]);
12 while (fg rv != NULL) {
13 printf("Thread %ld > my line = %s", my rank, my line);
14
15 count = 0;
16 my string = strtok(my line, " \t\n");
17 while (my string != NULL) {
18 count++;
19 printf("Thread %ld > string %d = %s\n", my rank, count,
20 my string);
21 my string = strtok(NULL, " \t\n");
22 }
23
24 sem wait(&sems[my rank]);
25 fg rv = fgets(my line, MAX, stdin);
26 sem post(&sems[next]);
27 }
28
29 return NULL;
30 } /⇤ Tokenize ⇤/

Program 4.14: A first attempt at a multithreaded tokenizer

prevent concurrent file
access with semaphores

local copy of line

tokenization

Looks simple. What could possibly go
wrong?

69

Running with Two Threads
▪ Running single threaded works perfectly
▪ Running with two threads shows a bug

Oops: Something unexpected happened!

4.11 Thread-Safety 197

program with a single thread, it correctly tokenizes the input stream. The first time
we run it with two threads and the input

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

the output is also correct. However, the second time we run it with this input, we get
the following output.

Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = hot.
Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = in
Thread 0 > string 4 = the
Thread 0 > string 5 = pot
Thread 1 > string 1 = Pease
Thread 1 > my line = Nine days old.
Thread 1 > string 1 = Nine
Thread 1 > string 2 = days
Thread 1 > string 3 = old.

What happened? Recall that strtok caches the input line. It does this by declaring a
variable to have static storage class. This causes the value stored in this variable to
persist from one call to the next. Unfortunately for us, this cached string is shared, not
private. Thus, thread 0’s call to strtok with the third line of the input has apparently
overwritten the contents of thread 1’s call with the second line.

The strtok function is not thread-safe: if multiple threads call it simultaneously,
the output it produces may not be correct. Regrettably, it’s not uncommon for C
library functions to fail to be thread-safe. For example, neither the random num-
ber generator random in stdlib.h nor the time conversion function localtime in
time.h is thread-safe. In some cases, the C standard specifies an alternate, thread-safe
version of a function. In fact, there is a thread-safe version of strtok:

char⇤ strtok r(
char⇤ string /⇤ in/out ⇤/,
const char⇤ separators /⇤ in ⇤/,
char⇤⇤ saveptr p /⇤ in/out ⇤/);

The “ r” is supposed to suggest that the function is reentrant, which is sometimes
used as a synonym for thread-safe. The first two arguments have the same purpose as
the arguments to strtok. The saveptr Append ‘‘ p’’ to ‘‘saveptr’’ argument
is used by strtok r for keeping track of where the function is in the input string;
it serves the purpose of the cached pointer in strtok. We can correct our original

70

What Happened?
▪ strtok caches the input line

- string is stored in a variable with static storage class (static keyword in C)
- this causes the value stored in this variable to persist from one call to the next

▪ Unfortunately for us, this cached string is shared, not private

- thread 0’s call to strtok with the third line of the input has apparently overwritten the contents
of thread 1’s call with the second line

▪ We denote functions like strtok as not thread-safe or not re-entrant
- if multiple threads call a non thread-safe function the result is undetermined

char * strtok(char * string, const char * separators) {
static char *string_cache;
if (string != NULL) {

string_cache = strdup(string);
}
...
return current_token;

}

pseudo code for strtok

71

Other C Library Functions
▪ Many C library functions predate multi-threading

- in particular the old, standard library functions
- regrettable it is thus not uncommon for C library functions to be not thread-safe

▪ Examples of common not thread-safe functions
- random number generator random in stdlib.h
- time conversion function localtime in time.h

▪ Warning
- be careful to check that all library functions used in multi-threaded code is thread-safe
- ignoring thread-safety can lead to terribly hard to find bugs because code may execute

correctly most of the time

72

“re-entrant” (Thread Safe) Functions

▪ In some cases, the C standard specifies an alternate, thread-safe, version
of a function
- typically with same name and a suffix like “_r”
- e.g. the standard library defines a re-entrant strtok function name strtok_r

- the third argument is a pointer to keep track of the state of the function
(in this case the cached string that was previously stored as a static variable)

4.11 Thread-Safety 197

program with a single thread, it correctly tokenizes the input stream. The first time
we run it with two threads and the input

Pease porridge hot.
Pease porridge cold.
Pease porridge in the pot
Nine days old.

the output is also correct. However, the second time we run it with this input, we get
the following output.

Thread 0 > my line = Pease porridge hot.
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = hot.
Thread 1 > my line = Pease porridge cold.
Thread 0 > my line = Pease porridge in the pot
Thread 0 > string 1 = Pease
Thread 0 > string 2 = porridge
Thread 0 > string 3 = in
Thread 0 > string 4 = the
Thread 0 > string 5 = pot
Thread 1 > string 1 = Pease
Thread 1 > my line = Nine days old.
Thread 1 > string 1 = Nine
Thread 1 > string 2 = days
Thread 1 > string 3 = old.

What happened? Recall that strtok caches the input line. It does this by declaring a
variable to have static storage class. This causes the value stored in this variable to
persist from one call to the next. Unfortunately for us, this cached string is shared, not
private. Thus, thread 0’s call to strtok with the third line of the input has apparently
overwritten the contents of thread 1’s call with the second line.

The strtok function is not thread-safe: if multiple threads call it simultaneously,
the output it produces may not be correct. Regrettably, it’s not uncommon for C
library functions to fail to be thread-safe. For example, neither the random num-
ber generator random in stdlib.h nor the time conversion function localtime in
time.h is thread-safe. In some cases, the C standard specifies an alternate, thread-safe
version of a function. In fact, there is a thread-safe version of strtok:

char⇤ strtok r(
char⇤ string /⇤ in/out ⇤/,
const char⇤ separators /⇤ in ⇤/,
char⇤⇤ saveptr p /⇤ in/out ⇤/);

The “ r” is supposed to suggest that the function is reentrant, which is sometimes
used as a synonym for thread-safe. The first two arguments have the same purpose as
the arguments to strtok. The saveptr Append ‘‘ p’’ to ‘‘saveptr’’ argument
is used by strtok r for keeping track of where the function is in the input string;
it serves the purpose of the cached pointer in strtok. We can correct our original

73

Multi-Threaded Tokenizer (Corrected)

196 CHAPTER 4 Shared-Memory Programming with Pthreads

calls, the first argument should be NULL. The idea is that in the first call, strtok
caches a pointer to string, and for subsequent calls it returns successive tokens
taken from the cached copy. The characters that delimit tokens should be passed
in separators. We should pass in the string " \t\n" as the separators
argument.

Given these assumptions, we can write the thread function shown in Pro-
gram 4.14. The main thread has initialized an array of t semaphores—one for
each thread. Thread 0’s semaphore is initialized to 1. All the other semaphores are
initialized to 0. So the code in Lines 9 to 11 will force the threads to sequentially
access the lines of input. Thread 0 will immediately read the first line, but all the
other threads will block in sem wait. When thread 0 executes the sem post, thread
1 can read a line of input. After each thread has read its first line of input (or end-
of-file), any additional input is read in Lines 24 to 26. The fgets function reads a
single line of input and Lines 15 to 22 identify the tokens in the line. When we run the

1 void⇤ Tokenize(void⇤ rank) {
2 long my rank = (long) rank;
3 int count;
4 int next = (my rank + 1) % thread count;
5 char ⇤fg rv;
6 char my line[MAX];
7 char ⇤my string;
8
9 sem wait(&sems[my rank]);

10 fg rv = fgets(my line, MAX, stdin);
11 sem post(&sems[next]);
12 while (fg rv != NULL) {
13 printf("Thread %ld > my line = %s", my rank, my line);
14
15 count = 0;
16 my string = strtok(my line, " \t\n");
17 while (my string != NULL) {
18 count++;
19 printf("Thread %ld > string %d = %s\n", my rank, count,
20 my string);
21 my string = strtok(NULL, " \t\n");
22 }
23
24 sem wait(&sems[my rank]);
25 fg rv = fgets(my line, MAX, stdin);
26 sem post(&sems[next]);
27 }
28
29 return NULL;
30 } /⇤ Tokenize ⇤/

Program 4.14: A first attempt at a multithreaded tokenizer

my_string = strtok_r(my_line, " \t\n ", &saveptr);

my_string = strtok_r(NULL, " \t\n ", &saveptr);

char *saveptr;

74

Concluding Remarks (1)
▪ A thread in shared-memory programming is analogous to a process in

distributed memory programming
- However, a thread is lighter-weight than a full-fledged process
- in Pthreads programs, all the threads have access to global variables, while local variables are

private to the thread running the function

▪ A race condition denotes the possibility of an errors by non-deterministic
behavior resulting from multiple threads attempting to access a shared
resource (e.g. shared variable or file) concurrently
▪ A critical section is a block of code that protects a shared resource such

that it can only be updated by one thread at a time
- the execution of code in a critical section should, effectively, be executed as serial code

75

Concluding Remarks (2)
▪ Busy-waiting can be used to avoid conflicting access to critical sections

with a flag variable and a while-loop with an empty body
- can be very wasteful of CPU cycles
- can also be unreliable if compiler optimization is turned on

▪ A mutex can be used to avoid conflicting access to critical sections as well
- a mutex is a lock on a critical section that ensures mutually exclusive access to a critical section
- efficiently implemented because blocking threads are de-scheduled by the operating system

▪ A semaphore is a third way to avoid conflicting access to critical sections
- a (counting) semaphore is an abstract data structure providing an unsigned int together with

two operations: sem_wait and sem_post
- semaphores are more powerful than mutexes because they can be initialized to any

nonnegative value

76

Concluding Remarks (3)
▪ A barrier is a point in a program at which the threads block until all of the

threads have reached it
▪ A read-write lock is used for protecting data structures

- threads can signal whether they want to access the data read-only or with write priviledges
- multiple threads can simultaneously read data
- if a thread needs to modify the data structure, then only that thread can access the data

structure during the modification

▪ C functions called concurrently from multi-threaded code need to be
thread-safe
- stateful functions that implicitly remember their state between calls are problematic
- disregading thread-safety can lead to bugs that are very hard to find

77

Acknowledgements
▪ Peter S. Pacheco / Elsevier

- for providing the lecture slides on which this presentation is based

78

Change log
▪ 1.1.2 (2017-11-24)

- fix typo on slide 72

▪ 1.1.1 (2017-11-21)
- cosmetics

▪ 1.1.0 (2017-11-20)
- updated for winter term 2017/18
- fix typo on slides 4, 27, 71
- simplify slides 35, 36

▪ 1.0.1 (2017-01-18)
- revised version of slides

▪ 1.0.0 (2017-01-13)
- initial version of slides

79

