High-Performance
Computing
— Shared Memory Programming with Pthreads -

Christian Pless|
High-Performance IT Systems Group
Paderborn University

'L(‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Outline

= Problems programming shared memory systems

- controlling access to a critical section
- thread synchronization

. Programmmg with POSIX threads
mutexes
- producer-consumer synchronization and semaphores
- barriers and condition variables
- read-write locks

= Thread safety

A Shared Memory System

CPU

CPU

CPU

CPU

Interconnect

Memory

Processes and Threads

= A process is an instance of a running (or suspended) program
= Threads are analogous to “light-weight” processes

= Inashared memory program a single process may have multiple threads
of control

= Threads are not restricted to HPC
- can be used for parallel processing (share computational work, performance is key)

- can be used for concurrent processing (e.g. producer/consumer, background processing,
interactive user interfaces, etc.)

POSIX Threads

= Also known as Pthreads
= A standard for Unix-like operating systems
= Alibrary that can be linked with C programs

= Specifies an application programming interface (API) for multi-threaded
programming

= Availability

- widely available in Unix-derived systems: Linux, macOS, BSD, Solaris
- not available on Windows, but compatibility libraries exist

= Pthreads are general-purpose basic building blocks for multi-threaded
applications
- low level of abstraction, but explicit control over threads

- in future lectures we will also look at higher-level approaches that use multi-threading under
the hood (e.g. OpenMP tasking)

0 J N Ut AW IN =

p—
S O

11
12
13
14
15
16
17

Hello World (1)

finclude <stdio.ho declares the various Pthreads
#include <stdlib.h>
ffinclude <pthread.h> functions, constants, types, etc.

/x Global variable: accessible to all threads x/
int thread_count;

voidx Hello(voidx rank); /« Thread function x/
int main(int argc, charx argv[]) {
long thread; /« Use long in case of a 64-bit system */

pthread_tx thread_handles;

/% Get number of threads from command line x/
thread_count = strtol(argv[1], NULL, 10);

thread_handles = malloc (thread_countxsizeof(pthread_.t));

allocate memory in master thread to store
handles to child threads

Hello World (2)

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35

36
37
38

}

for (thread = 0; thread < thread_count; thread++) SPAWN threads

pthread_create(&thread_handles[thread], NULL, .
Hello, (voidx) thread); In master
printf("Hello from the main thread\n");
for (thread = 0; thread < thread_count; thread++) _-
pthread_join(thread_handles[thread], NULL); jomthreads

free(thread_handles);
return 0;
/x main x/

voidx Hello(voids rank) f{

}

long my_rank = (long) rank
/% Use long in case of 64-bit system x/

printf("Hello from thread %1d of %d\n", my_rank,
thread_count);

return NULL;
/x Hello x/

Compiling a Pthread program

gcc -g -Wall -pthread pth_hello pth_hello.c

enable Pthread macros and
link with the Pthreads
library

Running a Pthreads program

./pth _hello <number of threads>

./pth_hello 1

./pth_hello 4

Global Variables

= Threads share the same memory space, i.e. all variables of the master are
accessible (read and write) in the spawned threads

= Use of global variables (in particular inadvertent use) can introduce subtle
and confusing bugs because of race conditions
- limit use of global variables to situations in which they are really needed (shared data)
- use local variables wherever possible

Starting the Threads

= Processes in MPI are usually started by a launcher program (e.g. mpirun)
= In Pthreads the threads are explicitly started by the program executable

pthread_t: one object (handle) for each thread for
referencing thread after creation

int pthread _create (
pthread t* thread p /* out */,
const pthread attr_t* attr_p /* in */,
void* (*start _routine) (void) /* in */,
void* arg p /* in */

)

pthread_t Objects

= Implemented as opaque data structure
= The actual data that they store is system-specific
= Their data members aren’t directly accessible to user code

= However, the Pthreads standard guarantees that a pthread_t object does

store enough information to uniquely identify the thread with which it is
associated

pthread_create in Detail (1)

int pthread create (
pthread t* thread p /* out */ ,
const pthread_attr_t* attr p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg p /* in */) ;

returns handle to thread, memory must be allocate before calling

attributes to control configurable thread attributes
(stack size, scheduling policy, etc.) Typically the default
behavior is OK, can pass in NULL for this case.

pthread_create in Detail (2)

int pthread create (
pthread t* thread p /* out */ ,
const pthread_attr_t* attr p /* in */ ,
void* (*start_routine) (void) /* in */ ,
void* arg p /* in */) ;

pointer to the argument(s) that are passed to the thread
function start_routine

pointer to function that is executed by the thread

14

Function Started by pthread_create

= Function to be executed is passed as a function pointer to a function with
void arguments and void return value

= Prototype

void* thread function (void* args p) ;

= Argument void* can be cast to any pointer type in C

- e.g.ifthe thread function needs more than one argument args p can also point to a list
containing one or more values

= Return value void*
- can point to a list of one or more values.

Running and Joining Threads
= Lifecycle of threads

Thread O

Main / \ pthread_join
pthread_create \ /

Thread 1

= Joining a thread

- qall pthread_join once for each thread (identify thread with pthread_t handle)
- blocks until the associated thread terminates

16

Use Case: Matrix-Vector Multiplication w/ Pthreads

ano ani T agn—1 Y0
aio ail te Aln—1 X0 Y1
X1
a;o a1 Ain-1 Yi =ajoxo+ainx1+---@in_1Xn—1
Xn—1
An—-10 | A9n—-1,1 | *** | Gm—1,n—1 Ym—1

Serial Pseudo-Code

/% For each row of A x/
for (i = 0; 1 < m; it++t) {
yLi]l = 0.0;
/% For each element of the row and each element of Xx x/
for (J =0; J < n; Jj++)
yLil += A[i]10Lj1x x[JJ;

Using 3 Threads

Thread Components of y

0 y[O0l1, y[1]
1 ylz2l, yl[3]

2 y[4]1, y[5] \

general case

yLil = 0.

for (] j < n; Jjt+t+)
yli] += ALiJ0j]sx[]];

0;
0;

thread 0

yL0] = 0.0;
for (j =0; j < n; j++)
yLO] += A[LOJLJl* xLJj1;

19

Pthreads Matrix-Vector Multiplication

void+ Pth_mat_vect(voids rank) { rankpassedasargument

lTong my_rank = (long) rank; to pthread_create
int 1, J;
int local_m = m/thread_count; m: number of rows

int my_first_.row = my_rankxlocal_m;
int my_last_row = (my_rank+1l)xlocal_m — 1;

for (i = my_first_row; i <= my_last_row; i++) {
y[il = 0.0;
] = 0; J < n; j++)
1 += ALT10JIxx[J1;

return NULL;
} /% Pth_mat_vect %/

Critical Sections

21

Estimating m

4(1 1+1 1+ +(=1)"
n: —_— — — — — o o o —
35 7

series expansion

double factor = 1.0;

double sum = 0.0;

for (1 = 0; 1 < n; i++, factor
sum += factor/(2xi+1);

}
p1 = 4.0%sum;

serial code

2n +

1

+)

= —factor) /{

22

Multithreaded Computation of n

= simple parallelization strategy
- each thread computes n/thread_count terms
- make sum a shared variable

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

voidx Thread_sum(voidx rank) {

long my_rank = (long) rank;

double factor;

long long i;

long long my_n = n/thread_count;

long long my_first_i = my_nsmy_rank;
long long my_last_i = my_first_i + my_n;

if (my_first_i % 2 == 0) /% my_first_i is even x/
factor = 1.0;

else /x my_first_i is odd %/
factor = —1.0;

for (i = my_first_i; i < my_last_i; i++, factor =
sum += factor/(2xi+1);

}

return NULL;
/x Thread_sum x/

code for each thread

—factor) {

23

Results from Multi-Threaded Execution

10° 10° 107 108

T 3.14159 3.141693 3.1418927 3.14159265
1 Thread 3.14158 3.141592 3.1415926 3.14159264
2 Threads 3.14158 3.141480 3.1413692 3.14164686

= Different results for single and multi-threaded execution

- with increasing n the estimate of the single-threaded code is getting
better and better

= Race condition
- both threads write to global variable sum

Prevent Data Races with Busy-Waiting

= A thread repeatedly tests a condition, but, effectively, does no useful
work until the condition has the appropriate value.

= Beware of optimizing compilers, though!

= Drawback: wastes computing resources because a waiting thread
continually uses the CPU accomplishing nothing

1 y = Compute(my_rank);

2 while (flag !'= my_rank); flag initialized to 0
3 X =X+ Yy; by main thread

4 flag+t+;

compact but somehow obscure,

better write loop like this

while (flag != my_rank) {
// do nothing
}

Pthreads Global Sum with Busy-Waiting

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

void« Thread_sum(voidx rank) {
long my_rank = (long) rank;
double factor;
long Tong 1;
long long my_.n = n/thread_count;
long Tong my_first_i = my_nxmy_rank;

long long my_last_i = my_first_.i + my_n;

if (my_first.i %2 2 == 0)
factor = 1.0;

else
factor = =1.0;

for (i = my_first_i; 1 < my_last_i;
while (flag != my_rank);
sum += factor/(2xi+1);
flag = (flag+l) % thread_count;

}

return NULL;
} /% Thread_sum %/

i++, factor = —factor) {

high overhead, because busy-
waiting in every loop
iteration

26

Optimization: Critical Section After Loop

voidx Thread_sum(voidx rank) {
long my_rank = (long) rank;
double factor, my_sum = 0.0;
long long i;
long Tong my_n = n/thread_count;
long long my_first_i = my_nsmy_rank;
long long my_last_i = my_first_i + my_.n;

if (my_first.i % 2 == 0)
factor = 1.0;

else
factor = =1.0;

1) perform local sum reduction
on local variable first

for (i = my_first_i; i < my_last_i; i++, factor = —factor)
my_sum += factor/(2xi+1);

while (flag != my_rank); 2) perform global sum

sum += my_sum; . . .
reduction on local variable first
flag = (flag+l) % thread_count;

return NULL;
} /% Thread_sum x/

27

Mutexes

= Mutex (mutual exclusion) special type of variable for restricting access to a
critical section to a single thread at a time

= Guarantees that one thread “excludes” all other threads “ 7 ‘|
while it executes the critical section
= No waste of computing resources, in contrast to busy-waiting

- excluded threads wait in blocking queue

= The Pthreads standard includes a special (opaque) type
pthread mutex_t for mutexes

= Manipulation of mutexes with dedicated function

Mutex Handling in the Pthreads library

= A mutex needs to be created and initialized before the first use

int pthread_mutex_init(
pthread_.mutex_tx mutex_p /x out =/,
const pthread_mutexattr_tx attr_p /x 1N x/);

= To enter a critical section a thread calls

int pthread_mutex_lock(pthread_.mutex_tx mutex_.p /x in/out =/);

= To leave a critical section a thread calls

int pthread_mutex_unlock(pthread_mutex_tx mutex_.p /% in/out */);

= When a Pthreads program finishes using a mutex, it should call

int pthread_mutex_destroy(pthread_mutex_tsx mutex_.p /% in/out %/);

Global Sum Function using a Mutex

'a\s.sgrr)ptlon: main thrgad has created and pthread mutex t mutex;
|n|t|a||zed a gIObal Vanable fOI‘ the mutex pthread_mutex_j_nj_t(&mutex,NU|_|_);

1 voids Thread_sum(voidx rank) {

2 long my_rank = (long) rank;

3 double factor;

4 long long 1;

5 long long my_n = n/thread_count;

6 long long my_first_.i = my_nxmy_rank;

7 long long my_last_i = my_first_i + my_.n;
8 double my_sum = 0.0;

9

10 if (my_first_.i % 2 = 0)

11 factor = 1.0;

12 else

13 factor = —1.0;

14

15 for (i = my_first_.i; i < my_last_i; i++, factor = —factor) {
16 my_sum += factor/(2xi+1);
17 }

18 pthread_mutex_lTock(&mutex) ;
19 sum += my_sum;

20 pthread_mutex_unlock(&mutex) ;
21

22 return NULL;

23 '} /% Thread_sum %/

Global Sum: Busy-Wait vs. Mutex

Table 4.1 Run-Times (in Seconds) of =
Programs Using n= 108 Terms on a System
with Two Four-Core Processors
Threads Busy-Wait Mutex
1 2.90 2.90 critical section only entered
2 1.45 1.45 once, hardly any difference
4 0.73 0.73 between busy-wait and
3 0.38 0.38 mutex if threads <= cores
16 0.50 0.38
30 0.80 0.40 significant differences if
54 356 0.38 threads > cores Wh)’?

Run-times (in seconds) of m programs using n = 108 terms on a

system with two four-core processors.

31

Global Sum: Busy-Wait vs. Mutex (2)

= Possible sequence of events with busy-waiting and more threads than

cores

= Busy-waiting enforces a fixed order of tasks entering the critical section

= Thread scheduling may cause delays

Table 4.2 Possible Sequence of Events with Busy-Waiting
and More Threads than Cores
Thread

Time flag 0 1 2 3

0 0 crit sect busy-wait susp sSusp

1 1 terminate crit sect susp busy-wait

2 2 — terminate susp busy-wait

? 2 — — crit sect susp

4

Susp
susp
busy-wait

busy-wait

no task makes any progress

scheduler runs task 2 again

Semaphores for Producer-Consumer Synchronization

Issues

= Busy-waiting enforces the order threads access a critical section
= Using mutexes, the order is left to chance and the system

= There are applications where we need to control the order threads access
the critical section

- for example, reductions where the order of operations must not be changed (e.g. floating-
point operations)

Attempt: Synchronize Messages Passing with Pthreads

= Each thread should receive exactly one message

= Problem: the more threads are used (#threads > cores) the higher the
chance that the message is still uninitialized because the thread has not

been scheduled yet
1 /% messages has type charxx. It’s allocated in main. x/
2 /+ Each entry is set to NULL in main. x/
3 voidx Send.msg(voidx rank) {
4 long my_rank = (long) rank;
5 long dest = (my_rank + 1) % thread_count;
6 long source = (my_rank +—thresd=—ceurt — 1) % thread_count;
7 charx my_msg = malloc(MSG_MAXxsizeof(char));
8
9 sprintf(my_msg, "Hello to %1d from %1d", dest, my_rank);
10 messages[dest] = my_msg;
11
12 if (messages[my_rank] != NULL)
13 printf("Thread %1d > %s\n", my_rank, messages[my_rank]);
14 else
15 printf("Thread %1d > No message from %1d\n", my_rank,
source) ;
16
17 return NULL;
18 /% Send_-msg x/

Attempt: Synchronize Messages Passing with Pthreads (2)

= Busy-waiting solves problem, but enforces order and wastes computing
time

1 /+ messages has type charxx. It’s allocated in main. */
2 /x Each entry is set to NULL in main. */
3 voidx Send.msg(voids rank) {

4 long my_rank = (long) rank;

5 long dest = (my_rank + 1) % thread_count;

6

7

8

long source = (my_rank +=thread—court— 1) % thread_.count;
chars my_msg = malloc(MSG_MAXxsizeof(char));

9 sprintf(my_msg, "Hello to %1d from %1d", dest, my_rank);
10 messagesldest] = my_msg;
11
12 if (messages[my_rank] != NULL) while(messages[my_rank] == NULL) {};
13 printf("Thread %1d > %s\n", my_rank, messages[my_rank]);
14 else
15 printf("Thread %1d > No message from %1d\n", my_rank,
source) ;
16
17 return NULL;

18 } /% Send.msg x/

= What we actually would like to achieve is informing thread dest that a
message is available after executing line 10

Syntax of Semaphore Manipulation Functions

semaphores are port of POSIX but not

/ part of Pthreads library

#include <semaphore.h>

int sem_init(
sem_tx semaphore_p /x out x/,
int shared /% 1n %/,
unsigned initial_val /% 1in x/);

int sem_destroy(sem_tx semaphore_.p /% in/out =/);

int sem_post(sem_tx semaphore_.p /% in/out */);
int sem_wait(sem_tx semaphore_.p /x in/out */);

37

Synchronize Message-Passing w/ Semaphores

[E—

2

/% messages 1S allocated and initialized to NULL in main */
/x semaphores is allocated and initialized to 0 (locked) 1in

main =/

voidx Send_msg(voidx rank) {

long my_rank = (Tong) rank;
long dest = (my_.rank + 1) % thread_count;
charx my_msg = malloc(MSG_MAXxsizeof(char));

sprintf(my_msg, "Hello to %1d from %1d", dest, my_rank);
messages[dest] = my_msg;
sem_post(&semaphores[dest])

/x “‘Unlock’”’ the semaphore of dest x/

/x Wait for our semaphore to be unlocked x/
sem_wait(&semaphoresimy_rank]);
printf("Thread %1d > %s\n", my_rank, messagesimy_rank]);

return NULL;
/% Send_.msg */

Barriers and Condition Variables

39

Barriers

= Synchronizing the threads to make sure that they all are at the same
point in a program is called a barrier

= No thread can cross the barrier until all the threads have reached it
= Many Pthreads implementations do not contain ready to use barriers

= Hence, we have to build barriers from other mechanisms
- busy-waiting and mutex
- semaphores
- condition variables

Use-Cases for Barriers

= Measure execution time of slowest thread

/x Shared x/
double elapsed_time;

/% Private x/
double my_start, my_finish, my_elapsed;

Synchronize threads;
Store current time in my_start;
/% Execute timed code x/

Store current time in my_finish;
my_elapsed = my_finish — my_start;

elapsed = Maximum of my_elapsed values;
= Debugging

point in program we want to reach;

barrier;

if (my_rank == 0) {
printf("All threads reached this point\n");
fflush(stdout);

Barrier with Busy-waiting and Mutex

= Implementing a barrier using busy-waiting and a mutex is
straightforward

= We use a shared counter protected by the mutex

= When the counter indicates that every thread has entered the critical
section, threads can leave the critical section

Barrier with Busy-waiting and Mutex (2)

/+ Shared and initialized by the main thread x/
int counter; /x Initialize to 0 %/

int thread_count;

pthread.mutex_t barrier_mutex;

counter counts
how many
threads have

reached the
void« Thread.work(. . .) { barrier

/x Barrier x/
pthread_mutex_lock(&barrier_mutex);
counter++;
pthread_.mutex_unlock(&barrier_mutex);
while (counter < thread_count);

}

= Problem 1: busy-waiting wastes CPU resources

= Problem 2: reusing barrier safely is not possible

- resetting counter in master thread may lead to the situation that not all threads have seen
counter == thread_count and are stuck in the waiting loop

- hence, we need one counter for each barrier instance

Implementing a Barrier with Semaphores

/% Shared variables x/

int counter: e Initialize to 0 «/ count_sem initialized to unlocked, first
sem_t count.sem; / Initialize to 1 x/ thread calling sem_wait on this
sem_t barrier_sem; /x Initialize to 0 %/ semaphore is not blocked

void« Thread_work(...) {

/% Barrier x/

sem_wait(&count_sem);

if (counter == thread_count—1) {
counter = 0;

last thread reaches the barrier, notify
sem_post(&count_sem);

for (j = 0; jJ < thread_count-1; j++) allwaiting threads
sem_post(&barrier_sem);
} else {
counter++; .
sem_post(&count_sem); there are still threads that need to
sem_wait(&barrier_sem); reach the barrier, block until then

}

= Much more efficient than busy-waiting

= Problem: Reusing the barrier safely is still not possible, race condition for
barrier_sem (see Pacheco Chapter 4)

Condition Variables

= A condition variable is a data object that allows a thread to suspend
execution until a certain event or condition occurs

= When the event or condition occurs another thread can signal the thread
to “wake up”

= A condition variable is always associated with a mutex
= Typically use in code like this

lock mutex;
if condition has occurred
signal thread(s);
else {
unlock the mutex and block;
/% when thread 1s unblocked, mutex is relocked x/

}

unlock mutex:

Condition Variable Handling in the Pthreads library

= Condition variables have type pthread_cond_t
= The function pthread_cond_wait

int pthread_cond_wait(
pthread_cond_tx cond_var.p /x in/out =/,
pthread_mutex_tx mutex_p /% 1n/out */);

atomically blocks the current thread on the condition variable
cond_var_p and releases the mutex specified by mutex_p. The waiting
thread unblocks only after another thread calls pthread_cond_signal
or pthread _cond_broadcast for the same condition variable and the
thread reacquires the lock on mutex_p again

= Essentially pthead_cond_wait performs these functions atomically:

pthread_mutex_unlock(&mutex_p);
wait_on_signal(&cond_var_p);
pthread_.mutex_lTock(&mutex_p);

Condition Variable Handling in the Pthreads library (2)
= Condition variables are initialized and destroyed using the functions

int pthread_cond_init(
pthread_cond_t= cond_p /% out x/,
const pthread_condattr_tx cond_attr_p /« in x/);

int pthread_cond_destroy(pthread_cond_tx cond.p /% in/out =/);

= One of the threads waiting for the condition variable can be unblocked
with

int pthread_.cond_signal(pthread_.cond_-tx cond_var_p /% in/out x/);

= All of the threads waiting for the conditional variable can be unblocked
with

int pthread_cond_broadcast(pthread_cond_tx cond_var_p /x in/out x/);

Implementing a Barrier with Condition Variables

/x Shared %/

int counter = 0;
pthread_mutex_t mutex;
pthread_cond_t cond_var;

voidx Thread.work(. . .) {

/x Barrier x/
pthread_.mutex_Tock(&mutex) ;
counter++;
if (counter == thread_count) {
counter = 0;
pthread_cond_broadcast(&cond.var);
} else {
while (pthread_cond_.wait(&cond_var, &mutex) != 0);

}

pthread_mutex_unlock (&mutex) ;

pthread_cond_wait is called in a loop checking for success, because
there are other events that may cause the thread to unblock (e.g. cancel)

Read-Write Locks

Controlling access shared data structures

= How can we control concurrent access to large shared data structures?

= Example
- shared data structure is a sorted linked list of integers
- operations of interest are Member, Insert, and Delete

head_p 2 5 8

struct lTist_node_s |{
int data;
struct Tist_node_sx next;

Linked List: Member

= Check whether element is part of the list
- traverse list from beginning until the end is reached or a larger element is found

1 int Member(int value, struct lTist_node_sx head_p) {
2 struct lTist_node_sx curr_p = head_p;

3

4 while (curr_p != NULL && curr_p—>data < value)
5 curr_p = curr_p—>next;

6

7 if (curr_p == NULL || curr_p—>data > value) {
8 return 0;

9 } else {

0] return 1;

11 }

\9]
——

/% Member x/

head_p 2 5 8

Linked List: Insert

= |Insert a new element into the sorted linked list

1 int Insert(int value, struct Tist_node_s*x head_p) {

2 struct list_node_sx curr_p = xhead_p;

3 struct list_node_sx pred_p = NULL;

4 struct list_node_sx temp_p;

5

6 while (curr_p != NULL && curr_p—>data < value) {

7 pred_p = curr_p;

8 curr_p = curr_p—>next;

9 }

10

11 if (curr_p == NULL || curr_p—>data > value) {

12 temp_p = malloc(sizeof(struct list_node.s));

13 temp_p—>data = value;

14 temp_p—>next = curr_p;

15 if (pred_p == NULL) /% New first node x/

16 xhead_p = temp_p; pred_p curr_p
17 else

18 pred_p—>next = temp_p;

19 return 1; head_p 2 8
20 } else { /« Value already in list %/

21 return 0;

22 }

23 '} /% Insert x/ temp_p .

52

Linked List: Delete

= Delete an existing element from the list

1 int Delete(int value, struct Tist_node_sxx head_p) {

2 struct list_node_sx curr_p = xhead_p;

3 struct list_node_sx pred_p = NULL;

4

5 while (curr_p != NULL && curr_p—>data < value) {

6 pred_p = curr_p;

7 curr_p = curr_p—>next;

8 }

9

10 if (curr_p != NULL && curr_p—>data == value) {

11 if (pred_.p == NULL) { /x Deleting first node in 1ist x/

12 xhead_p = curr_p—>next;

13 free(curr_p);

14 } else {

15 pred_p—>next = curr_p—>next;

16 free(curr_p);

17 }

18 return 1; head_p 2 °
19 } else { /x Value isn’t in list =/ T
20 return 0;

21 J pred_p curr_p
22}/« Delete x/ - -

A Multi-Threaded Linked List

= Let’s try to use these functions in a Pthreads program
- to share access to the list, we define head_p to be a global variable

- this simplifies the Member, Insert, and Delete functions, because no pointer to head_p is
needed, only the value of interest

= What happens if the Member, Insert, Delete functions are called
simultaneously from different threads?

Thread 0O:
curr_p

head_p 2 5 8

Thread 1: Thread 1:
pred_p curr_p

Solution #1: Coarse-Grained Locking

= Obvious solution

- simply lock the list any time that a thread attempts to access it
- protect call to the Member, Insert, Delete function by mutex

Pthread_mutex_lock(&list_mutex); Instead ofcalling
Member(value) ;
Pthread.mutex_unlock(&Tist_mutex); Member(value)

= Problems
- access to list is serialized

- fail to exploit opportunity for parallelism for read-only operations (Member), hurts
performance if this is the frequent case

- if most of our operations are calls to Insert and Delete, then this may be the best solution
because we need to serialize access for these operations and the solution is simple to
implement

Solution #2: Fine-Grained Locking

= Lock individual elements instead of entire list

= Requires modification to list elements, each element is protected by
mutex

struct Tist_node.s {
int data;
struct Tist_node_sx next;
pthread_mutex_t mutex;

}

Member function w/ Fine-Grained Locking

int Member(int value) {
struct lTist_node_sx temp_p;

pthread_mutex_lock(&head_p_mutex);
temp_p = head_p;
while (temp_p != NULL && temp_p—>data < value) {
if (temp_p—>next != NULL)
pthread_mutex_lock(&(temp_p—>next—>mutex));
if (temp_.p == head_p)

pthread_mutex_unlock(&head_p_-mutex); idea: always hold

pthread_mutex_unlock(&(temp_p—>mutex)); mutex to currently

temp-p = temp-_p—rnext; used elements, lots of
! special case handling
if (temp_p == NULL || temp_p—>data > value) f{ (beginning/end of

if (temp_.p == head_p) list)

pthread_-mutex_unlock(&head_p_mutex);
if (temp_p != NULL)
pthread_mutex_unlock(&(temp_p—>mutex));
return 0;
} else |
if (temp_.p == head_p)
pthread.mutex_unlock(&head_p_mutex);
pthread_mutex_unlock(&(temp_p—>mutex));
return 1;

}
} /% Member x/

Problems with Fine-Grained Locking

= Implementation much more complex and error prone than the original
Member function

= Much slower, because for each access to a node a mutex must be locked
and unlocked

= The addition mutex field for each node substantially increases the
amount of storage needed for the list

Pthreads Read-Write Locks

= Neither of our multi-threaded linked lists exploits the potential for
simultaneous access to any node by threads that are executing Member
- coarse-grained locking only allows one thread to access the entire list at any instant
- fine-grained locking only allows one thread to access any given node at any instant

= Aread-write lock is somewhat like a mutex except that it provides two
lock functions
- the first lock function locks the read-write lock for reading
- the second locks it for writing

= Usage
- multiple threads can simultaneously obtain the read
- only one thread can obtain the write lock

- ifany threads own the lock for reading, any threads that want to obtain the lock for writing
will block in the call to the write-lock function

- ifany thread owns the lock for writing, any threads that want to obtain the lock for reading or
writing will block in their respective locking functions

Pthreads Read-Write Lock Functions

= The following functions are available for acquiring a read lock, acquiring a
read/write lock, and releasing a lock:

int pthread_.rwlock_.rdlock(pthread_.rwlock_tx rwlock.p /% in/out =/);
int pthread_rwlock.wrlock(pthread_rwlock_tx rwlock.p /% in/out =/);
int pthread_.rwlock_unlock(pthread_.rwlock_tx rwlock.p /% in/out =x/);

= Like mutexes, read/write locks need to be initialized and destroyed:

int pthread_rwlock_init(
pthread_.rwlock_tx rwlock_p /% out %/,
const pthread_rwlockattr_tx attr_p Jx0n x/);

int pthread.rwlock_.destroy(pthread_rwlock_tx rwlock_.p /« in/out =/);

Protecting the Linked-List Functions w/ Locks

pthread_rwlock_rdlock(&rwlock);
Member(value);
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
Insert(value);
pthread_rwlock_unlock(&rwlock);

pthread_rwlock_wrlock(&rwlock);
Delete(value);
pthread_rwlock_unlock(&rwlock);

Linked List Performance

Table 4.3 Linked List Times: 1000 Initial Keys, 100,000 ops,
99.9% Member, 0.05% Insert, 0.05% Delete

Number of Threads

Implementation 1 2 4 8

Read-Write Locks 0.213 0.123 0.098 0.115
One Mutex for Entire List 0.211 0.450 0.385 0.457
One Mutex per Node 1.680 5.700 3.450 2.700

Table 4.4 Linked List Times: 1000 Initial Keys, 100,000 ops,
80% Member, 10% Insert, 10% Delete

Number of Threads

Implementation 1 2 4 8
Read-Write Locks 2.48 497 4.69 4.71
One Mutex for Entire List 2.50 513 5.04 5.11

One Mutex per Node 12.00 29.60 17.00 12.00

Caches, Cache-Coherence, and False Sharing

= Cache memory can have a huge impact on shared-memory
- significant performance difference between cache access and main memory access
- cache coherency protocols ensure correct cache access for multi-threaded applications
- threads influence each other indirectly through cache memory (eviction, dirty cache lines, etc.)

0NN N kW

O

11
12
[3
14
[5

void sPth_mat_vect(void* rank) /{

long my_rank = (long) rank;

int i, J;

int local_.m = m/thread_count;

int my_first_row = my_rankslocal_m;

int my_last_row = (my_rank+1l)xlocal.m — 1;

for (i = my_first_row; i <= my_.last_row; i++) {
y[il] = 0.0;
for (j =0; jJ < n; j++)
y[il += A[i10]xx[j];
}
return NULL; shared variables

/x Pth_mat_vect x/

Pthreads matrix-vector multiplication

Pthreads Matrix-Vector Multiplication

= Number of operations in matrix-vector multiplication
- matrix dimensions: m X n, vector dimension: p
- number of multiplications and additions = m*n*p

= Experiment
- multi-threaded matrix-vector multiplication with a constant number of operations (m*n*p)
- different “aspect ratios” of matrix and vector
- efficiency for increasing number of threads varies widely with aspect ratio

= What is going on?
Matrix Dimension

8,000,000 x 8 8000 x 8000 8 x 8,000,000
Threads Time Eff. Time Eff. Time Eff.

—k

0.393 1.000 0.345 1.000 0.441 | 1.000
0.217 0.906 0.188 0.918 0.300 | 0.735
4 0.139 0.70r 0.115 0.750 0.388 | 0.290

N

Pthreads Matrix-Vector Multiplication (2)

= Assumptions
- X, Y, Astore values of type double
- cache line stores 8 doubles

= Each thread computes a part of y[]
- result vector y[] fits into a single cache line
- each thread has its own copy of y[]

= Cache coherency

- cache coherency protocols work on the
granularity of a a cache line

- whenever a thread writes to y[] the cached
copy of y[] stored by other threads must be
invalidated

- buty[] is not actually shared, each thread
always writes to a distinct part of y[]

- this effect is called false sharing and causes
unnecessary overheads

for (i = my_first_row; i <= my_last_row; i++) {
y[il = 0.0;
for (j =0; J < n; j+t)
yOil += ALPI0J1xx[J];

o
1 ©
o
8000000 3 1
thread 0 o
thread 1 A X X OO_ 3
8 thread 2 - y
thread 3
y[0] y[1] cache of core 0
y[2] y[3] cache of core 1
y[4] y[5] cache of core 2

y[6] y[7] cache of core 3

Thread-Safety

66

Thread-Safety

= A block of code is thread-safe if it can be simultaneously executed by
multiple threads without causing problems

= Example
- we want to “tokenize” a file of text using multiple threads

- tokens are contiguous sequences of characters separated from the rest of the text by white-
space like spaces, tabs, or newlines

= Simple approach
divide input file into lines of text, assign lines to threads in a round-robin fashion

first line goes to thread 0, the second goes to thread 1,, the t-th goes to thread t, the t +1st
goes to thread 0, etc

serialize access to the file using semaphores
after a thread has read a single line of input, it can tokenize the line using the strtok function

The strtok Function

= Function is called repeatedly until the the complete string is tokenized
- at thefirst call, the string argument must be the text to be tokenized
- for subsequent calls, the first argument should be NULL
- the second argument is a string containing all separators e.g. “\n\r\t

charx strtok(
charx string /% 1n/out %/,
const charx separators /% in x/) ;

= Theidea is that strtok does the bookkeeping
- keeps track of the progress of tokenization
- works from a cached copy of the string

Multi-Threaded Tokenizer (Incorrect)

1 voidx Tokenize(void*x rank) {

2 long my_rank = (long) rank;

3 int count;

4 int next = (my_rank + 1) % thread_count;

5 char xfg_rv;

6 char my_line[MAX]: local copy of line

7 char xmy_string;

8 .
9 sem_wait(&sems[my_rank]); prevent concurrent file
10 fg.rv = fgets(my_line, MAX, stdin); access with semaphores
11 sem_post(&sems[next]);

12 while (fg_rv != NULL) {

13 printf("Thread %1d > my line = %s", my_rank, my_line);

14

15 count = 0;

16 my_string = strtok(my_line, " \t\n"); tokenization

17 while (my_string != NULL) {

18 count++;

19 printf("Thread %1d > string %d = %s\n", my_rank, count,

20 my_string);

21 my_string = strtok(NULL, " \t\n");

22 }

23

24 sem_wait(&sems[my_rank]);

25 fg_.rv = fgets(my_line, MAX, stdin);

26 sem_post(&sems[next]);

% } Looks simple. What could possibly go
29 return NULL; Wrong?

30 } /x Tokenize x/
69

Running with Two Threads

= Running single threaded works perfectly

= Running with two threads shows a bug

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

R PP PP OO0 000O0ORFrrOoOOooo

YV VYV VYV VYV VYV VYV YV VYV YV

my line = Pease porridge hot.
string 1 = Pease

string 2 = porridge

string 3 = hot.

my line = Pease porridge cold.
my line = Pease porridge in the pot
string 1 = Pease

string 2 = porridge

string 3 = 1in

string 4 = the

string 5 = pot

string 1 = Pease

my line = Nine days old.
string 1 = Nine

string 2 = days

string 3 = old.

Oops: Something unexpected happened!

70

What Happened?

= strtok caches the input line

- string is stored in a variable with static storage class (static keyword in ()
- this causes the value stored in this variable to persist from one call to the next

= Unfortunately for us, this cached string is shared, not private

char * strtok(char * string, const char * separators) {
static char *string cache;

if (string != NULL) {
string cache = strdup(string);

}

return current_token;

}
pseudo code for strtok

- thread 0’s call to strtok with the third line of the input has apparently overwritten the contents
of thread 1’s call with the second line

= We denote functions like strtok as not thread-safe or not re-entrant
- if multiple threads call a non thread-safe function the result is undetermined

71

Other C Library Functions

= Many Clibrary functions predate multi-threading
- in particular the old, standard library functions
- regrettable it is thus not uncommon for C library functions to be not thread-safe

= Examples of common not thread-safe functions
- random number generator random in stdlib.h
- time conversion function localtime in time.h

= Warning

- be careful to check that all library functions used in multi-threaded code is thread-safe

- ignoring thread-safety can lead to terribly hard to find bugs because code may execute
correctly most of the time

“re-entrant” (Thread Safe) Functions

= In some cases, the C standard specifies an alternate, thread-safe, version
of a function

- typically with same name and a suffix like “_r

- e.g. the standard library defines a re-entrant strtok function name strtok_r

7

charx strtok.r(

charx string /% in/out %/,
const charx separators /% 1n x/,
charxx saveptr_p /% 1n/out x/);

- the third argument is a pointer to keep track of the state of the function
(in this case the cached string that was previously stored as a static variable)

Multi-Threaded Tokenizer (Corrected)

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

voidx Tokenize(voidx rank) {

}

long my_rank = (long) rank;

int count;

int next = (my_rank + 1) % thread_count;
char xfg_rv;

char my_line[MAX];

char xmy_string;

sem_wait(&sems[my_rank]);

fg_.rv = fgets(my_line, MAX, stdin);
sem_post(&sems[next]);

while (fg_rv != NULL) {

printf("Thread %1d > my line = %s", my_rank, my_line);

char *saveptr;
count = 0;

2 RV ol 2V 2 W B ol 2K ol 2 VA 2 e RV e 2 W LU N O 2 WL WS
- - s \ \ b

while (my_string != NULL) {

my string = strtok_r(my_line, " \t\n ", &saveptr);

count++;

printf("Thread %1d > string %d = %s\n", my_rank, count,
my_string);

Vi C‘|’Y“ih(:ll Rl o a2 NN \\+\\n"\-

}

sem_wait(&sems[my_rank]);
fg_.rv = fgets(my_line, MAX, stdin);
sem_post(&sems[next]);

}

return NULL;
/% Tokenize x/

my string = strtok r(NULL, " \t\n ", &saveptr);

Concluding Remarks (1)

= A thread in shared-memory programming is analogous to a process in
distributed memory programming
- However, a thread is lighter-weight than a full-fledged process

- in Pthreads programs, all the threads have access to global variables, while local variables are
private to the thread running the function

= Arace condition denotes the possibility of an errors by non-deterministic
behavior resulting from multiple threads attempting to access a shared
resource (e.g. shared variable or file) concurrently

= A critical section is a block of code that protects a shared resource such
that it can only be updated by one thread at a time

- the execution of code in a critical section should, effectively, be executed as serial code

Concluding Remarks (2)

= Busy-waiting can be used to avoid conflicting access to critical sections
with a flag variable and a while-loop with an empty body
- can be very wasteful of CPU cycles
- can also be unreliable if compiler optimization is turned on

= A mutex can be used to avoid conflicting access to critical sections as well
- amutexis alock on a critical section that ensures mutually exclusive access to a critical section
- efficiently implemented because blocking threads are de-scheduled by the operating system

= A semaphore is a third way to avoid conflicting access to critical sections

- a(counting) semaphore is an abstract data structure providing an unsigned int together with
two operations: sem_wait and sem_post

- semaphores are more powerful than mutexes because they can be initialized to any
nonnegative value

Concluding Remarks (3)

= A barrier is a point in a program at which the threads block until all of the
threads have reached it

= Aread-write lock is used for protecting data structures
- threads can signal whether they want to access the data read-only or with write priviledges
- multiple threads can simultaneously read data
- ifa thread needs to modify the data structure, then only that thread can access the data
structure during the modification

= (functions called concurrently from multi-threaded code need to be
thread-safe

- stateful functions that implicitly remember their state between calls are problematic
- disregading thread-safety can lead to bugs that are very hard to find

Acknowledgements

= PeterS. Pacheco / Elsevier
- for providing the lecture slides on which this presentation is based

Change log

» 1.1.2(2017-11-24)
- fix typo on slide 72

» 1.1.1(2017-11-21)

- cosmetics

= 1.1.0(2017-11-20)
- updated for winter term 2017/18
- fixtypo onslides 4, 27, 71
- simplify slides 35, 36

= 1.0.1(2017-01-18)

- revised version of slides

= 1.0.0 (2017-01-13)

- initial version of slides

