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Outline
= Basic OpenMP (covered by Pacheco book)

- concepts
- work sharing (loop parallelization)
- variable scoping

= More OpenMP (covered in future lecture)
- task parallelism
- SIMD parallelism (vectorization)
- task loops, do across loops

= Advanced OpenMP (optionally covered)
- target offloading to GPUs



OpenMP

= MP = multi-processing

OpenMP

= API for explicit multi-threaded, shared-memory parallel programming
with three components

- compiler directives
- runtime library functions
- environment variables

= Goals of OpenMP
- standardization and portability

= jointly defined by a group of major hard ware and software vendors
= widely supported on Unix/Linux and Windows
= APl available for (/C++ and Fortran

- ease of use

= 3 very small set of of directives is sufficient to cover many common cases
= supports incremental parallelization
= addresses coarse and fine-grained parallelism



OpenMP (2)

= History

in the early 1990’s HPC vendors have developed different OpenMP-like compiler extensions for
Fortran

mid 1990's begin of efforts for a common API for shared memory multi-threading

OpenMP 1.0 (1997/98) and OpenMP 2.0 (2000/2002) focus on parallelization of highly reqular
loops

OpenMP 3.0 (2008) introduces task-level parallelism

OpenMP 4.0 (2013) adds support target offloading for accelerators, SIMD (vectorization), user-
defined reductions, ...

OpenMP 4.5 (2015) introduces taskloops, do across loops, task priorities and improves target
offloading



Hello world for OpenMP
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#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void Hello(void); /« Thread function x/

int main(int argc, chars argv[]) {

id

}

/% Get number of threads from command line %/
int thread_count = strtol(argv[1l], NULL, 10);

pragma omp parallel num_threads(thread_count)
Hello();

return 0O;
/x main x/

void Hello(void) {

}

int my_rank = omp_get_thread_num();
int thread_count = omp_get_num_threads();

OpenMP compiler directive

OpenMP runtime library
functions

printf("Hello from thread %d of %d\n", my_rank, thread_count);

/x Hello x/



Compiling and Executing OpenMP Programs

gcc -g -Wall

./omp _hello 4

-fopenmp

K. running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

possible

< outcomes

\

Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

-0 omp_hello omp hello . c

L compiling

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4



OpenMP Compiler Directives (Pragmas)

= OpenMP makes extensive use of compiler directives, e.g.

#pragma omp parallel default(shared) private(a,b)

= Compiler directives provide special instructions to the compiler that are
not part of the (/C++ standard

- compilers that don't support the directives just ignore them

= All OpenMP directives start with #pragma omp
- directives can be followed by further clauses to modify and customize the basic operation

= Examples for purpose of compiler directives
- spawning a parallel region
- dividing blocks of code among threads
- distributing loop iterations between threads
- serializing sections of code
- synchronization of work among threads



OpenMP Runtime-Library Functions

= Runtime-library functions allow OpenMP programs to query and configure
the execution environment (OpenMP runtime system)

#include <omp.h>
int omp get num threads(void)

= Examples for purpose of runtime-library functions
- setting and querying the number of threads
querying a thread’s unique identifier (id), a thread’s ancestor identifier, team size
querying if in a parallel region and at what level
setting and querying nested parallelism
setting, initializing and terminating locks
querying wall clock time and resolution



OpenMP Environment Variables

= The OpenMP runtime system can be controlled by environment variables

export OMP_NUM_THREADS=8

= The properties affected by the environment variables can also be changed
by runtime-library functions

= Examples for purpose of OpenMP environment variables
- setting the number of threads
- specifying how loop iterations are divided
- binding threads to processors and cores
- enabling/disabling and controlling depth of nested parallelism
- enabling/disabling dynamic threads
- setting thread stack size
- setting threads wait policy



The OpenMP Directive “parallel”

= # pragma omp parallel
- most basic parallelization directive
- creates a number of threads that run the following structured block of code
- the number of threads that are used is determined by the run-time system

= Clauses are used to modify directives

- the num_threads clause can be (optionally) added to a parallel directive
- specifies number of threads that should execute the following block

# pragma omp parallel num_threads ( thread count )
= Notes

- the OpenMP standard doesn’t guarantee that this will actually start thread_count threads
- that number of threads a program can start may be limited by the system
- most current systems can start hundreds or even thousands of threads

- unless we're trying to start a lot of threads, we will almost always get the desired number of
threads.



The OpenMP Directive “parallel” (2)

= For completeness: the complete specification of parallel directive is

#pragma omp parallel [clause ...] newline
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured block



Fork-Join Model

= The basic parallelization model in OpenMP is fork-join parallelism

= When master reaches the parallel directive:
- a collection of threads is created (denoted as team)
- each child thread executes the code of the block that immediately follows the directive

- the end of a parallel region is an implicit barrier, all threads are joined and the master thread
continue

master thread

\

& " threads

* - - - - - S

threads threads

parallel region parallel region parallel region
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Fork-Join Model (2)

= The actual number of threads in the team is determined by the following
factors (in order of precedence)
- evaluation of the if clause
- setting of the num__threads clause
- use of the omp_set_num_ threads() library function
- setting of the OMP_NUM_THREADS environment variable
- implementation on default or system configuration (typically number of cores)

= if clause

- the optional if clause can contain a boolean expression

- ateam s only created, if the clause evaluates to a non-zero value, otherwise the region is
executed serially by the master thread



Writing Backward-Compatible Code

= OpenMP is designed for backward compatibility, i.e. programs can be
compiled with a compiler without OpenMP support

- #pragma omp directives are ignored
- headers and library functions must be conditionally included

= Conditional compilation

- compilers with OpenMP support define the symbol _OPENMP that can be used in the
preprocessor

#ifdef OPENMP
# include <omp.h>
#endif

# ifdef _OPENMP

int my rank = omp_get thread num ( );

int thread count = omp_get num_threads ( );
# else

int my_rank = 0;

int thread count = 1;
# endif



The Trapezoidal Rule
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The Trapezoidal Rule

= Reminder: When discussing MPl we looked at numerical integration using

the trapezoidal rule
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Sum of trapezoid areas = h[f (xg)/2 +f(x1) +f(x2) + - +f(xn—1) +f(x)/2].
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Serial Algorithm

/x Input: a, b, n x/
h = (b—a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; 1 <= n=1; i++) {
X_.1 = a + ixh;
approx += f(x_.i);

J

approx = hxapprox;



A First OpenMP Version

= We identify two types of tasks:

1. computation of the areas of individual trapezoids, and

2. adding the areas of trapezoids

= There is no communication among the tasks computing the areas, but
each of those tasks communicates with task to sum the area

- we assume that there are many more
trapezoids than cores

- hence, we aggregate tasks by assigning
a contiguous block of trapezoids to each
thread (and a single thread to each core)
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A First OpenMP Version (2)

= When summing up the individual areas, we need to protect access to the
shared sum variable to prevent a race condition

unpredictable results when two (or more) threads
attempt to simultaneously execute:

global result += my result ;

= OpenMP provides the critical directive for protecting the block following
the directive with a mutex

- only one thread may enter the critical section at a time

# pragma omp critical
global result += my result ;

19



A First OpenMP Version (3)

1 #include <stdio.h>

2 ffinclude <stdlib.h>

3 ffinclude <omp.h>

4

5 wvoid Trap(double a, double b, int n, doublex global_result_p);

6

7 int main(int argc, charx argv[]) {

8 double global_result = 0.0;

9 double a, b;

10 int n;

11 int thread_count;

12

13 thread_count = strtol(argv[1l], NULL, 10);

14 printf("Enter a, b, and n\n");

15 scanf("%1f %1f %d", &a, &b, &n); . .. .
16 # pragma omp parallel num_threads(thread_count) creates implicit tasks (later we will
17 Trap(a, b, n, &global_result); discuss how to create explicit tasks)
18

19 printf("With n = %d trapezoids, our estimate\n", n);

20 printf("of the integral from %f to %f = %.1l4e\n",

21 a, b, global_result);

22 return 0;

23} /x main %/

24

20



A First OpenMP Version (4)
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void Trap(double a, double b, int n, doublex global_result_p) {

ild

double h, x, my_result;

double Tocal_.a, local_b;

int 1, local.n;

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

h = (b—a)/n;
local_n = n/thread_count;
local_a = a + my_rankxlocal_nxh;
local_b = Tocal_.a + local_nxh;
my_result = (f(local.a) + f(local_b))/2.0;
for (i =1; 1 <= local.n=1; i++) {
x = local_.a + ixh;
my_result += f(x);

}

my_result = my_resultxh; we created a multi-threaded

pragma omp critical version with only a couple of
g1eha] resul tp = My-resul: directives and minimal code
/x Trap x/

changes
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Scope of Variables in OpenMP

= OpenMP variable scoping rules define how variables can be assigned by threads
in a parallel block

a variable that can be accessed by all the threads in the team has shared scope
a variable that can only be accessed by a single thread has private scope
variables declared

= before a parallel block have a default scope of shared
= within the block have default scope of private

= Clauses in the OpenMP parallel directive can modify the scoping for variables

private: new, uninitialized private variable of same type is created for each thread; the variable is
created on the stack, i.e. not available when the thread enters the region the next time

shared: variable is shared among all treads in the team
default: allows to specify a default scope for all variables, “none” requires explicit scope decls.
firstprivate: like private, but with automatic initialization

lastprivate: like private but copies variable value at last loop iteration or section back to scope of
main thread

copyin: for threadprivate variables (need to be declared before); works like firstprivate but the
variable is allocated on the heap, i.e. the value persists between leaving and re-entering the parallel
region



The Reduction Clause

= We wanted to avoid the use of global variables in the Trapezoid Rule
application
- hence we need to pass an additional shared pointer (global_result_p) to the Trap function
- this pointer is used to update the global sum (protected by critical section)

void Trap(double a, double b, int n, doublex global_result_p);

= A more elegant solution would look like this
double Trap(double a, double b, int n);

= ... and would be called like this

global_result = Trap(a, b, n);

= ... but now we don‘t have a critical section anymore



The Reduction Clause (2)

= If we use the following workaround, we force the threads to execute
sequentially

global_result = 0.0;
# pragma omp parallel num_threads(thread_count)

{

i pragma omp critical
global_result += Local_trap(double a, double b, int n);
}

= We can avoid this problem by declaring a private variable inside the
parallel block and moving the critical section after the function call

global_result = 0.0;
# pragma omp parallel num.threads(thread_count)

{
double my_result = 0.0; /% private x/

my_result += Local_trap(double a, double b, int n);

i pragma omp critical
global_result += my_result;

24



OpenMP Reductions

= OpenMP reductions solve the problem in a more elegant and expressive
way

- areduction is a computation that repeatedly applies the same reduction operator to a
sequence of operands in order to get a single result

- the reduction operator is a binary operation (such as addition or multiplication)
- theresult of the reduction is stored in the reduction variable

= To use a reduction, the parallel directive can be augmented with a
reduction clause

reduction(<operator>: <variable Tist>)

supported operators: +, %, -, &, |, *, &&,

global_result = 0.0;
# pragma omp parallel num_threads(thread_count) \
reduction(+: global_result)
global_result += Local_trap(double a, double b, int n);



The “Parallel For” Directive

= The #pragma omp parallel for directive forks a team of threads to execute
the block

- the block must be a for loop
- the directive parallelizes the for loop by dividing the iterations of the loop among the threads

h = (b-a)/n; h = (b—-a)/n;

approx = (f(a) + f(b))/2.0; approx = (f(a) + f(b))/2.0;

for (i = 1; i <= n-1; i++) ——> # pragma omp parallel for num_threads(thread_count) \
approx += f(a + ixh); reduction(+: approx)

for (i = 1; 1 <= n=1; i++)
approx += f(a + ixh);
approx = hxapprox;

approx = hxapprox;

parallel for directive applied to a for loop

26



Restrictions for Parallelizable For-Statements

= The “Parallel for” directive works only for loops with simple control
structure

- loop iteration variable must be an integer
- the expressions start, end, and incr must not change during the loop and must have a

compatible type
- the loop variable index can only be modified by the “increment expression” in the for
statement
( index++ \
++index
index < end index- -
index <= end --index
for | index = start ; 1index >= end ; 1index += incr
index > end index -= incr
index = index + incr
index = incr + index
K index = index - 1ncr)

= Program correctness must not depend upon which thread executes a
particular iteration



Data dependencies

fib[@] = fib[1] = 1;
for (i=2; i<n; i++)
fib[i] = fib[i-1] + fib[i-2];

l note 2 threads

fib[@] = fib[1] = 1; /

#pragma omp parallel for num_threads(2)
for(i=2; i<n; i++)
fib[i] = fib[i-1] + fib[i-2];

l but sometimes
11235813213455 we get this
v

this is correct

1123580000

28



What happened?

= OpenMP compilers don’t check for dependences among iterations in a loop
that’s being parallelized with a parallel for directive

- dependencies in loops that cause the results of one or more loop iterations depend on other
iterations are denoted as loop carried dependencies

- in general, loops with loop carried dependencies cannot be correctly parallelized by OpenMP

= Programmers need check dependencies of loops themselves



Estimating m

= Example from previous lectures

1 1 1 X (=D
—4|l—-4-———+..- | =4 .
g [ 375777 ] 2.

double factor = 1.0;

double sum = 0.0;

for (k = 0; k < n; k++) {
sum += factor/(2xk+1);
factor = —factor;

Can this loop be
parallelized safely?

Or is there a loop carried
dependency?

}

pi_approx = 4.0xsum;

~N O AW N



Estimating m: Solution #1

thereis aloop carried dependency

double factor= 1.0;

double sum = 0)0;

1t pragma omp pardllel for num_threads(thread_count) \
reduction(+/:sum)

for (k = 0; < n; kt++) |

sum += factor/(2xk+1);

factor = —factor;

}

pi_approx = 4.0xsum;

31



Estimating m: Solution #2

= Remove loop carried dependency for factor

= Compute factor directly in each thread

= Potential for a difficult to find bug

- by default all variables are shared among threads!

- hence, the writes to factor in each thread are seen by the other threads in the team, which
introduces data races

- we need to explicitly declare factor as private to prevent this problem

[E—

SO O 01N Lt AW

il

double sum = 0.0;

pragma omp parallel for num_threads(thread_count) \
reduction(+:sum) private(factor)

for (k = 0; k < n; k++) {

if (k%2 2 ==20)
factor = 1.0;
else
factor = —=1.0;

sum += factor/(2xk+1): ensures factor has

} private scope.
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The default Clause

= Introducing data races by accident is a common problem

= One common technique to prevent this problem is using the OpenMP’s
default clause with option none

#omp parallel for .. default (none)

= Explicitly choosing a scope of none (instead of relying on the default

shared) requires the programmer to explicitly specify the scope of each
variable in a block

- this rule is enforced by the compiler

#omp parallel for default (none) #omp parallel for default (none)\
for(i=0; i<1024; i++) { private(i,a)
a[d] = a[i] + 1; for(i=0; i<1024; i++) {

} \ a[i] = a[i] + 1;
}

error: no scope declared



Estimating m: Solution #3

double sum = 0.0;

i pragma omp parallel for num_.threads(thread_.count) \
default(none) reduction(+:sum) private(k, factor) \
shared(n)

for (k = 0; k < n; k++t) {
if (k% 2 ==20)
factor = 1.0;
else
factor = —-1.0;
sum += factor/(2xk+1);



More About Loops in OpenMP: Sorting

= Reminder: Odd-Even Transposition Sort (discussed in MPI lecture)

Subscript in Array
for (phase = 0; phase < n; phaset+)

Phase O 1 2
if (phase %2 2 == 0)

for (i =1; 1 <n; 1 +=2) 0 29; 29

if (ali—=11 > alil) Swap(&al[i—17,&al[i]); 1 7 9 o 6

else 7 6 9
for (i =1; i <n=1; i +=2) ©L s . -

if (ali] > ali+11) Swap(&al[il, &al[i+11); 3 6 7 o 8

6 7 8

= Does this algorithm have loop carried dependencies?

- outer loop has loop carried dependencies, result depends on execution order of iterations

- inner loops does not have loop carried dependencies, all comparison and swaps can be execute
in parallel or in arbitrary order = parallel for directive for inner loops should work fine

= Potential problems

- all operations in inner loop must complete before next iteration of outer loop is started -
guaranteed by implicit barrier after parallel for

- overhead of spawning and joining threads in inner loop over and over again may be too high
—> we can keep the threads spawned, see Solution #2

© ©O© © 00 oo™ (78]



OpenMP Odd-Even Sort: Solution #1

1 for (phase = 0; phase < n; phase++) {

2 if (phase % 2 == 0)

3 i pragma omp parallel for num_threads(thread_count) \
4 default(none) shared(a, n) private(i, tmp)
5 for (i =1; 1 < n; i+=2) {

6 if (ali=1] > alil) {

7 tmp = ali—-11];

8 ali—=1] = alil;

9 ali] = tmp;

10 }

11 }

12 else

13 4 pragma omp parallel for num_threads(thread_count) \
14 default(none) shared(a, n) private(i, tmp)
15 for (i =1; 1 < n=1; 1 += 2) {

16 if (alil > ali+1]) {

17 tmp = ali+1];

18 ali+l] = ali];

19 ali] = tmp;

20 }

21 }

22 }

spawning and joining threads of the inner loop in each phase again
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OpenMP Odd-Even Sort: Solution #2

1 # pragma omp parallel num_threads(thread_count) \ spawn threads once
2 default(none) shared(a, n) private(i, tmp, phase)  with“parallel” directive
3 for (phase = 0; phase < n; phase++) {

4 if (phase % 2 == 0) . L.
5 pragma omp for reuse threads with “for” directive
6 for (i =1; 1 <n; i+=2) { instead of “parallel for”

7 if (ali—=11 > alil) {

8 tmp = ali—-1];

9 ali—=11 = ali]l;

10 alil = tmp;

11 )

12 )

13 else

14 ¢ pragma omp for reuse threads with "for” directive
15 for (1 =1; 7 < n=l; 7 +=2) {  instead of “parallel for”

16 if (alil > ali+l]) {

17 tmp = ali+1l];

18 ali+l] = alil;

19 alil = tmp;

20 }

21 )

37



Odd-Even Sort Performance Evaluation

= Compare two solutions
- two “parallel for” directives (spawning and joining threads in each phase)
- two “for” directives (reusing previously spawned threads)

thread_count 1 2 3 4

Two parallel for directives 0.770 0.453 0.358 0.305 time in seconds
Two for directives 0.732 0.376 0.294 0.239

= Reusing threads shows significant performance benefits for this case
study



Scheduling Loops

= Assume we want to parallelize the following loop with a (parallel) for
directive

sum = 0.0;
for (i = 0; 1 <=n; i++)
sum += f(i);

= Further assume that the time for evaluating f(i) increases linearly with
the size of argument i

double f(int 1) {
int J, start = ix(i+1)/2, finish = start + 1;
double return_.val = 0.0;

for (j = start; j <= finish; j++) {
return_val += sin(j);
}
return return_val;
}oo/x %/



Scheduling Loops (2)

= The performance of the parallelized loop will depend strongly on the
assignment

- block assignment leads to very imbalanced load, because thread 0 gets all the short function
evaluations

- ¢yclicassignment leads to a much more equally distributed load

m iterations (block assignment) | iterations (cyclic assignment)

0 0,1,23,..,(n/t)-1 0, n/t, 2n/t, ...
1 n/t, (n/t)+1, (n/t)+2, ... 1, (n/t)+1, (2n/t)+1, ...

t-1 (t-1)(n/t), (t-1)(n/t)+1, ..., n-1 t-1, (n/t)+t, (2n/t)+t, ..., n-1

40



OpenMP Schedule Clause

= The OpenMP schedule clause allows the programmer to configure how
loop iterations are assigned to threads

schedule(<type> [, <chunksize>])
= Type can be:

- static the iterations are assigned to the threads before the loop is executed (default)

- dynamicor guided the iterations are assigned to the threads while the loop is executing
- auto the compiler and/or the run-time system determine the schedule

- runtime the schedule is determined at run-time

= The chunksize is a positive integer
- only applicable to static, dynamic and quided



The Static Schedule Type

= The static scheduler
- assigns chunks of chunksize iterations to each thread in round robin order
- the assignment of chunks does not consider the actual workload load of the threads at runtime

= Example: 12 iterations and 3 threads

schedule(static,l) schedule(static,?2) schedule(static,4)
Thread 0: 0,3,6,9 Thread 0: 0,1,6,7 Thread 0: 0,1,2.3
Thread 1: 1,4,7,10 Thread 1: 2,3,8,9 Thread 1: 4,5,6,7
Thread 2: 2,5,8,11 Thread 2: 4,5,10,11 Thread 2: 8,9,10,11

cyclic distribution block-cyclic distribution block distribution

42



The Dynamic Schedule Type

= The iterations are also broken up into chunks of chunksize consecutive
iterations

- each thread executes a chunk
- when a thread finishes a chunk, it requests another one from the run-time system

= The chunksize can be omitted
- when it is omitted, a chunksize of 1 is used



The Guided Schedule Type

= Like for the dynamic schedule each thread executes a chunk
- when a thread finishes a chunk, it requests another one
- as chunks are completed, the size of the new chunks decreases
- goal: reduce work imbalance between threads

= If no chunksize is specified, the size of the chunks decreases down to 1

- if chunksize is specified, it decreases down to chunksize, with the exception that the very last
chunk can be smaller than chunksize

Thread Chunk Size of Chunk Remaining lterations

0 1-56000 5000 4999

1 5001-7500 2500 2499

1 7501-8750 1250 1249 Assignment of trapezoidal

1 8751-9375 625 624 . . .

0 9376.9687 12 1o rule iterations 1-9999 using
1 9688-9843 156 156 a guided schedule with two
0 9844-9921 78 78 threads.

1 9922-9960 39 39

1 9961-9980 20 19

1 9981-9990 10 9

1 9991-9995 5 4

0 9996-9997 2 2

1 9998-9998 1 1

0 9999-9999 1 0



The Runtime Schedule Type

= The system uses the environment variable OMP_SCHEDULE to determine
at run-time how to schedule the loop

= The OMP_SCHEDULE environment variable can take on any of the values
that can be used for a static, dynamic, or guided schedule



OpenMP “single” and “master” Directives

= The single directive specifies that the enclosed region is executed only by
a single thread of the team

- useful for calling library functions that are not thread-safe (e.qg. 1/0)

#pragma omp single [clause ...] newline
private (list) firstprivate (list) nowait

#pragma omp single
fprintf(output _file, “results”);

= The master directive specifies a region that is to be executed only by the
master thread

- it does not take any clauses
- there is no implicit barrier after a master directive

46



OpenMP “barrier” Directive

= The barrier directive synchronizes all treads in the team

- when reaching a barrier, a thread will wait at the point until all other threads have reached the
same barrier

- then, all threads resume executing the code following the barrier
- useful for calling library functions that are not thread-safe (e.g. 1/0)

#pragma omp barrier



Matrix-vector Multiplication

= Reminder: Matrix-vector multiplication example from Pthreads chapter
- code is much simpler then Pthreads version
- the problem with false-sharing for the 8 x 8,000,000 matrix still applies

# pragma omp parallel for num.threads(thread_.count) \
default(none) private(i, Jj) shared(A, x, y, m, n)
for (i = 0; 1 <my i) |
y[il]l = 0.
for (j = O; j < n; j++)
yOil += ALTI0J IxxLj];

~N ON BN

Matrix Dimension

8,000,000 x8 8000 x 8000 8 x 8,000,000
Run-times and efficiencies

of matrix-vector multiplication
(times are in seconds)

Threads Time Eff. Time Eff. Time Eff.

1 0.322 1.000 0.264 1.000 0.333 1.000
2 0.219 0.735 0.189 0.698 0.300 0.555
4 0.141 0.571 0.119 05585 0.303 0.275



Concluding Remarks

= OpenMP is a standard for programming shared-memory systems
- controlled with directives, runtime-library functions and environment variables
- OpenMP programs start multiple threads rather than multiple processes
- Many OpenMP directives can be modified by clauses

= A major problem in the development of shared memory programs is the
possibility of race conditions

- OpenMP provides several mechanisms for insuring mutual exclusion in critical sections

= OpenMP offers a variety of scheduling options.
- by default most systems use a block-partitioning of the iterations in a parallelized for loop

= In OpenMP the scope of a variable is the collection of threads to which the
variable is accessible.

= Areduction is a computation that repeatedly applies the same reduction
operator to a sequence of operands in order to get a single result
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