High-Performance
Computing
— Shared Memory Programming with OpenMP -

Christian Pless|
High-Performance IT Systems Group
Paderborn University

'L(‘ UNIVERSITAT PADERBORN
Die Universitdt der Informationsgesellschaft

Outline
= Basic OpenMP (covered by Pacheco book)

- concepts
- work sharing (loop parallelization)
- variable scoping

= More OpenMP (covered in future lecture)
- task parallelism
- SIMD parallelism (vectorization)
- task loops, do across loops

= Advanced OpenMP (optionally covered)
- target offloading to GPUs

OpenMP

= MP = multi-processing

OpenMP

= API for explicit multi-threaded, shared-memory parallel programming
with three components

- compiler directives
- runtime library functions
- environment variables

= Goals of OpenMP
- standardization and portability

= jointly defined by a group of major hard ware and software vendors
= widely supported on Unix/Linux and Windows
= APl available for (/C++ and Fortran

- ease of use

= 3 very small set of of directives is sufficient to cover many common cases
= supports incremental parallelization
= addresses coarse and fine-grained parallelism

OpenMP (2)

= History

in the early 1990’s HPC vendors have developed different OpenMP-like compiler extensions for
Fortran

mid 1990's begin of efforts for a common API for shared memory multi-threading

OpenMP 1.0 (1997/98) and OpenMP 2.0 (2000/2002) focus on parallelization of highly reqular
loops

OpenMP 3.0 (2008) introduces task-level parallelism

OpenMP 4.0 (2013) adds support target offloading for accelerators, SIMD (vectorization), user-
defined reductions, ...

OpenMP 4.5 (2015) introduces taskloops, do across loops, task priorities and improves target
offloading

Hello world for OpenMP

0 ON LNk

S S S S Y S Y
NN R W= OO

18
19
20
21
22
23

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

void Hello(void); /« Thread function x/

int main(int argc, chars argv[]) {

id

}

/% Get number of threads from command line %/
int thread_count = strtol(argv[1l], NULL, 10);

pragma omp parallel num_threads(thread_count)
Hello();

return 0O;
/x main x/

void Hello(void) {

}

int my_rank = omp_get_thread_num();
int thread_count = omp_get_num_threads();

OpenMP compiler directive

OpenMP runtime library
functions

printf("Hello from thread %d of %d\n", my_rank, thread_count);

/x Hello x/

Compiling and Executing OpenMP Programs

gcc -g -Wall

./omp _hello 4

-fopenmp

K. running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

possible

< outcomes

\

Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

-0 omp_hello omp hello . c

L compiling

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

OpenMP Compiler Directives (Pragmas)

= OpenMP makes extensive use of compiler directives, e.g.

#pragma omp parallel default(shared) private(a,b)

= Compiler directives provide special instructions to the compiler that are
not part of the (/C++ standard

- compilers that don't support the directives just ignore them

= All OpenMP directives start with #pragma omp
- directives can be followed by further clauses to modify and customize the basic operation

= Examples for purpose of compiler directives
- spawning a parallel region
- dividing blocks of code among threads
- distributing loop iterations between threads
- serializing sections of code
- synchronization of work among threads

OpenMP Runtime-Library Functions

= Runtime-library functions allow OpenMP programs to query and configure
the execution environment (OpenMP runtime system)

#include <omp.h>
int omp get num threads(void)

= Examples for purpose of runtime-library functions
- setting and querying the number of threads
querying a thread’s unique identifier (id), a thread’s ancestor identifier, team size
querying if in a parallel region and at what level
setting and querying nested parallelism
setting, initializing and terminating locks
querying wall clock time and resolution

OpenMP Environment Variables

= The OpenMP runtime system can be controlled by environment variables

export OMP_NUM_THREADS=8

= The properties affected by the environment variables can also be changed
by runtime-library functions

= Examples for purpose of OpenMP environment variables
- setting the number of threads
- specifying how loop iterations are divided
- binding threads to processors and cores
- enabling/disabling and controlling depth of nested parallelism
- enabling/disabling dynamic threads
- setting thread stack size
- setting threads wait policy

The OpenMP Directive “parallel”

= # pragma omp parallel
- most basic parallelization directive
- creates a number of threads that run the following structured block of code
- the number of threads that are used is determined by the run-time system

= Clauses are used to modify directives

- the num_threads clause can be (optionally) added to a parallel directive
- specifies number of threads that should execute the following block

pragma omp parallel num_threads (thread count)
= Notes

- the OpenMP standard doesn’t guarantee that this will actually start thread_count threads
- that number of threads a program can start may be limited by the system
- most current systems can start hundreds or even thousands of threads

- unless we're trying to start a lot of threads, we will almost always get the desired number of
threads.

The OpenMP Directive “parallel” (2)

= For completeness: the complete specification of parallel directive is

#pragma omp parallel [clause ...] newline
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured block

Fork-Join Model

= The basic parallelization model in OpenMP is fork-join parallelism

= When master reaches the parallel directive:
- a collection of threads is created (denoted as team)
- each child thread executes the code of the block that immediately follows the directive

- the end of a parallel region is an implicit barrier, all threads are joined and the master thread
continue

master thread

\

& " threads

* - - - - - S

threads threads

parallel region parallel region parallel region

12

Fork-Join Model (2)

= The actual number of threads in the team is determined by the following
factors (in order of precedence)
- evaluation of the if clause
- setting of the num__threads clause
- use of the omp_set_num_ threads() library function
- setting of the OMP_NUM_THREADS environment variable
- implementation on default or system configuration (typically number of cores)

= if clause

- the optional if clause can contain a boolean expression

- ateam s only created, if the clause evaluates to a non-zero value, otherwise the region is
executed serially by the master thread

Writing Backward-Compatible Code

= OpenMP is designed for backward compatibility, i.e. programs can be
compiled with a compiler without OpenMP support

- #pragma omp directives are ignored
- headers and library functions must be conditionally included

= Conditional compilation

- compilers with OpenMP support define the symbol _OPENMP that can be used in the
preprocessor

#ifdef OPENMP
include <omp.h>
#endif

ifdef _OPENMP

int my rank = omp_get thread num ();

int thread count = omp_get num_threads ();
else

int my_rank = 0;

int thread count = 1;
endif

The Trapezoidal Rule

l.
i

The Trapezoidal Rule

= Reminder: When discussing MPl we looked at numerical integration using

the trapezoidal rule

YA

1772,

~
| -

a p X

(a)

Y/

.

a

b X

(b)

Sum of trapezoid areas = h[f (xg)/2 +f(x1) +f(x2) + - +f(xn—1) +f(x)/2].

16

Serial Algorithm

/x Input: a, b, n x/
h = (b—a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; 1 <= n=1; i++) {
X_.1 = a + ixh;
approx += f(x_.i);

J

approx = hxapprox;

A First OpenMP Version

= We identify two types of tasks:

1. computation of the areas of individual trapezoids, and

2. adding the areas of trapezoids

= There is no communication among the tasks computing the areas, but
each of those tasks communicates with task to sum the area

- we assume that there are many more
trapezoids than cores

- hence, we aggregate tasks by assigning
a contiguous block of trapezoids to each
thread (and a single thread to each core)

Thread O

/

p.

vi

N

Thread 2

N 1 ﬁ I

|

/

Thread 1

Thread 3

b

A First OpenMP Version (2)

= When summing up the individual areas, we need to protect access to the
shared sum variable to prevent a race condition

unpredictable results when two (or more) threads
attempt to simultaneously execute:

global result += my result ;

= OpenMP provides the critical directive for protecting the block following
the directive with a mutex

- only one thread may enter the critical section at a time

pragma omp critical
global result += my result ;

19

A First OpenMP Version (3)

1 #include <stdio.h>

2 ffinclude <stdlib.h>

3 ffinclude <omp.h>

4

5 wvoid Trap(double a, double b, int n, doublex global_result_p);

6

7 int main(int argc, charx argv[]) {

8 double global_result = 0.0;

9 double a, b;

10 int n;

11 int thread_count;

12

13 thread_count = strtol(argv[1l], NULL, 10);

14 printf("Enter a, b, and n\n");

15 scanf("%1f %1f %d", &a, &b, &n);
16 # pragma omp parallel num_threads(thread_count) creates implicit tasks (later we will
17 Trap(a, b, n, &global_result); discuss how to create explicit tasks)
18

19 printf("With n = %d trapezoids, our estimate\n", n);

20 printf("of the integral from %f to %f = %.1l4e\n",

21 a, b, global_result);

22 return 0;

23} /x main %/

24

20

A First OpenMP Version (4)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

void Trap(double a, double b, int n, doublex global_result_p) {

ild

double h, x, my_result;

double Tocal_.a, local_b;

int 1, local.n;

int my_rank = omp_get_thread_num();

int thread_count = omp_get_num_threads();

h = (b—a)/n;
local_n = n/thread_count;
local_a = a + my_rankxlocal_nxh;
local_b = Tocal_.a + local_nxh;
my_result = (f(local.a) + f(local_b))/2.0;
for (i =1; 1 <= local.n=1; i++) {
x = local_.a + ixh;
my_result += f(x);

}

my_result = my_resultxh; we created a multi-threaded

pragma omp critical version with only a couple of
g1eha] resul tp = My-resul: directives and minimal code
/x Trap x/

changes

21

Scope of Variables in OpenMP

= OpenMP variable scoping rules define how variables can be assigned by threads
in a parallel block

a variable that can be accessed by all the threads in the team has shared scope
a variable that can only be accessed by a single thread has private scope
variables declared

= before a parallel block have a default scope of shared
= within the block have default scope of private

= Clauses in the OpenMP parallel directive can modify the scoping for variables

private: new, uninitialized private variable of same type is created for each thread; the variable is
created on the stack, i.e. not available when the thread enters the region the next time

shared: variable is shared among all treads in the team
default: allows to specify a default scope for all variables, “none” requires explicit scope decls.
firstprivate: like private, but with automatic initialization

lastprivate: like private but copies variable value at last loop iteration or section back to scope of
main thread

copyin: for threadprivate variables (need to be declared before); works like firstprivate but the
variable is allocated on the heap, i.e. the value persists between leaving and re-entering the parallel
region

The Reduction Clause

= We wanted to avoid the use of global variables in the Trapezoid Rule
application
- hence we need to pass an additional shared pointer (global_result_p) to the Trap function
- this pointer is used to update the global sum (protected by critical section)

void Trap(double a, double b, int n, doublex global_result_p);

= A more elegant solution would look like this
double Trap(double a, double b, int n);

= ... and would be called like this

global_result = Trap(a, b, n);

= ... but now we don‘t have a critical section anymore

The Reduction Clause (2)

= If we use the following workaround, we force the threads to execute
sequentially

global_result = 0.0;
pragma omp parallel num_threads(thread_count)

{

i pragma omp critical
global_result += Local_trap(double a, double b, int n);
}

= We can avoid this problem by declaring a private variable inside the
parallel block and moving the critical section after the function call

global_result = 0.0;
pragma omp parallel num.threads(thread_count)

{
double my_result = 0.0; /% private x/

my_result += Local_trap(double a, double b, int n);

i pragma omp critical
global_result += my_result;

24

OpenMP Reductions

= OpenMP reductions solve the problem in a more elegant and expressive
way

- areduction is a computation that repeatedly applies the same reduction operator to a
sequence of operands in order to get a single result

- the reduction operator is a binary operation (such as addition or multiplication)
- theresult of the reduction is stored in the reduction variable

= To use a reduction, the parallel directive can be augmented with a
reduction clause

reduction(<operator>: <variable Tist>)

supported operators: +, %, -, &, |, *, &&,

global_result = 0.0;
pragma omp parallel num_threads(thread_count) \
reduction(+: global_result)
global_result += Local_trap(double a, double b, int n);

The “Parallel For” Directive

= The #pragma omp parallel for directive forks a team of threads to execute
the block

- the block must be a for loop
- the directive parallelizes the for loop by dividing the iterations of the loop among the threads

h = (b-a)/n; h = (b—-a)/n;

approx = (f(a) + f(b))/2.0; approx = (f(a) + f(b))/2.0;

for (i = 1; i <= n-1; i++) ——> # pragma omp parallel for num_threads(thread_count) \
approx += f(a + ixh); reduction(+: approx)

for (i = 1; 1 <= n=1; i++)
approx += f(a + ixh);
approx = hxapprox;

approx = hxapprox;

parallel for directive applied to a for loop

26

Restrictions for Parallelizable For-Statements

= The “Parallel for” directive works only for loops with simple control
structure

- loop iteration variable must be an integer
- the expressions start, end, and incr must not change during the loop and must have a

compatible type
- the loop variable index can only be modified by the “increment expression” in the for
statement
(index++ \
++index
index < end index- -
index <= end --index
for | index = start ; 1index >= end ; 1index += incr
index > end index -= incr
index = index + incr
index = incr + index
K index = index - 1ncr)

= Program correctness must not depend upon which thread executes a
particular iteration

Data dependencies

fib[@] = fib[1] = 1;
for (i=2; i<n; i++)
fib[i] = fib[i-1] + fib[i-2];

l note 2 threads

fib[@] = fib[1] = 1; /

#pragma omp parallel for num_threads(2)
for(i=2; i<n; i++)
fib[i] = fib[i-1] + fib[i-2];

l but sometimes
11235813213455 we get this
v

this is correct

1123580000

28

What happened?

= OpenMP compilers don’t check for dependences among iterations in a loop
that’s being parallelized with a parallel for directive

- dependencies in loops that cause the results of one or more loop iterations depend on other
iterations are denoted as loop carried dependencies

- in general, loops with loop carried dependencies cannot be correctly parallelized by OpenMP

= Programmers need check dependencies of loops themselves

Estimating m

= Example from previous lectures

1 1 1 X (=D
—4|l—-4-———+..- | =4 .
g [375777] 2.

double factor = 1.0;

double sum = 0.0;

for (k = 0; k < n; k++) {
sum += factor/(2xk+1);
factor = —factor;

Can this loop be
parallelized safely?

Or is there a loop carried
dependency?

}

pi_approx = 4.0xsum;

~N O AW N

Estimating m: Solution #1

thereis aloop carried dependency

double factor= 1.0;

double sum = 0)0;

1t pragma omp pardllel for num_threads(thread_count) \
reduction(+/:sum)

for (k = 0; < n; kt++) |

sum += factor/(2xk+1);

factor = —factor;

}

pi_approx = 4.0xsum;

31

Estimating m: Solution #2

= Remove loop carried dependency for factor

= Compute factor directly in each thread

= Potential for a difficult to find bug

- by default all variables are shared among threads!

- hence, the writes to factor in each thread are seen by the other threads in the team, which
introduces data races

- we need to explicitly declare factor as private to prevent this problem

[E—

SO O 01N Lt AW

il

double sum = 0.0;

pragma omp parallel for num_threads(thread_count) \
reduction(+:sum) private(factor)

for (k = 0; k < n; k++) {

if (k%2 2 ==20)
factor = 1.0;
else
factor = —=1.0;

sum += factor/(2xk+1): ensures factor has

} private scope.

32

The default Clause

= Introducing data races by accident is a common problem

= One common technique to prevent this problem is using the OpenMP’s
default clause with option none

#omp parallel for .. default (none)

= Explicitly choosing a scope of none (instead of relying on the default

shared) requires the programmer to explicitly specify the scope of each
variable in a block

- this rule is enforced by the compiler

#omp parallel for default (none) #omp parallel for default (none)\
for(i=0; i<1024; i++) { private(i,a)
a[d] = a[i] + 1; for(i=0; i<1024; i++) {

} \ a[i] = a[i] + 1;
}

error: no scope declared

Estimating m: Solution #3

double sum = 0.0;

i pragma omp parallel for num_.threads(thread_.count) \
default(none) reduction(+:sum) private(k, factor) \
shared(n)

for (k = 0; k < n; k++t) {
if (k% 2 ==20)
factor = 1.0;
else
factor = —-1.0;
sum += factor/(2xk+1);

More About Loops in OpenMP: Sorting

= Reminder: Odd-Even Transposition Sort (discussed in MPI lecture)

Subscript in Array
for (phase = 0; phase < n; phaset+)

Phase O 1 2
if (phase %2 2 == 0)

for (i =1; 1 <n; 1 +=2) 0 29; 29

if (ali—=11 > alil) Swap(&al[i—17,&al[i]); 1 7 9 o 6

else 7 6 9
for (i =1; i <n=1; i +=2) ©L s . -

if (ali] > ali+11) Swap(&al[il, &al[i+11); 3 6 7 o 8

6 7 8

= Does this algorithm have loop carried dependencies?

- outer loop has loop carried dependencies, result depends on execution order of iterations

- inner loops does not have loop carried dependencies, all comparison and swaps can be execute
in parallel or in arbitrary order = parallel for directive for inner loops should work fine

= Potential problems

- all operations in inner loop must complete before next iteration of outer loop is started -
guaranteed by implicit barrier after parallel for

- overhead of spawning and joining threads in inner loop over and over again may be too high
—> we can keep the threads spawned, see Solution #2

© ©O© © 00 oo™ (78]

OpenMP Odd-Even Sort: Solution #1

1 for (phase = 0; phase < n; phase++) {

2 if (phase % 2 == 0)

3 i pragma omp parallel for num_threads(thread_count) \
4 default(none) shared(a, n) private(i, tmp)
5 for (i =1; 1 < n; i+=2) {

6 if (ali=1] > alil) {

7 tmp = ali—-11];

8 ali—=1] = alil;

9 ali] = tmp;

10 }

11 }

12 else

13 4 pragma omp parallel for num_threads(thread_count) \
14 default(none) shared(a, n) private(i, tmp)
15 for (i =1; 1 < n=1; 1 += 2) {

16 if (alil > ali+1]) {

17 tmp = ali+1];

18 ali+l] = ali];

19 ali] = tmp;

20 }

21 }

22 }

spawning and joining threads of the inner loop in each phase again

36

OpenMP Odd-Even Sort: Solution #2

1 # pragma omp parallel num_threads(thread_count) \ spawn threads once
2 default(none) shared(a, n) private(i, tmp, phase) with“parallel” directive
3 for (phase = 0; phase < n; phase++) {

4 if (phase % 2 == 0) . L.
5 pragma omp for reuse threads with “for” directive
6 for (i =1; 1 <n; i+=2) { instead of “parallel for”

7 if (ali—=11 > alil) {

8 tmp = ali—-1];

9 ali—=11 = ali]l;

10 alil = tmp;

11)

12)

13 else

14 ¢ pragma omp for reuse threads with "for” directive
15 for (1 =1; 7 < n=l; 7 +=2) { instead of “parallel for”

16 if (alil > ali+l]) {

17 tmp = ali+1l];

18 ali+l] = alil;

19 alil = tmp;

20 }

21)

37

Odd-Even Sort Performance Evaluation

= Compare two solutions
- two “parallel for” directives (spawning and joining threads in each phase)
- two “for” directives (reusing previously spawned threads)

thread_count 1 2 3 4

Two parallel for directives 0.770 0.453 0.358 0.305 time in seconds
Two for directives 0.732 0.376 0.294 0.239

= Reusing threads shows significant performance benefits for this case
study

Scheduling Loops

= Assume we want to parallelize the following loop with a (parallel) for
directive

sum = 0.0;
for (i = 0; 1 <=n; i++)
sum += f(i);

= Further assume that the time for evaluating f(i) increases linearly with
the size of argument i

double f(int 1) {
int J, start = ix(i+1)/2, finish = start + 1;
double return_.val = 0.0;

for (j = start; j <= finish; j++) {
return_val += sin(j);
}
return return_val;
}oo/x %/

Scheduling Loops (2)

= The performance of the parallelized loop will depend strongly on the
assignment

- block assignment leads to very imbalanced load, because thread 0 gets all the short function
evaluations

- ¢yclicassignment leads to a much more equally distributed load

m iterations (block assignment) | iterations (cyclic assignment)

0 0,1,23,..,(n/t)-1 0, n/t, 2n/t, ...
1 n/t, (n/t)+1, (n/t)+2, ... 1, (n/t)+1, (2n/t)+1, ...

t-1 (t-1)(n/t), (t-1)(n/t)+1, ..., n-1 t-1, (n/t)+t, (2n/t)+t, ..., n-1

40

OpenMP Schedule Clause

= The OpenMP schedule clause allows the programmer to configure how
loop iterations are assigned to threads

schedule(<type> [, <chunksize>])
= Type can be:

- static the iterations are assigned to the threads before the loop is executed (default)

- dynamicor guided the iterations are assigned to the threads while the loop is executing
- auto the compiler and/or the run-time system determine the schedule

- runtime the schedule is determined at run-time

= The chunksize is a positive integer
- only applicable to static, dynamic and quided

The Static Schedule Type

= The static scheduler
- assigns chunks of chunksize iterations to each thread in round robin order
- the assignment of chunks does not consider the actual workload load of the threads at runtime

= Example: 12 iterations and 3 threads

schedule(static,l) schedule(static,?2) schedule(static,4)
Thread 0: 0,3,6,9 Thread 0: 0,1,6,7 Thread 0: 0,1,2.3
Thread 1: 1,4,7,10 Thread 1: 2,3,8,9 Thread 1: 4,5,6,7
Thread 2: 2,5,8,11 Thread 2: 4,5,10,11 Thread 2: 8,9,10,11

cyclic distribution block-cyclic distribution block distribution

42

The Dynamic Schedule Type

= The iterations are also broken up into chunks of chunksize consecutive
iterations

- each thread executes a chunk
- when a thread finishes a chunk, it requests another one from the run-time system

= The chunksize can be omitted
- when it is omitted, a chunksize of 1 is used

The Guided Schedule Type

= Like for the dynamic schedule each thread executes a chunk
- when a thread finishes a chunk, it requests another one
- as chunks are completed, the size of the new chunks decreases
- goal: reduce work imbalance between threads

= If no chunksize is specified, the size of the chunks decreases down to 1

- if chunksize is specified, it decreases down to chunksize, with the exception that the very last
chunk can be smaller than chunksize

Thread Chunk Size of Chunk Remaining lterations

0 1-56000 5000 4999

1 5001-7500 2500 2499

1 7501-8750 1250 1249 Assignment of trapezoidal

1 8751-9375 625 624 . . .

0 9376.9687 12 1o rule iterations 1-9999 using
1 9688-9843 156 156 a guided schedule with two
0 9844-9921 78 78 threads.

1 9922-9960 39 39

1 9961-9980 20 19

1 9981-9990 10 9

1 9991-9995 5 4

0 9996-9997 2 2

1 9998-9998 1 1

0 9999-9999 1 0

The Runtime Schedule Type

= The system uses the environment variable OMP_SCHEDULE to determine
at run-time how to schedule the loop

= The OMP_SCHEDULE environment variable can take on any of the values
that can be used for a static, dynamic, or guided schedule

OpenMP “single” and “master” Directives

= The single directive specifies that the enclosed region is executed only by
a single thread of the team

- useful for calling library functions that are not thread-safe (e.qg. 1/0)

#pragma omp single [clause ...] newline
private (list) firstprivate (list) nowait

#pragma omp single
fprintf(output _file, “results”);

= The master directive specifies a region that is to be executed only by the
master thread

- it does not take any clauses
- there is no implicit barrier after a master directive

46

OpenMP “barrier” Directive

= The barrier directive synchronizes all treads in the team

- when reaching a barrier, a thread will wait at the point until all other threads have reached the
same barrier

- then, all threads resume executing the code following the barrier
- useful for calling library functions that are not thread-safe (e.g. 1/0)

#pragma omp barrier

Matrix-vector Multiplication

= Reminder: Matrix-vector multiplication example from Pthreads chapter
- code is much simpler then Pthreads version
- the problem with false-sharing for the 8 x 8,000,000 matrix still applies

pragma omp parallel for num.threads(thread_.count) \
default(none) private(i, Jj) shared(A, x, y, m, n)
for (i = 0; 1 <my i) |
y[il]l = 0.
for (j = O; j < n; j++)
yOil += ALTI0J IxxLj];

~N ON BN

Matrix Dimension

8,000,000 x8 8000 x 8000 8 x 8,000,000
Run-times and efficiencies

of matrix-vector multiplication
(times are in seconds)

Threads Time Eff. Time Eff. Time Eff.

1 0.322 1.000 0.264 1.000 0.333 1.000
2 0.219 0.735 0.189 0.698 0.300 0.555
4 0.141 0.571 0.119 05585 0.303 0.275

Concluding Remarks

= OpenMP is a standard for programming shared-memory systems
- controlled with directives, runtime-library functions and environment variables
- OpenMP programs start multiple threads rather than multiple processes
- Many OpenMP directives can be modified by clauses

= A major problem in the development of shared memory programs is the
possibility of race conditions

- OpenMP provides several mechanisms for insuring mutual exclusion in critical sections

= OpenMP offers a variety of scheduling options.
- by default most systems use a block-partitioning of the iterations in a parallelized for loop

= In OpenMP the scope of a variable is the collection of threads to which the
variable is accessible.

= Areduction is a computation that repeatedly applies the same reduction
operator to a sequence of operands in order to get a single result

Acknowledgements

= PeterS. Pacheco / Elsevier
- for providing the lecture slides on which this presentation is based

= OpenMP tutorial published by Lawrence Livermore National Lab
- https://computing.linl.gov/tutorials/openMP/

Change log

= 1.1.1(2017-11-27)
- update for winter term 2017/18
- update outline slide 2
- fix terminology and typos on slide 12, 14, 18, 19, 25, 28

= 1.1.0 (2017-07-13)
- fix typo on slide 44

= 1.0.1(2017-01-30)
- fix typo on slide 30, 48

= 1.0.0 (2017-01-19)

- initial version of slides

