
version 1.1.2 2017-11-27

High-Performance
Computing

– Shared Memory Programming with OpenMP –

Christian Plessl
High-Performance IT Systems Group

Paderborn University

Outline
▪ Basic OpenMP (covered by Pacheco book)

- concepts
- work sharing (loop parallelization)
- variable scoping

▪ More OpenMP (covered in future lecture)
- task parallelism
- SIMD parallelism (vectorization)
- task loops, do across loops

▪ Advanced OpenMP (optionally covered)
- target offloading to GPUs

2

OpenMP
▪ MP = multi-processing
▪ API for explicit multi-threaded, shared-memory parallel programming

with three components
- compiler directives
- runtime library functions
- environment variables

▪ Goals of OpenMP
- standardization and portability

§ jointly defined by a group of major hard ware and software vendors
§ widely supported on Unix/Linux and Windows
§ API available for C/C++ and Fortran

- ease of use
§ a very small set of of directives is sufficient to cover many common cases
§ supports incremental parallelization
§ addresses coarse and fine-grained parallelism

3

OpenMP (2)
▪ History

- in the early 1990’s HPC vendors have developed different OpenMP-like compiler extensions for
Fortran

- mid 1990’s begin of efforts for a common API for shared memory multi-threading
- OpenMP 1.0 (1997/98) and OpenMP 2.0 (2000/2002) focus on parallelization of highly regular

loops
- OpenMP 3.0 (2008) introduces task-level parallelism
- OpenMP 4.0 (2013) adds support target offloading for accelerators, SIMD (vectorization), user-

defined reductions, …
- OpenMP 4.5 (2015) introduces taskloops, do across loops, task priorities and improves target

offloading

4

Hello world for OpenMP

5.1 Getting Started 211

code. Pragmas (like all preprocessor directives) are, by default, one line in length, so
if a pragma won’t fit on a single line, the newline needs to be “escaped”—that is,
preceded by a backslash \. The details of what follows the #pragma depend entirely
on which extensions are being used.

Let’s take a look at a very simple example, a “hello, world” program that uses
OpenMP. See Program 5.1.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 void Hello(void); /⇤ Thread function ⇤/
6
7 int main(int argc, char⇤ argv[]) {
8 /⇤ Get number of threads from command line ⇤/
9 int thread count = strtol(argv[1], NULL, 10);

10
11 # pragma omp parallel num threads(thread count)
12 Hello();
13
14 return 0;
15 } /⇤ main ⇤/
16
17 void Hello(void) {
18 int my rank = omp get thread num();
19 int thread count = omp get num threads();
20
21 printf("Hello from thread %d of %d\n", my rank, thread count);
22
23 } /⇤ Hello ⇤/

Program 5.1: A “hello,world” program that uses OpenMP

5.1.1 Compiling and running OpenMP programs
To compile this with gcc we need to include the �fopenmp option:1

$ gcc �g �Wall �fopenmp �o omp hello omp hello.c

To run the program, we specify the number of threads on the command line. For
example, we might run the program with four threads and type

$./omp hello 4

1Some older versions of gcc may not include OpenMP support. Other compilers will, in general, use
different command-line options to specify that the source is an OpenMP program. For details on our
assumptions about compiler use, see Section 2.9.

OpenMP compiler directive

OpenMP runtime library
functions

5

gcc −g −Wall −fopenmp −o omp_hello omp_hello . c

./omp_hello 4

compiling

running with 4 threads

Hello from thread 0 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 3 of 4

Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4
Hello from thread 3 of 4

Hello from thread 3 of 4
Hello from thread 1 of 4
Hello from thread 2 of 4
Hello from thread 0 of 4

possible
outcomes

Compiling and Executing OpenMP Programs

6

OpenMP Compiler Directives (Pragmas)
▪ OpenMP makes extensive use of compiler directives, e.g.

▪ Compiler directives provide special instructions to the compiler that are
not part of the C/C++ standard
- compilers that don’t support the directives just ignore them

▪ All OpenMP directives start with #pragma omp
- directives can be followed by further clauses to modify and customize the basic operation

▪ Examples for purpose of compiler directives
- spawning a parallel region
- dividing blocks of code among threads
- distributing loop iterations between threads
- serializing sections of code
- synchronization of work among threads

#pragma omp parallel default(shared) private(a,b)

7

OpenMP Runtime-Library Functions
▪ Runtime-library functions allow OpenMP programs to query and configure

the execution environment (OpenMP runtime system)

▪ Examples for purpose of runtime-library functions
- setting and querying the number of threads
- querying a thread’s unique identifier (id), a thread’s ancestor identifier, team size
- querying if in a parallel region and at what level
- setting and querying nested parallelism
- setting, initializing and terminating locks
- querying wall clock time and resolution

#include <omp.h>
int omp_get_num_threads(void)

8

OpenMP Environment Variables
▪ The OpenMP runtime system can be controlled by environment variables

▪ The properties affected by the environment variables can also be changed
by runtime-library functions
▪ Examples for purpose of OpenMP environment variables

- setting the number of threads
- specifying how loop iterations are divided
- binding threads to processors and cores
- enabling/disabling and controlling depth of nested parallelism
- enabling/disabling dynamic threads
- setting thread stack size
- setting threads wait policy

export OMP_NUM_THREADS=8

9

The OpenMP Directive ”parallel”
▪ # pragma omp parallel

- most basic parallelization directive
- creates a number of threads that run the following structured block of code
- the number of threads that are used is determined by the run-time system

▪ Clauses are used to modify directives
- the num_threads clause can be (optionally) added to a parallel directive
- specifies number of threads that should execute the following block

▪ Notes
- the OpenMP standard doesn’t guarantee that this will actually start thread_count threads
- that number of threads a program can start may be limited by the system
- most current systems can start hundreds or even thousands of threads
- unless we’re trying to start a lot of threads, we will almost always get the desired number of

threads.

pragma omp parallel num_threads (thread_count)

10

The OpenMP Directive ”parallel” (2)
▪ For completeness: the complete specification of parallel directive is

#pragma omp parallel [clause ...] newline
if (scalar_expression)
private (list)
shared (list)
default (shared | none)
firstprivate (list)
reduction (operator: list)
copyin (list)
num_threads (integer-expression)

structured_block

11

Fork-Join Model
▪ The basic parallelization model in OpenMP is fork-join parallelism
▪ When master reaches the parallel directive:

- a collection of threads is created (denoted as team)
- each child thread executes the code of the block that immediately follows the directive
- the end of a parallel region is an implicit barrier, all threads are joined and the master thread

continue

12

Fork-Join Model (2)
▪ The actual number of threads in the team is determined by the following

factors (in order of precedence)
- evaluation of the if clause
- setting of the num_threads clause
- use of the omp_set_num_threads() library function
- setting of the OMP_NUM_THREADS environment variable
- implementation on default or system configuration (typically number of cores)

▪ if clause
- the optional if clause can contain a boolean expression
- a team is only created, if the clause evaluates to a non-zero value, otherwise the region is

executed serially by the master thread

13

Writing Backward-Compatible Code
▪ OpenMP is designed for backward compatibility, i.e. programs can be

compiled with a compiler without OpenMP support
- #pragma omp directives are ignored
- headers and library functions must be conditionally included

▪ Conditional compilation
- compilers with OpenMP support define the symbol _OPENMP that can be used in the

preprocessor

#ifdef _OPENMP
include <omp.h>
#endif

ifdef _OPENMP
int my_rank = omp_get_thread_num ();
int thread_count = omp_get_num_threads ();

else
int my_rank = 0;
int thread_count = 1;

endif 14

The Trapezoidal Rule

15

The Trapezoidal Rule
▪ Reminder: When discussing MPI we looked at numerical integration using

the trapezoidal rule

y

a b x a b

y

x

(a) (b)

3.2 The Trapezoidal Rule in MPI 95

y

a b x a b

y

x

(a) (b)

FIGURE 3.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

Since we chose the n subintervals so that they would all have the same length, we
also know that if the vertical lines bounding the region are x = a and x = b, then

h = b � a

n
.

Thus, if we call the leftmost endpoint x0, and the rightmost endpoint xn, we have

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn�1 = a + (n � 1)h, xn = b,

and the sum of the areas of the trapezoids—our approximation to the total area—is

Sum of trapezoid areas = h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, pseudo-code for a serial program might look something like this:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

y

f (xi)
y= f (x)

f (xi+1)

x

h

xi xi+1

FIGURE 3.4

One trapezoid

16

Serial Algorithm

216 CHAPTER 5 Shared-Memory Programming with OpenMP

The book’s website contains the source for a version of this program that makes
these checks. In order to make our code as clear as possible, we’ll usually show little,
if any, error checking in the code displayed in the text.

5.2 THE TRAPEZOIDAL RULE
Let’s take a look at a somewhat more useful (and more complicated) example: the
trapezoidal rule for estimating the area under a curve. Recall from Section 3.2 that
if y = f (x) is a reasonably nice function, and a < b are real numbers, then we can
estimate the area between the graph of f (x), the vertical lines x = a and x = b, and
the x-axis by dividing the interval [a,b] into n subintervals and approximating the
area over each subinterval by the area of a trapezoid. See Figure 5.3 for an example.

Also recall that if each subinterval has the same length and if we define h = (b �
a)/n, xi = a + ih, i = 0,1, . . . ,n, then our approximation will be

h[f (x0)/2 + f (x1) + f (x2) + ·· · + f (xn�1) + f (xn)/2].

Thus, we can implement a serial algorithm using the following code:

/⇤ Input: a, b, n ⇤/
h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++) {

x i = a + i⇤h;
approx += f(x i);

}
approx = h⇤approx;

See Section 3.2.1 for details.

5.2.1 A first OpenMP version
Recall that we applied Foster’s parallel program design methodology to the
trapezoidal rule as described in the following list (see Section 3.2.2).

y

a b x a b

y

x

(a) (b)

FIGURE 5.3

The trapezoidal rule: (a) area to be estimated and (b) approximate area using trapezoids

17

A First OpenMP Version
▪ We identify two types of tasks:

1. computation of the areas of individual trapezoids, and
2. adding the areas of trapezoids

▪ There is no communication among the tasks computing the areas, but
each of those tasks communicates with task to sum the area
- we assume that there are many more

trapezoids than cores
- hence, we aggregate tasks by assigning

a contiguous block of trapezoids to each
thread (and a single thread to each core)

y
Thread 0

Thread 2

a

Thread 1 Thread 3

b x

18

A First OpenMP Version (2)
▪ When summing up the individual areas, we need to protect access to the

shared sum variable to prevent a race condition

▪ OpenMP provides the critical directive for protecting the block following
the directive with a mutex
- only one thread may enter the critical section at a time

global_result += my_result ;

unpredictable results when two (or more) threads
attempt to simultaneously execute:

pragma omp critical
global_result += my_result ;

19

A First OpenMP Version (3)
5.2 The Trapezoidal Rule 219

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 void Trap(double a, double b, int n, double⇤ global result p);
6
7 int main(int argc, char⇤ argv[]) {
8 double global result = 0.0;
9 double a, b;

10 int n;
11 int thread count;
12
13 thread count = strtol(argv[1], NULL, 10);
14 printf("Enter a, b, and n\n");
15 scanf("%lf %lf %d", &a, &b, &n);
16 # pragma omp parallel num threads(thread count)
17 Trap(a, b, n, &global result);
18
19 printf("With n = %d trapezoids, our estimate\n", n);
20 printf("of the integral from %f to %f = %.14e\n",
21 a, b, global result);
22 return 0;
23 } /⇤ main ⇤/
24
25 void Trap(double a, double b, int n, double⇤ global result p) {
26 double h, x, my result;
27 double local a, local b;
28 int i, local n;
29 int my rank = omp get thread num();
30 int thread count = omp get num threads();
31
32 h = (b�a)/n;
33 local n = n/thread count;
34 local a = a + my rank⇤local n⇤h;
35 local b = local a + local n⇤h;
36 my result = (f(local a) + f(local b))/2.0;
37 for (i = 1; i <= local n�1; i++) {
38 x = local a + i⇤h;
39 my result += f(x);
40 }
41 my result = my result⇤h;
42
43 # pragma omp critical
44 ⇤global result p += my result;
45 } /⇤ Trap ⇤/

Program 5.2: First OpenMP trapezoidal rule program

20

creates implicit tasks (later we will
discuss how to create explicit tasks)

A First OpenMP Version (4)

we created a multi-threaded
version with only a couple of
directives and minimal code
changes

5.2 The Trapezoidal Rule 219

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <omp.h>
4
5 void Trap(double a, double b, int n, double⇤ global result p);
6
7 int main(int argc, char⇤ argv[]) {
8 double global result = 0.0;
9 double a, b;

10 int n;
11 int thread count;
12
13 thread count = strtol(argv[1], NULL, 10);
14 printf("Enter a, b, and n\n");
15 scanf("%lf %lf %d", &a, &b, &n);
16 # pragma omp parallel num threads(thread count)
17 Trap(a, b, n, &global result);
18
19 printf("With n = %d trapezoids, our estimate\n", n);
20 printf("of the integral from %f to %f = %.14e\n",
21 a, b, global result);
22 return 0;
23 } /⇤ main ⇤/
24
25 void Trap(double a, double b, int n, double⇤ global result p) {
26 double h, x, my result;
27 double local a, local b;
28 int i, local n;
29 int my rank = omp get thread num();
30 int thread count = omp get num threads();
31
32 h = (b�a)/n;
33 local n = n/thread count;
34 local a = a + my rank⇤local n⇤h;
35 local b = local a + local n⇤h;
36 my result = (f(local a) + f(local b))/2.0;
37 for (i = 1; i <= local n�1; i++) {
38 x = local a + i⇤h;
39 my result += f(x);
40 }
41 my result = my result⇤h;
42
43 # pragma omp critical
44 ⇤global result p += my result;
45 } /⇤ Trap ⇤/

Program 5.2: First OpenMP trapezoidal rule program
21

Scope of Variables in OpenMP
▪ OpenMP variable scoping rules define how variables can be assigned by threads

in a parallel block
- a variable that can be accessed by all the threads in the team has shared scope
- a variable that can only be accessed by a single thread has private scope
- variables declared

§ before a parallel block have a default scope of shared
§ within the block have default scope of private

▪ Clauses in the OpenMP parallel directive can modify the scoping for variables
- private: new, uninitialized private variable of same type is created for each thread; the variable is

created on the stack, i.e. not available when the thread enters the region the next time
- shared: variable is shared among all treads in the team
- default: allows to specify a default scope for all variables, ”none” requires explicit scope decls.
- firstprivate: like private, but with automatic initialization
- lastprivate: like private but copies variable value at last loop iteration or section back to scope of

main thread
- copyin: for threadprivate variables (need to be declared before); works like firstprivate but the

variable is allocated on the heap, i.e. the value persists between leaving and re-entering the parallel
region 22

The Reduction Clause
▪ We wanted to avoid the use of global variables in the Trapezoid Rule

application
- hence we need to pass an additional shared pointer (global_result_p) to the Trap function
- this pointer is used to update the global sum (protected by critical section)

▪ A more elegant solution would look like this

▪ … and would be called like this

▪ ... but now we don‘t have a critical section anymore

5.4 The Reduction Clause 221

in which the variable is declared can access the variable. In OpenMP, the scope of a
variable refers to the set of threads that can access the variable in a parallel block.
A variable that can be accessed by all the threads in the team has shared scope, while
a variable that can only be accessed by a single thread has private scope.

In the “hello, world” program, the variables used by each thread (my rank and
thread count) were declared in the Hello function, which is called inside the
parallel block. Consequently, the variables used by each thread are allocated from
the thread’s (private) stack, and hence all of the variables have private scope. This
is almost the case in the trapezoidal rule program; since the parallel block is just
a function call, all of the variables used by each thread in the Trap function are
allocated from the thread’s stack.

However, the variables that are declared in the main function (a, b, n,
global result, and thread count) are all accessible to all the threads in the team
started by the parallel directive. Hence, the default scope for variables declared
before a parallel block is shared. In fact, we’ve made implicit use of this: each
thread in the team gets the values of a, b, and n from the call to Trap. Since this call
takes place in the parallel block, it’s essential that each thread has access to a,b,
and n when their values are copied into the corresponding formal arguments.

Furthermore, in the Trap function, although global result p is a private vari-
able, it refers to the variable global result which was declared in main before the
parallel directive, and the value of global result is used to store the result that’s
printed out after the parallel block. So in the code

⇤global result p += my result;

it’s essential that ⇤global result p have shared scope. If it were private to each
thread, there would be no need for the critical directive. Furthermore, if it were
private, we would have a hard time determining the value of global result in main
after completion of the parallel block.

To summarize, then, variables that have been declared before a parallel direc-
tive have shared scope among the threads in the team, while variables declared in the
block (e.g., local variables in functions) have private scope. Furthermore, the value
of a shared variable at the beginning of the parallel block is the same as the
value before the block, and, after completion of the parallel block, the value of
the variable is the value at the end of the block.

We’ll shortly see that the default scope of a variable can change with other
directives, and that OpenMP provides clauses to modify the default scope.

5.4 THE REDUCTION CLAUSE
If we developed a serial implementation of the trapezoidal rule, we’d probably use a
slightly different function prototype. Rather than

void Trap(double a, double b, int n, double⇤ global result p);

222 CHAPTER 5 Shared-Memory Programming with OpenMP

we would probably define

double Trap(double a, double b, int n);

and our function call would be

global result = Trap(a, b, n);

This is somewhat easier to understand and probably more attractive to all but the
most fanatical believers in pointers.

We resorted to the pointer version because we needed to add each thread’s local
calculation to get global result. However, we might prefer the following function
prototype:

double Local trap(double a, double b, int n);

With this prototype, the body of Local trap would be the same as the Trap function
in Program 5.2, except that there would be no critical section. Rather, each thread
would return its part of the calculation, the final value of its my result variable. If
we made this change, we might try modifying our parallel block so that it looks
like this:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
pragma omp critical

global result += Local trap(double a, double b, int n);
}

Can you see a problem with this code? It should give the correct result. However,
since we’ve specified that the critical section is

global result += Local trap(double a, double b, int n);

the call to Local trap can only be executed by one thread at a time, and, effectively,
we’re forcing the threads to execute the trapezoidal rule sequentially. If we check the
run-time of this version, it may actually be slower with multiple threads than one
thread (see Exercise 5.3).

We can avoid this problem by declaring a private variable inside the parallel
block and moving the critical section after the function call:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
double my result = 0.0; /⇤ private ⇤/
my result += Local trap(double a, double b, int n);

pragma omp critical
global result += my result;

}

Now the call to Local trap is outside the critical section, and the threads can exe-
cute their calls simultaneously. Furthermore, since my result is declared in the

222 CHAPTER 5 Shared-Memory Programming with OpenMP

we would probably define

double Trap(double a, double b, int n);

and our function call would be

global result = Trap(a, b, n);

This is somewhat easier to understand and probably more attractive to all but the
most fanatical believers in pointers.

We resorted to the pointer version because we needed to add each thread’s local
calculation to get global result. However, we might prefer the following function
prototype:

double Local trap(double a, double b, int n);

With this prototype, the body of Local trap would be the same as the Trap function
in Program 5.2, except that there would be no critical section. Rather, each thread
would return its part of the calculation, the final value of its my result variable. If
we made this change, we might try modifying our parallel block so that it looks
like this:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
pragma omp critical

global result += Local trap(double a, double b, int n);
}

Can you see a problem with this code? It should give the correct result. However,
since we’ve specified that the critical section is

global result += Local trap(double a, double b, int n);

the call to Local trap can only be executed by one thread at a time, and, effectively,
we’re forcing the threads to execute the trapezoidal rule sequentially. If we check the
run-time of this version, it may actually be slower with multiple threads than one
thread (see Exercise 5.3).

We can avoid this problem by declaring a private variable inside the parallel
block and moving the critical section after the function call:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
double my result = 0.0; /⇤ private ⇤/
my result += Local trap(double a, double b, int n);

pragma omp critical
global result += my result;

}

Now the call to Local trap is outside the critical section, and the threads can exe-
cute their calls simultaneously. Furthermore, since my result is declared in the

23

The Reduction Clause (2)
▪ If we use the following workaround, we force the threads to execute

sequentially

▪ We can avoid this problem by declaring a private variable inside the
parallel block and moving the critical section after the function call

222 CHAPTER 5 Shared-Memory Programming with OpenMP

we would probably define

double Trap(double a, double b, int n);

and our function call would be

global result = Trap(a, b, n);

This is somewhat easier to understand and probably more attractive to all but the
most fanatical believers in pointers.

We resorted to the pointer version because we needed to add each thread’s local
calculation to get global result. However, we might prefer the following function
prototype:

double Local trap(double a, double b, int n);

With this prototype, the body of Local trap would be the same as the Trap function
in Program 5.2, except that there would be no critical section. Rather, each thread
would return its part of the calculation, the final value of its my result variable. If
we made this change, we might try modifying our parallel block so that it looks
like this:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
pragma omp critical

global result += Local trap(double a, double b, int n);
}

Can you see a problem with this code? It should give the correct result. However,
since we’ve specified that the critical section is

global result += Local trap(double a, double b, int n);

the call to Local trap can only be executed by one thread at a time, and, effectively,
we’re forcing the threads to execute the trapezoidal rule sequentially. If we check the
run-time of this version, it may actually be slower with multiple threads than one
thread (see Exercise 5.3).

We can avoid this problem by declaring a private variable inside the parallel
block and moving the critical section after the function call:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
double my result = 0.0; /⇤ private ⇤/
my result += Local trap(double a, double b, int n);

pragma omp critical
global result += my result;

}

Now the call to Local trap is outside the critical section, and the threads can exe-
cute their calls simultaneously. Furthermore, since my result is declared in the

222 CHAPTER 5 Shared-Memory Programming with OpenMP

we would probably define

double Trap(double a, double b, int n);

and our function call would be

global result = Trap(a, b, n);

This is somewhat easier to understand and probably more attractive to all but the
most fanatical believers in pointers.

We resorted to the pointer version because we needed to add each thread’s local
calculation to get global result. However, we might prefer the following function
prototype:

double Local trap(double a, double b, int n);

With this prototype, the body of Local trap would be the same as the Trap function
in Program 5.2, except that there would be no critical section. Rather, each thread
would return its part of the calculation, the final value of its my result variable. If
we made this change, we might try modifying our parallel block so that it looks
like this:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
pragma omp critical

global result += Local trap(double a, double b, int n);
}

Can you see a problem with this code? It should give the correct result. However,
since we’ve specified that the critical section is

global result += Local trap(double a, double b, int n);

the call to Local trap can only be executed by one thread at a time, and, effectively,
we’re forcing the threads to execute the trapezoidal rule sequentially. If we check the
run-time of this version, it may actually be slower with multiple threads than one
thread (see Exercise 5.3).

We can avoid this problem by declaring a private variable inside the parallel
block and moving the critical section after the function call:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
double my result = 0.0; /⇤ private ⇤/
my result += Local trap(double a, double b, int n);

pragma omp critical
global result += my result;

}

Now the call to Local trap is outside the critical section, and the threads can exe-
cute their calls simultaneously. Furthermore, since my result is declared in the

24

OpenMP Reductions
▪ OpenMP reductions solve the problem in a more elegant and expressive

way
- a reduction is a computation that repeatedly applies the same reduction operator to a

sequence of operands in order to get a single result
- the reduction operator is a binary operation (such as addition or multiplication)
- the result of the reduction is stored in the reduction variable

▪ To use a reduction, the parallel directive can be augmented with a
reduction clause

5.4 The Reduction Clause 223

parallel block, it’s private, and before the critical section each thread will store
its part of the calculation in its my result variable.

OpenMP provides a cleaner alternative that also avoids serializing execution
of Local trap: we can specify that global result is a reduction variable. A
reduction operator is a binary operation (such as addition or multiplication) and
a reduction is a computation that repeatedly applies the same reduction operator to
a sequence of operands in order to get a single result. Furthermore, all of the inter-
mediate results of the operation should be stored in the same variable: the reduction
variable. For example, if A is an array of n ints, the computation

int sum = 0;
for (i = 0; i < n; i++)

sum += A[i];

is a reduction in which the reduction operator is addition.
In OpenMP it may be possible to specify that the result of a reduction is a reduc-

tion variable. To do this, a reduction clause can be added to a parallel directive.
In our example, we can modify the code as follows:

global result = 0.0;
pragma omp parallel num threads(thread count) \

reduction(+: global result)
global result += Local trap(double a, double b, int n);

First note that the parallel directive is two lines long. Recall that C preprocessor
directives are, by default, only one line long, so we need to “escape” the newline
character by putting a backslash (\) immediately before it.

The code specifies that global result is a reduction variable and the plus sign
(“+”) indicates that the reduction operator is addition. Effectively, OpenMP creates a
private variable for each thread, and the run-time system stores each thread’s result in
this private variable. OpenMP also creates a critical section and the values stored in
the private variables are added in this critical section. Thus, the calls to Local trap
can take place in parallel.

The syntax of the reduction clause is

reduction(<operator>: <variable list>)

In C, operator can be any one of the operators +, ⇤, �, &, |, ˆ, &&, || , although the use
of subtraction is a bit problematic, since subtraction isn’t associative or commutative.
For example, the serial code

result = 0;
for (i = 1; i <= 4; i++)

result �= i;

stores the value �10 in result. If, however, we split the iterations among two
threads, with thread 0 subtracting 1 and 2 and thread 1 subtracting 3 and 4, then thread
0 will compute �3 and thread 1 will compute �7 and, of course, �3 � (�7) = 4.

supported operators: +, *, -, &, |, ˆ, &&, ||

5.4 The Reduction Clause 223

parallel block, it’s private, and before the critical section each thread will store
its part of the calculation in its my result variable.

OpenMP provides a cleaner alternative that also avoids serializing execution
of Local trap: we can specify that global result is a reduction variable. A
reduction operator is a binary operation (such as addition or multiplication) and
a reduction is a computation that repeatedly applies the same reduction operator to
a sequence of operands in order to get a single result. Furthermore, all of the inter-
mediate results of the operation should be stored in the same variable: the reduction
variable. For example, if A is an array of n ints, the computation

int sum = 0;
for (i = 0; i < n; i++)

sum += A[i];

is a reduction in which the reduction operator is addition.
In OpenMP it may be possible to specify that the result of a reduction is a reduc-

tion variable. To do this, a reduction clause can be added to a parallel directive.
In our example, we can modify the code as follows:

global result = 0.0;
pragma omp parallel num threads(thread count) \

reduction(+: global result)
global result += Local trap(double a, double b, int n);

First note that the parallel directive is two lines long. Recall that C preprocessor
directives are, by default, only one line long, so we need to “escape” the newline
character by putting a backslash (\) immediately before it.

The code specifies that global result is a reduction variable and the plus sign
(“+”) indicates that the reduction operator is addition. Effectively, OpenMP creates a
private variable for each thread, and the run-time system stores each thread’s result in
this private variable. OpenMP also creates a critical section and the values stored in
the private variables are added in this critical section. Thus, the calls to Local trap
can take place in parallel.

The syntax of the reduction clause is

reduction(<operator>: <variable list>)

In C, operator can be any one of the operators +, ⇤, �, &, |, ˆ, &&, || , although the use
of subtraction is a bit problematic, since subtraction isn’t associative or commutative.
For example, the serial code

result = 0;
for (i = 1; i <= 4; i++)

result �= i;

stores the value �10 in result. If, however, we split the iterations among two
threads, with thread 0 subtracting 1 and 2 and thread 1 subtracting 3 and 4, then thread
0 will compute �3 and thread 1 will compute �7 and, of course, �3 � (�7) = 4.

25

The “Parallel For” Directive
▪ The #pragma omp parallel for directive forks a team of threads to execute

the block
- the block must be a for loop
- the directive parallelizes the for loop by dividing the iterations of the loop among the threads

224 CHAPTER 5 Shared-Memory Programming with OpenMP

In principle, the compiler should determine that the threads’ individual results should
actually be added (�3 + (�7) = �10), and, in practice, this seems to be the case.
However, the OpenMP Standard [42] doesn’t seem to guarantee this.

It should also be noted that if a reduction variable is a float or a double, the
results may differ slightly when different numbers of threads are used. This is due to
the fact that floating point arithmetic isn’t associative. For example, if a, b, and c are
floats, then (a + b) + c may not be exactly equal to a + (b + c). See Exercise 5.5.

When a variable is included in a reduction clause, the variable itself is shared.
However, a private variable is created for each thread in the team. In the parallel
block each time a thread executes a statement involving the variable, it uses the pri-
vate variable. When the parallel block ends, the values in the private variables are
combined into the shared variable. Thus, our latest version of the code

global result = 0.0;
pragma omp parallel num threads(thread count) \

reduction(+: global result)
global result += Local trap(double a, double b, int n);

effectively executes code that is identical to our previous version:

global result = 0.0;
pragma omp parallel num threads(thread count)

{
double my result = 0.0; /⇤ private ⇤/
my result += Local trap(double a, double b, int n);

pragma omp critical
global result += my result;

}

One final point to note is that the threads’ private variables are initialized to 0. This
is analogous to our initializing my result to zero. In general, the private variables
created for a reduction clause are initialized to the identity value for the opera-
tor. For example, if the operator is multiplication, the private variables would be
initialized to 1.

5.5 THE parallel for DIRECTIVE
As an alternative to our explicit parallelization of the trapezoidal rule, OpenMP pro-
vides the parallel for directive. Using it, we can parallelize the serial trapezoidal
rule

h = (b�a)/n;
approx = (f(a) + f(b))/2.0;
for (i = 1; i <= n�1; i++)

approx += f(a + i⇤h);
approx = h⇤approx;

5.5 The parallel for Directive 225

by simply placing a directive immediately before the for loop:

h = (b�a)/n;
approx = (f(a) + f(b))/2.0;

pragma omp parallel for num threads(thread count) \
reduction(+: approx)

for (i = 1; i <= n�1; i++)
approx += f(a + i⇤h);

approx = h⇤approx;

Like the parallel directive, the parallel for directive forks a team of threads to
execute the following structured block. However, the structured block following the
parallel for directive must be a for loop. Furthermore, with the parallel for
directive the system parallelizes the for loop by dividing the iterations of the loop
among the threads. The parallel for directive is therefore very different from the
parallel directive, because in a block that is preceded by a parallel directive, in
general, the work must be divided among the threads by the threads themselves.

In a for loop that has been parallelized with a parallel for directive, the
default partitioning, that is, of the iterations among the threads is up to the sys-
tem. However, most systems use roughly a block partitioning, that is, if there are
m iterations, then roughly the first m/thread count are assigned to thread 0, the
next m/thread count are assigned to thread 1, and so on.

Note that it was essential that we made approx a reduction variable. If we hadn’t,
it would have been an ordinary shared variable, and the body of the loop

approx += f(a + i⇤h);

would be an unprotected critical section.
However, speaking of scope, the default scope for all variables in a parallel

directive is shared, but in our parallel for if the loop variable i were shared,
the variable update, i++, would also be an unprotected critical section. Hence, in
a loop that is parallelized with a parallel for directive, the default scope of the
loop variable is private; in our code, each thread in the team has its own copy of i.

5.5.1 Caveats
This is truly wonderful: It may be possible to parallelize a serial program that consists
of one large for loop by just adding a single parallel for directive. It may be
possible to incrementally parallelize a serial program that has many for loops by
successively placing parallel for directives before each loop.

However, things may not be quite as rosy as they seem. There are several caveats
associated with the use of the parallel for directive. First, OpenMP will only par-
allelize for loops. It won’t parallelize while loops or do�while loops. This may
not seem to be too much of a limitation, since any code that uses a while loop or
a do�while loop can be converted to equivalent code that uses a for loop instead.

parallel for directive applied to a for loop

26

Restrictions for Parallelizable For-Statements
▪ The “Parallel for” directive works only for loops with simple control

structure
- loop iteration variable must be an integer
- the expressions start, end, and incr must not change during the loop and must have a

compatible type
- the loop variable index can only be modified by the “increment expression” in the for

statement

▪ Program correctness must not depend upon which thread executes a
particular iteration

226 CHAPTER 5 Shared-Memory Programming with OpenMP

However, OpenMP will only parallelize for loops for which the number of iterations
can be determined

. from the for statement itself (that is, the code for (. . . ; . . . ; . . .)),
and. prior to execution of the loop.

For example, the “infinite loop”

for (; ;) {
. . .

}

cannot be parallelized. Similarly, the loop

for (i = 0; i < n; i++) {
if (. . .) break;
. . .

}

cannot be parallelized, since the number of iterations can’t be determined from the
for statement alone. This for loop is also not a structured block, since the break adds
another point of exit from the loop.

In fact, OpenMP will only parallelize for loops that are in canonical form. Loops
in canonical form take one of the forms shown in Program 5.3. The variables and
expressions in this template are subject to some fairly obvious restrictions:

. The variable index must have integer or pointer type (e.g., it can’t be a float).. The expressions start, end, and incr must have a compatible type. For example,
if index is a pointer, then incr must have integer type.. The expressions start, end, and incr must not change during execution of the
loop.. During execution of the loop, the variable index can only be modified by the
“increment expression” in the for statement.

for

0

BBBBBBBBBB@

index++
++index

index < end index--
index <= end --index

index = start ; index >= end ; index += incr
index > end index -= incr

index = index + incr
index = incr + index
index = index - incr

1

CCCCCCCCCCA

Program 5.3: Legal forms for parallelizable for statements

27

Data dependencies

1 1 2 3 5 8 13 21 34 55

1 1 2 3 5 8 0 0 0 0
this is correct

but sometimes
we get this

fib[0] = fib[1] = 1;
for (i=2; i<n; i++)

fib[i] = fib[i–1] + fib[i–2];

fib[0] = fib[1] = 1;
#pragma omp parallel for num_threads(2)

for(i=2; i<n; i++)
fib[i] = fib[i–1] + fib[i–2];

note 2 threads

28

What happened?
▪ OpenMP compilers don’t check for dependences among iterations in a loop

that’s being parallelized with a parallel for directive
- dependencies in loops that cause the results of one or more loop iterations depend on other

iterations are denoted as loop carried dependencies
- in general, loops with loop carried dependencies cannot be correctly parallelized by OpenMP

▪ Programmers need check dependencies of loops themselves

29

Estimating π
▪ Example from previous lectures

5.5 The parallel for Directive 229

by the loop body. That is, we should look for variables that are read or written in one
iteration, and written in another. Let’s look at a couple of examples.

5.5.4 Estimating ⇡

One way to get a numerical approximation to ⇡ is to use many terms in the formula3

⇡ = 4


1 � 1
3

+ 1
5

� 1
7

+ ·· ·
�

= 4
1X

k=0

(�1)k

2k + 1
.

We can implement this formula in serial code with

1 double factor = 1.0;
2 double sum = 0.0;
3 for (k = 0; k < n; k++) {
4 sum += factor/(2⇤k+1);
5 factor = �factor;
6 }
7 pi approx = 4.0⇤sum;

(Why is it important that factor is a double instead of an int or a long?)
How can we parallelize this with OpenMP? We might at first be inclined to do

something like this:

1 double factor = 1.0;
2 double sum = 0.0;
3 # pragma omp parallel for num threads(thread count) \
4 reduction(+:sum)
5 for (k = 0; k < n; k++) {
6 sum += factor/(2⇤k+1);
7 factor = �factor;
8 }
9 pi approx = 4.0⇤sum;

However, it’s pretty clear that the update to factor in Line 7 in iteration k and the
subsequent increment of sum in Line 6 in iteration k+1 is an instance of a loop-carried
dependence. If iteration k is assigned to one thread and iteration k+1 is assigned to
another thread, there’s no guarantee that the value of factor in Line 6 will be correct.
In this case we can fix the problem by examining the series

1X

k=0

(�1)k

2k + 1
.

3This is by no means the best method for approximating ⇡ , since it requires a lot of terms to get
a reasonably accurate result. However, we’re more interested in the formula itself than the actual
estimate.

5.5 The parallel for Directive 229

by the loop body. That is, we should look for variables that are read or written in one
iteration, and written in another. Let’s look at a couple of examples.

5.5.4 Estimating ⇡

One way to get a numerical approximation to ⇡ is to use many terms in the formula3

⇡ = 4


1 � 1
3

+ 1
5

� 1
7

+ ·· ·
�

= 4
1X

k=0

(�1)k

2k + 1
.

We can implement this formula in serial code with

1 double factor = 1.0;
2 double sum = 0.0;
3 for (k = 0; k < n; k++) {
4 sum += factor/(2⇤k+1);
5 factor = �factor;
6 }
7 pi approx = 4.0⇤sum;

(Why is it important that factor is a double instead of an int or a long?)
How can we parallelize this with OpenMP? We might at first be inclined to do

something like this:

1 double factor = 1.0;
2 double sum = 0.0;
3 # pragma omp parallel for num threads(thread count) \
4 reduction(+:sum)
5 for (k = 0; k < n; k++) {
6 sum += factor/(2⇤k+1);
7 factor = �factor;
8 }
9 pi approx = 4.0⇤sum;

However, it’s pretty clear that the update to factor in Line 7 in iteration k and the
subsequent increment of sum in Line 6 in iteration k+1 is an instance of a loop-carried
dependence. If iteration k is assigned to one thread and iteration k+1 is assigned to
another thread, there’s no guarantee that the value of factor in Line 6 will be correct.
In this case we can fix the problem by examining the series

1X

k=0

(�1)k

2k + 1
.

3This is by no means the best method for approximating ⇡ , since it requires a lot of terms to get
a reasonably accurate result. However, we’re more interested in the formula itself than the actual
estimate.

Can this loop be
parallelized safely?

Or is there a loop carried
dependency?

30

Estimating π: Solution #1

there is a loop carried dependency

5.5 The parallel for Directive 229

by the loop body. That is, we should look for variables that are read or written in one
iteration, and written in another. Let’s look at a couple of examples.

5.5.4 Estimating ⇡

One way to get a numerical approximation to ⇡ is to use many terms in the formula3

⇡ = 4


1 � 1
3

+ 1
5

� 1
7

+ ·· ·
�

= 4
1X

k=0

(�1)k

2k + 1
.

We can implement this formula in serial code with

1 double factor = 1.0;
2 double sum = 0.0;
3 for (k = 0; k < n; k++) {
4 sum += factor/(2⇤k+1);
5 factor = �factor;
6 }
7 pi approx = 4.0⇤sum;

(Why is it important that factor is a double instead of an int or a long?)
How can we parallelize this with OpenMP? We might at first be inclined to do

something like this:

1 double factor = 1.0;
2 double sum = 0.0;
3 # pragma omp parallel for num threads(thread count) \
4 reduction(+:sum)
5 for (k = 0; k < n; k++) {
6 sum += factor/(2⇤k+1);
7 factor = �factor;
8 }
9 pi approx = 4.0⇤sum;

However, it’s pretty clear that the update to factor in Line 7 in iteration k and the
subsequent increment of sum in Line 6 in iteration k+1 is an instance of a loop-carried
dependence. If iteration k is assigned to one thread and iteration k+1 is assigned to
another thread, there’s no guarantee that the value of factor in Line 6 will be correct.
In this case we can fix the problem by examining the series

1X

k=0

(�1)k

2k + 1
.

3This is by no means the best method for approximating ⇡ , since it requires a lot of terms to get
a reasonably accurate result. However, we’re more interested in the formula itself than the actual
estimate.

31

Estimating π: Solution #2
▪ Remove loop carried dependency for factor
▪ Compute factor directly in each thread
▪ Potential for a difficult to find bug

- by default all variables are shared among threads!
- hence, the writes to factor in each thread are seen by the other threads in the team, which

introduces data races
- we need to explicitly declare factor as private to prevent this problem

ensures factor has
private scope.

230 CHAPTER 5 Shared-Memory Programming with OpenMP

We see that in iteration k the value of factor should be (�1)k, which is +1 if k is
even and �1 if k is odd, so if we replace the code

1 sum += factor/(2⇤k+1);
2 factor = �factor;

by

1 if (k % 2 == 0)
2 factor = 1.0;
3 else
4 factor = �1.0;
5 sum += factor/(2⇤k+1);

or, if you prefer the ?: operator,

1 factor = (k % 2 == 0) ? 1.0 : �1.0;
2 sum += factor/(2⇤k+1);

we will eliminate the loop dependency.
However, things still aren’t quite right. If we run the program on one of our

systems with just two threads and n = 1000, the result is consistently wrong. For
example,

1 With n = 1000 terms and 2 threads,
2 Our estimate of pi = 2.97063289263385
3 With n = 1000 terms and 2 threads,
4 Our estimate of pi = 3.22392164798593

On the other hand, if we run the program with only one thread, we always get

1 With n = 1000 terms and 1 threads,
2 Our estimate of pi = 3.14059265383979

What’s wrong here?
Recall that in a block that has been parallelized by a parallel for directive,

by default any variable declared before the loop—with the sole exception of the
loop variable—is shared among the threads. So factor is shared and, for exam-
ple, thread 0 might assign it the value 1, but before it can use this value in the update
to sum, thread 1 could assign it the value �1. Therefore, in addition to eliminating
the loop-carried dependence in the calculation of factor, we need to insure that
each thread has its own copy of factor. That is, in order to make our code correct,
we need to also insure that factor has private scope. We can do this by adding a
private clause to the parallel for directive.

1 double sum = 0.0;
2 # pragma omp parallel for num threads(thread count) \
3 reduction(+:sum) private(factor)
4 for (k = 0; k < n; k++) {
5 if (k % 2 == 0)

5.5 The parallel for Directive 231

6 factor = 1.0;
7 else
8 factor = �1.0;
9 sum += factor/(2⇤k+1);

10 }

The private clause specifies that for each variable listed inside the parentheses,
a private copy is to be created for each thread. Thus, in our example, each of the
thread count threads will have its own copy of the variable factor, and hence
the updates of one thread to factor won’t affect the value of factor in another
thread.

It’s important to remember that the value of a variable with private scope is
unspecified at the beginning of a parallel block or a parallel for block. Its value
is also unspecified after completion of a parallel or parallel for block. So, for
example, the output of the first printf statement in the following code is unspeci-
fied, since it prints the private variable x before it’s explicitly initialized. Similarly,
the output of the final printf is unspecified, since it prints x after the completion of
the parallel block.

1 int x = 5;
2 # pragma omp parallel num threads(thread count) \
3 private(x)
4 {
5 int my rank = omp get thread num();
6 printf("Thread %d > before initialization, x = %d\n",
7 my rank, x);
8 x = 2⇤my rank + 2;
9 printf("Thread %d > after initialization, x = %d\n",

10 my rank, x);
11 }
12 printf("After parallel block, x = %d\n", x);

5.5.5 More on scope
Our problem with the variable factor is a common one. We usually need to think
about the scope of each variable in a parallel block or a parallel for block.
Therefore, rather than letting OpenMP decide on the scope of each variable, it’s a
very good practice for us as programmers to specify the scope of each variable in a
block. In fact, OpenMP provides a clause that will explicitly require us to do this: the
default clause. If we add the clause

default(none)

to our parallel or parallel for directive, then the compiler will require that we
specify the scope of each variable we use in the block and that has been declared
outside the block. (Variables that are declared within the block are always private,
since they are allocated on the thread’s stack.)

32

The default Clause
▪ Introducing data races by accident is a common problem
▪ One common technique to prevent this problem is using the OpenMP’s

default clause with option none

▪ Explicitly choosing a scope of none (instead of relying on the default
shared) requires the programmer to explicitly specify the scope of each
variable in a block
- this rule is enforced by the compiler

#omp parallel for … default (none)

#omp parallel for default (none)\
private(i,a)
for(i=0; i<1024; i++) {
a[i] = a[i] + 1;

}

error: no scope declared

#omp parallel for default (none)
for(i=0; i<1024; i++) {
a[i] = a[i] + 1;

}

33

Estimating π: Solution #3

232 CHAPTER 5 Shared-Memory Programming with OpenMP

For example, using a default(none) clause, our calculation of ⇡ could be written
as follows:

double sum = 0.0;
pragma omp parallel for num threads(thread count) \

default(none) reduction(+:sum) private(k, factor) \
shared(n)

for (k = 0; k < n; k++) {
if (k % 2 == 0)

factor = 1.0;
else

factor = �1.0;
sum += factor/(2⇤k+1);

}

In this example, we use four variables in the for loop. With the default clause, we
need to specify the scope of each. As we’ve already noted, sum is a reduction variable
(which has properties of both private and shared scope). We’ve also already noted that
factor and the loop variable k should have private scope. Variables that are never
updated in the parallel or parallel for block, such as n in this example, can be
safely shared. Recall that unlike private variables, shared variables have the same
value in the parallel or parallel for block that they had before the block, and
their value after the block is the same as their last value in the block. Thus, if n were
initialized before the block to 1000, it would retain this value in the parallel for
statement, and since the value isn’t changed in the for loop, it would retain this value
after the loop has completed.

5.6 MORE ABOUT LOOPS IN OPENMP: SORTING
5.6.1 Bubble sort
Recollect that the serial bubble sort algorithm for sorting a list of integers can be
implemented as follows:

for (list length = n; list length >= 2; list length��)
for (i = 0; i < list length�1; i++)

if (a[i] > a[i+1]) {
tmp = a[i];
a[i] = a[i+1];
a[i+1] = tmp;

}

Here, a stores n ints and the algorithm sorts them in increasing order. The outer
loop first finds the largest element in the list and stores it in a[n�1]; it then finds
the next-to-the-largest element and stores it in a[n�2], and so on. So, effectively,
the first pass is working with the full n-element list. The second is working with
all of the elements, except the largest; it’s working with an n � 1-element list,
and so on.

34

More About Loops in OpenMP: Sorting
▪ Reminder: Odd-Even Transposition Sort (discussed in MPI lecture)

▪ Does this algorithm have loop carried dependencies?
- outer loop has loop carried dependencies, result depends on execution order of iterations
- inner loops does not have loop carried dependencies, all comparison and swaps can be execute

in parallel or in arbitrary order → parallel for directive for inner loops should work fine

▪ Potential problems
- all operations in inner loop must complete before next iteration of outer loop is started →

guaranteed by implicit barrier after parallel for
- overhead of spawning and joining threads in inner loop over and over again may be too high
→we can keep the threads spawned, see Solution #2

5.6 More About Loops in OpenMP: Sorting 233

The inner loop compares consecutive pairs of elements in the current list. When
a pair is out of order (a[i] > a[i+1]) it swaps them. This process of swapping will
move the largest element to the last slot in the “current” list, that is, the list consisting
of the elements

a[0], a[1], . . . , a[list length�1]

It’s pretty clear that there’s a loop-carried dependence in the outer loop; in any
iteration of the outer loop the contents of the current list depends on the previous
iterations of the outer loop. For example, if at the start of the algorithm a = 3, 4,
1, 2, then the second iteration of the outer loop should work with the list 3, 1, 2,
since the 4 should be moved to the last position by the first iteration. But if the first
two iterations are executing simultaneously, it’s possible that the effective list for the
second iteration will contain 4.

The loop-carried dependence in the inner loop is also fairly easy to see. In iter-
ation i the elements that are compared depend on the outcome of iteration i � 1. If
in iteration i � 1, a[i�1] and a[i] are not swapped, then iteration i should compare
a[i] and a[i+1]. If, on the other hand, iteration i � 1 swaps a[i�1] and a[i], then
iteration i should be comparing the original a[i�1] (which is now a[i]) and a[i+1].
For example, suppose the current list is {3,1,2}. Then when i = 1, we should com-
pare 3 and 2, but if the i = 0 and the i = 1 iterations are happening simultaneously,
it’s entirely possible that the i = 1 iteration will compare 1 and 2.

It’s also not at all clear how we might remove either loop-carried dependence
without completely rewriting the algorithm. It’s important to keep in mind that even
though we can always find loop-carried dependences, it may be difficult or impos-
sible to remove them. The parallel for directive is not a universal solution to the
problem of parallelizing for loops.

5.6.2 Odd-even transposition sort
Odd-even transposition sort is a sorting algorithm that’s similar to bubble sort, but
that has considerably more opportunities for parallelism. Recall from Section 3.7.1
that serial odd-even transposition sort can be implemented as follows:

for (phase = 0; phase < n; phase++)
if (phase % 2 == 0)

for (i = 1; i < n; i += 2)
if (a[i�1] > a[i]) Swap(&a[i�1],&a[i]);

else
for (i = 1; i < n�1; i += 2)

if (a[i] > a[i+1]) Swap(&a[i], &a[i+1]);

The list a stores n ints, and the algorithm sorts them into increasing order. During an
“even phase” (phase % 2 == 0), each odd-subscripted element, a[i], is compared
to the element to its “left,” a[i�1], and if they’re out of order, they’re swapped.
During an “odd” phase, each odd-subscripted element is compared to the element to
its right, and if they’re out of order, they’re swapped. A theorem guarantees that after
n phases, the list will be sorted.

234 CHAPTER 5 Shared-Memory Programming with OpenMP

Table 5.1 Serial Odd-Even

Transposition Sort

Subscript in Array

Phase 0 1 2 3

0 9 $ 7 8 $ 6
7 9 6 8

1 7 9 $ 6 8
7 6 9 8

2 7 $ 6 9 $ 8
6 7 8 9

3 6 7 $ 8 9
6 7 8 9

As a brief example, suppose a = {9, 7, 8, 6}. Then the phases are shown in
Table 5.1. In this case, the final phase wasn’t necessary, but the algorithm doesn’t
bother checking whether the list is already sorted before carrying out each phase.

It’s not hard to see that the outer loop has a loop-carried dependence. As an exam-
ple, suppose as before that a = {9, 7, 8, 6}. Then in phase 0 the inner loop will
compare elements in the pairs (9,7) and (8,6), and both pairs are swapped. So for
phase 1 the list should be {7, 9, 6, 8}, and during phase 1 the elements in the
pair (9,6) should be compared and swapped. However, if phase 0 and phase 1 are
executed simultaneously, the pair that’s checked in phase 1 might be (7,8), which
is in order. Furthermore, it’s not clear how one might eliminate this loop-carried
dependence, so it would appear that parallelizing the outer for loop isn’t an option.

The inner for loops, however, don’t appear to have any loop-carried depen-
dences. For example, in an even phase loop, variable i will be odd, so for two distinct
values of i, say i = j and i = k, the pairs { j � 1, j} and {k � 1,k} will be be disjoint.
The comparison and possible swaps of the pairs (a[j�1], a[j]) and (a[k�1], a[k])
can therefore proceed simultaneously.

Thus, we could try to parallelize odd-even transposition sort using the code shown
in Program 5.4, but there are a couple of potential problems. First, although any
iteration of, say, one even phase doesn’t depend on any other iteration of that phase,
we’ve already noted that this is not the case for iterations in phase p and phase p + 1.
We need to be sure that all the threads have finished phase p before any thread starts
phase p + 1. However, like the parallel directive, the parallel for directive has
an implicit barrier at the end of the loop, so none of the threads will proceed to the
next phase, phase p + 1, until all of the threads have completed the current phase,
phase p.

A second potential problem is the overhead associated with forking and joining
the threads. The OpenMP implementation may fork and join thread count threads
on each pass through the body of the outer loop. The first row of Table 5.2 shows

35

OpenMP Odd-Even Sort: Solution #1
5.6 More About Loops in OpenMP: Sorting 235

1 for (phase = 0; phase < n; phase++) {
2 if (phase % 2 == 0)
3 # pragma omp parallel for num threads(thread count) \
4 default(none) shared(a, n) private(i, tmp)
5 for (i = 1; i < n; i += 2) {
6 if (a[i�1] > a[i]) {
7 tmp = a[i�1];
8 a[i�1] = a[i];
9 a[i] = tmp;

10 }
11 }
12 else
13 # pragma omp parallel for num threads(thread count) \
14 default(none) shared(a, n) private(i, tmp)
15 for (i = 1; i < n�1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }
21 }
22 }

Program 5.4: First OpenMP implementation of odd-even sort

Table 5.2 Odd-Even Sort with Two parallel for
Directives and Two for Directives (times are in seconds)

thread count 1 2 3 4

Two parallel for directives 0.770 0.453 0.358 0.305
Two for directives 0.732 0.376 0.294 0.239

run-times for 1, 2, 3, and 4 threads on one of our systems when the input list contained
20,000 elements.

These aren’t terrible times, but let’s see if we can do better. Each time we execute
one of the inner loops, we use the same number of threads, so it would seem to
be superior to fork the threads once and reuse the same team of threads for each
execution of the inner loops. Not surprisingly, OpenMP provides directives that allow
us to do just this. We can fork our team of thread count threads before the outer loop
with a parallel directive. Then, rather than forking a new team of threads with each
execution of one of the inner loops, we use a for directive, which tells OpenMP to
parallelize the for loop with the existing team of threads. This modification to the
original OpenMP implementation is shown in Program 5.5

The for directive, unlike the parallel for directive, doesn’t fork any threads.
It uses whatever threads have already been forked in the enclosing parallel block.

spawning and joining threads of the inner loop in each phase again

36

OpenMP Odd-Even Sort: Solution #2
236 CHAPTER 5 Shared-Memory Programming with OpenMP

1 # pragma omp parallel num threads(thread count) \
2 default(none) shared(a, n) private(i, tmp, phase)
3 for (phase = 0; phase < n; phase++) {
4 if (phase % 2 == 0)
5 # pragma omp for
6 for (i = 1; i < n; i += 2) {
7 if (a[i�1] > a[i]) {
8 tmp = a[i�1];
9 a[i�1] = a[i];

10 a[i] = tmp;
11 }
12 }
13 else
14 # pragma omp for
15 for (i = 1; i < n�1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }
21 }
22 }

Program 5.5: Second OpenMP implementation of odd-even sort

There is an implicit barrier at the end of the loop. The results of the code—the final
list—will therefore be the same as the results obtained from the original parallelized
code.

Run-times for this second version of odd-even sort are in the second row of
Table 5.2. When we’re using two or more threads, the version that uses two for direc-
tives is at least 17% faster than the version that uses two parallel for directives, so
for this system the slight effort involved in making the change is well worth it.

5.7 SCHEDULING LOOPS
When we first encountered the parallel for directive, we saw that the exact assign-
ment of loop iterations to threads is system dependent. However, most OpenMP
implementations use roughly a block partitioning: if there are n iterations in the serial
loop, then in the parallel loop the first n/thread count are assigned to thread 0, the
next n/thread count are assigned to thread 1, and so on. It’s not difficult to think of
situations in which this assignment of iterations to threads would be less than optimal.
For example, suppose we want to parallelize the loop

sum = 0.0;
for (i = 0; i <= n; i++)

sum += f(i);

Also suppose that the time required by the call to f is proportional to the size of the
argument i. Then a block partitioning of the iterations will assign much more work

spawn threads once
with “parallel” directive

reuse threads with ”for” directive
instead of “parallel for”

reuse threads with ”for” directive
instead of “parallel for”

37

5.6 More About Loops in OpenMP: Sorting 235

1 for (phase = 0; phase < n; phase++) {
2 if (phase % 2 == 0)
3 # pragma omp parallel for num threads(thread count) \
4 default(none) shared(a, n) private(i, tmp)
5 for (i = 1; i < n; i += 2) {
6 if (a[i�1] > a[i]) {
7 tmp = a[i�1];
8 a[i�1] = a[i];
9 a[i] = tmp;

10 }
11 }
12 else
13 # pragma omp parallel for num threads(thread count) \
14 default(none) shared(a, n) private(i, tmp)
15 for (i = 1; i < n�1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }
21 }
22 }

Program 5.4: First OpenMP implementation of odd-even sort

Table 5.2 Odd-Even Sort with Two parallel for
Directives and Two for Directives (times are in seconds)

thread count 1 2 3 4

Two parallel for directives 0.770 0.453 0.358 0.305
Two for directives 0.732 0.376 0.294 0.239

run-times for 1, 2, 3, and 4 threads on one of our systems when the input list contained
20,000 elements.

These aren’t terrible times, but let’s see if we can do better. Each time we execute
one of the inner loops, we use the same number of threads, so it would seem to
be superior to fork the threads once and reuse the same team of threads for each
execution of the inner loops. Not surprisingly, OpenMP provides directives that allow
us to do just this. We can fork our team of thread count threads before the outer loop
with a parallel directive. Then, rather than forking a new team of threads with each
execution of one of the inner loops, we use a for directive, which tells OpenMP to
parallelize the for loop with the existing team of threads. This modification to the
original OpenMP implementation is shown in Program 5.5

The for directive, unlike the parallel for directive, doesn’t fork any threads.
It uses whatever threads have already been forked in the enclosing parallel block.

Odd-Even Sort Performance Evaluation
▪ Compare two solutions

- two “parallel for” directives (spawning and joining threads in each phase)
- two “for” directives (reusing previously spawned threads)

▪ Reusing threads shows significant performance benefits for this case
study

time in seconds

38

Scheduling Loops
▪ Assume we want to parallelize the following loop with a (parallel) for

directive

▪ Further assume that the time for evaluating f(i) increases linearly with
the size of argument i

236 CHAPTER 5 Shared-Memory Programming with OpenMP

1 # pragma omp parallel num threads(thread count) \
2 default(none) shared(a, n) private(i, tmp, phase)
3 for (phase = 0; phase < n; phase++) {
4 if (phase % 2 == 0)
5 # pragma omp for
6 for (i = 1; i < n; i += 2) {
7 if (a[i�1] > a[i]) {
8 tmp = a[i�1];
9 a[i�1] = a[i];

10 a[i] = tmp;
11 }
12 }
13 else
14 # pragma omp for
15 for (i = 1; i < n�1; i += 2) {
16 if (a[i] > a[i+1]) {
17 tmp = a[i+1];
18 a[i+1] = a[i];
19 a[i] = tmp;
20 }
21 }
22 }

Program 5.5: Second OpenMP implementation of odd-even sort

There is an implicit barrier at the end of the loop. The results of the code—the final
list—will therefore be the same as the results obtained from the original parallelized
code.

Run-times for this second version of odd-even sort are in the second row of
Table 5.2. When we’re using two or more threads, the version that uses two for direc-
tives is at least 17% faster than the version that uses two parallel for directives, so
for this system the slight effort involved in making the change is well worth it.

5.7 SCHEDULING LOOPS
When we first encountered the parallel for directive, we saw that the exact assign-
ment of loop iterations to threads is system dependent. However, most OpenMP
implementations use roughly a block partitioning: if there are n iterations in the serial
loop, then in the parallel loop the first n/thread count are assigned to thread 0, the
next n/thread count are assigned to thread 1, and so on. It’s not difficult to think of
situations in which this assignment of iterations to threads would be less than optimal.
For example, suppose we want to parallelize the loop

sum = 0.0;
for (i = 0; i <= n; i++)

sum += f(i);

Also suppose that the time required by the call to f is proportional to the size of the
argument i. Then a block partitioning of the iterations will assign much more work

5.7 Scheduling Loops 237

to thread thread count� 1 than it will assign to thread 0. A better assignment of
work to threads might be obtained with a cyclic partitioning of the iterations among
the threads. In a cyclic partitioning, the iterations are assigned, one at a time, in
a “round-robin” fashion to the threads. Suppose t = thread count. Then a cyclic
partitioning will assign the iterations as follows:

Thread Iterations

0 0, n/t, 2n/t, . . .

1 1, n/t + 1, 2n/t + 1, . . .
...

...
t � 1 t � 1, n/t + t � 1, 2n/t + t � 1, . . .

To get a feel for how drastically this can affect performance, we wrote a program in
which we defined

double f(int i) {
int j, start = i⇤(i+1)/2, finish = start + i;
double return val = 0.0;

for (j = start; j <= finish; j++) {
return val += sin(j);

}
return return val;

} /⇤ f ⇤/

The call f (i) calls the sine function i times, and, for example, the time to execute f (2i)
requires approximately twice as much time as the time to execute f (i).

When we ran the program with n = 10,000 and one thread, the run-time was 3.67
seconds. When we ran the program with two threads and the default assignment—
iterations 0–5000 on thread 0 and iterations 5001–10,000 on thread 1—the run-time
was 2.76 seconds. This is a speedup of only 1.33. However, when we ran the program
with two threads and a cyclic assignment, the run-time was decreased to 1.84 seconds.
This is a speedup of 1.99 over the one-thread run and a speedup of 1.5 over the
two-thread block partition!

We can see that a good assignment of iterations to threads can have a very sig-
nificant effect on performance. In OpenMP, assigning iterations to threads is called
scheduling, and the schedule clause can be used to assign iterations in either a
parallel for or a for directive.

5.7.1 The schedule clause
In our example, we already know how to obtain the default schedule: we just add a
parallel for directive with a reduction clause:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum)

39

Scheduling Loops (2)
▪ The performance of the parallelized loop will depend strongly on the

assignment
- block assignment leads to very imbalanced load, because thread 0 gets all the short function

evaluations
- cyclic assignment leads to a much more equally distributed load

thread iterations (block	assignment) iterations (cyclic	assignment)

0 0,	1,	2,	3, ..	,	(n/t)-1 0,	n/t,	2n/t,	…

1 n/t,	(n/t)+1,	(n/t)+2,	… 1,	(n/t)+1,	(2n/t)+1,	…

…

t-1 (t-1)(n/t),	(t-1)(n/t)+1,	…, n-1 t-1,	(n/t)+t,	(2n/t)+t, …,	n-1

40

OpenMP Schedule Clause
▪ The OpenMP schedule clause allows the programmer to configure how

loop iterations are assigned to threads

▪ Type can be:
- static the iterations are assigned to the threads before the loop is executed (default)
- dynamic or guided the iterations are assigned to the threads while the loop is executing
- auto the compiler and/or the run-time system determine the schedule
- runtime the schedule is determined at run-time

▪ The chunksize is a positive integer
- only applicable to static, dynamic and guided

238 CHAPTER 5 Shared-Memory Programming with OpenMP

for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11

41

The Static Schedule Type
▪ The static scheduler

- assigns chunks of chunksize iterations to each thread in round robin order
- the assignment of chunks does not consider the actual workload load of the threads at runtime

▪ Example: 12 iterations and 3 threads

238 CHAPTER 5 Shared-Memory Programming with OpenMP

for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11

238 CHAPTER 5 Shared-Memory Programming with OpenMP

for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11

238 CHAPTER 5 Shared-Memory Programming with OpenMP

for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11

238 CHAPTER 5 Shared-Memory Programming with OpenMP

for (i = 0; i <= n; i++)
sum += f(i);

To get a cyclic schedule, we can add a schedule clause to the parallel for
directive:

sum = 0.0;
pragma omp parallel for num threads(thread count) \

reduction(+:sum) schedule(static,1)
for (i = 0; i <= n; i++)

sum += f(i);

In general, the schedule clause has the form

schedule(<type> [, <chunksize>])

The type can be any one of the following:

. static. The iterations can be assigned to the threads before the loop is executed.. dynamic or guided. The iterations are assigned to the threads while the loop is
executing, so after a thread completes its current set of iterations, it can request
more from the run-time system.. auto. The compiler and/or the run-time system determine the schedule.. runtime. The schedule is determined at run-time.

The chunksize is a positive integer. In OpenMP parlance, a chunk of iterations
is a block of iterations that would be executed consecutively in the serial loop. The
number of iterations in the block is the chunksize. Only static, dynamic, and
guided schedules can have a chunksize. This determines the details of the schedule,
but its exact interpretation depends on the type.

5.7.2 The static schedule type
For a static schedule, the system assigns chunks of chunksize iterations to each
thread in a round-robin fashion. As an example, suppose we have 12 iterations,
0,1, . . . ,11, and three threads. Then if schedule(static,1) is used in the parallel
for or for directive, we’ve already seen that the iterations will be assigned as

Thread 0: 0,3,6,9

Thread 1: 1,4,7,10

Thread 2: 2,5,8,11

If schedule(static,2) is used, then the iterations will be assigned as

Thread 0: 0,1,6,7

Thread 1: 2,3,8,9

Thread 2: 4,5,10,11

5.7 Scheduling Loops 239

If schedule(static,4) is used, the iterations will be assigned as

Thread 0: 0,1,2,3

Thread 1: 4,5,6,7

Thread 2: 8,9,10,11

Thus the clause schedule(static, total iterations/thread count) is more or
less equivalent to the default schedule used by most implementations of OpenMP.

The chunksize can be omitted. If it is omitted, the chunksize is approximately
total iterations/thread count.

5.7.3 The dynamic and guided schedule types
In a dynamic schedule, the iterations are also broken up into chunks of chunksize
consecutive iterations. Each thread executes a chunk, and when a thread finishes a
chunk, it requests another one from the run-time system. This continues until all
the iterations are completed. The chunksize can be omitted. When it is omitted, a
chunksize of 1 is used.

In a guided schedule, each thread also executes a chunk, and when a thread fin-
ishes a chunk, it requests another one. However, in a guided schedule, as chunks
are completed, the size of the new chunks decreases. For example, on one of our
systems, if we run the trapezoidal rule program with the parallel for directive
and a schedule(guided) clause, then when n = 10,000 and thread count = 2, the
iterations are assigned as shown in Table 5.3. We see that the size of the chunk is
approximately the number of iterations remaining divided by the number of threads.
The first chunk has size 9999/2 ⇡ 5000, since there are 9999 unassigned iterations.
The second chunk has size 4999/2 ⇡ 2500, and so on.

In a guided schedule, if no chunksize is specified, the size of the chunks
decreases down to 1. If chunksize is specified, it decreases down to chunksize,
with the exception that the very last chunk can be smaller than chunksize.

5.7.4 The runtime schedule type
To understand schedule(runtime) we need to digress for a moment and talk about
environment variables. As the name suggests, environment variables are named
values that can be accessed by a running program. That is, they’re available in the
program’s environment. Some commonly used environment variables are PATH, HOME,
and SHELL. The PATH variable specifies which directories the shell should search
when it’s looking for an executable. It’s usually defined in both Unix and Win-
dows. The HOME variable specifies the location of the user’s home directory, and the
SHELL variable specifies the location of the executable for the user’s shell. These
are usually defined in Unix systems. In both Unix-like systems (e.g., Linux and
Mac OS X) and Windows, environment variables can be examined and specified
on the command line. In Unix-like systems, you can use the shell’s command line.

5.7 Scheduling Loops 239

If schedule(static,4) is used, the iterations will be assigned as

Thread 0: 0,1,2,3

Thread 1: 4,5,6,7

Thread 2: 8,9,10,11

Thus the clause schedule(static, total iterations/thread count) is more or
less equivalent to the default schedule used by most implementations of OpenMP.

The chunksize can be omitted. If it is omitted, the chunksize is approximately
total iterations/thread count.

5.7.3 The dynamic and guided schedule types
In a dynamic schedule, the iterations are also broken up into chunks of chunksize
consecutive iterations. Each thread executes a chunk, and when a thread finishes a
chunk, it requests another one from the run-time system. This continues until all
the iterations are completed. The chunksize can be omitted. When it is omitted, a
chunksize of 1 is used.

In a guided schedule, each thread also executes a chunk, and when a thread fin-
ishes a chunk, it requests another one. However, in a guided schedule, as chunks
are completed, the size of the new chunks decreases. For example, on one of our
systems, if we run the trapezoidal rule program with the parallel for directive
and a schedule(guided) clause, then when n = 10,000 and thread count = 2, the
iterations are assigned as shown in Table 5.3. We see that the size of the chunk is
approximately the number of iterations remaining divided by the number of threads.
The first chunk has size 9999/2 ⇡ 5000, since there are 9999 unassigned iterations.
The second chunk has size 4999/2 ⇡ 2500, and so on.

In a guided schedule, if no chunksize is specified, the size of the chunks
decreases down to 1. If chunksize is specified, it decreases down to chunksize,
with the exception that the very last chunk can be smaller than chunksize.

5.7.4 The runtime schedule type
To understand schedule(runtime) we need to digress for a moment and talk about
environment variables. As the name suggests, environment variables are named
values that can be accessed by a running program. That is, they’re available in the
program’s environment. Some commonly used environment variables are PATH, HOME,
and SHELL. The PATH variable specifies which directories the shell should search
when it’s looking for an executable. It’s usually defined in both Unix and Win-
dows. The HOME variable specifies the location of the user’s home directory, and the
SHELL variable specifies the location of the executable for the user’s shell. These
are usually defined in Unix systems. In both Unix-like systems (e.g., Linux and
Mac OS X) and Windows, environment variables can be examined and specified
on the command line. In Unix-like systems, you can use the shell’s command line.

cyclic distribution block-cyclic distribution block distribution

42

The Dynamic Schedule Type
▪ The iterations are also broken up into chunks of chunksize consecutive

iterations
- each thread executes a chunk
- when a thread finishes a chunk, it requests another one from the run-time system

▪ The chunksize can be omitted
- when it is omitted, a chunksize of 1 is used

43

The Guided Schedule Type
▪ Like for the dynamic schedule each thread executes a chunk

- when a thread finishes a chunk, it requests another one
- as chunks are completed, the size of the new chunks decreases
- goal: reduce work imbalance between threads

▪ If no chunksize is specified, the size of the chunks decreases down to 1
- if chunksize is specified, it decreases down to chunksize, with the exception that the very last

chunk can be smaller than chunksize

240 CHAPTER 5 Shared-Memory Programming with OpenMP

Table 5.3 Assignment of Trapezoidal Rule Iterations 1–9999

using a guided Schedule with Two Threads

Thread Chunk Size of Chunk Remaining Iterations

0 1–5000 5000 4999
1 5001–7500 2500 2499
1 7501–8750 1250 1249
1 8751–9375 625 624
0 9376–9687 312 312
1 9688–9843 156 156
0 9844–9921 78 78
1 9922–9960 39 39
1 9961–9980 20 19
1 9981–9990 10 9
1 9991–9995 5 4
0 9996–9997 2 2
1 9998–9998 1 1
0 9999–9999 1 0

In Windows systems, you can use the command line in an integrated development
environment.

As an example, if we’re using the bash shell, we can examine the value of an
environment variable by typing

$ echo $PATH

and we can use the export command to set the value of an environment variable

$ export TEST VAR="hello"

For details about how to examine and set environment variables for your particular
system, you should consult with your local expert.

When schedule(runtime) is specified, the system uses the environment vari-
able OMP SCHEDULE to determine at run-time how to schedule the loop. The
OMP SCHEDULE environment variable can take on any of the values that can be used
for a static, dynamic, or guided schedule. For example, suppose we have a parallel
for directive in a program and it has been modified by schedule(runtime). Then
if we use the bash shell, we can get a cyclic assignment of iterations to threads by
executing the command

$ export OMP SCHEDULE="static,1"

Now, when we start executing our program, the system will schedule the iterations of
the for loop as if we had the clause schedule(static,1) modifiying the parallel
for directive.

Assignment of trapezoidal
rule iterations 1–9999 using
a guided schedule with two
threads.

44

The Runtime Schedule Type
▪ The system uses the environment variable OMP_SCHEDULE to determine

at run-time how to schedule the loop
▪ The OMP_SCHEDULE environment variable can take on any of the values

that can be used for a static, dynamic, or guided schedule

45

OpenMP “single” and “master” Directives
▪ The single directive specifies that the enclosed region is executed only by

a single thread of the team
- useful for calling library functions that are not thread-safe (e.g. I/O)

▪ The master directive specifies a region that is to be executed only by the
master thread
- it does not take any clauses
- there is no implicit barrier after a master directive

#pragma omp single [clause ...] newline
private (list) firstprivate (list) nowait

#pragma omp single
fprintf(output_file, “results”);
…

46

OpenMP “barrier” Directive
▪ The barrier directive synchronizes all treads in the team

- when reaching a barrier, a thread will wait at the point until all other threads have reached the
same barrier

- then, all threads resume executing the code following the barrier
- useful for calling library functions that are not thread-safe (e.g. I/O)

#pragma omp barrier

47

Matrix-vector Multiplication
▪ Reminder: Matrix-vector multiplication example from Pthreads chapter

- code is much simpler then Pthreads version
- the problem with false-sharing for the 8 x 8,000,000 matrix still applies

5.9 Caches, Cache Coherence, and False Sharing 253

for (j = 0; j < n; j++)
y[i] += A[i][j]⇤x[j];

}

There are no loop-carried dependences in the outer loop, since A and x are never
updated and iteration i only updates y[i]. Thus, we can parallelize this by dividing
the iterations in the outer loop among the threads:

1 # pragma omp parallel for num threads(thread count) \
2 default(none) private(i, j) shared(A, x, y, m, n)
3 for (i = 0; i < m; i++) {
4 y[i] = 0.0;
5 for (j = 0; j < n; j++)
6 y[i] += A[i][j]⇤x[j];
7 }

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads, t:

E = S
t

=

⇣
Tserial

Tparallel

⌘

t
= Tserial

t ⇥ Tparallel
.

Since S  t, E  1. Table 5.4 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000. An analysis that only considers arithmetic operations would predict that
a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. The 8,000,000 ⇥ 8 system requires
about 22% more time than the 8000 ⇥ 8000 system, and the 8 ⇥ 8,000,000 system
requires about 26% more time than the 8000 ⇥ 8000 system. Both of these differences
are at least partially attributable to cache performance.

Recall that a write-miss occurs when a core tries to update a variable that’s not
in cache, and it has to access main memory. A cache profiler (such as Valgrind [49])
shows that when the program is run with the 8,000,000 ⇥ 8 input, it has far more

Table 5.4 Run-Times and Efficiencies of Matrix-Vector

Multiplication (times in seconds)

Matrix Dimension

8,000,000 ⇥ 8 8000 ⇥ 8000 8 ⇥ 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.322 1.000 0.264 1.000 0.333 1.000
2 0.219 0.735 0.189 0.698 0.300 0.555
4 0.141 0.571 0.119 0.555 0.303 0.275

5.9 Caches, Cache Coherence, and False Sharing 253

for (j = 0; j < n; j++)
y[i] += A[i][j]⇤x[j];

}

There are no loop-carried dependences in the outer loop, since A and x are never
updated and iteration i only updates y[i]. Thus, we can parallelize this by dividing
the iterations in the outer loop among the threads:

1 # pragma omp parallel for num threads(thread count) \
2 default(none) private(i, j) shared(A, x, y, m, n)
3 for (i = 0; i < m; i++) {
4 y[i] = 0.0;
5 for (j = 0; j < n; j++)
6 y[i] += A[i][j]⇤x[j];
7 }

If Tserial is the run-time of the serial program and Tparallel is the run-time of the
parallel program, recall that the efficiency E of the parallel program is the speedup S
divided by the number of threads, t:

E = S
t

=

⇣
Tserial

Tparallel

⌘

t
= Tserial

t ⇥ Tparallel
.

Since S  t, E  1. Table 5.4 shows the run-times and efficiencies of our matrix-
vector multiplication with different sets of data and differing numbers of threads.

In each case, the total number of floating point additions and multiplications is
64,000,000. An analysis that only considers arithmetic operations would predict that
a single thread running the code would take the same amount of time for all three
inputs. However, it’s clear that this is not the case. The 8,000,000 ⇥ 8 system requires
about 22% more time than the 8000 ⇥ 8000 system, and the 8 ⇥ 8,000,000 system
requires about 26% more time than the 8000 ⇥ 8000 system. Both of these differences
are at least partially attributable to cache performance.

Recall that a write-miss occurs when a core tries to update a variable that’s not
in cache, and it has to access main memory. A cache profiler (such as Valgrind [49])
shows that when the program is run with the 8,000,000 ⇥ 8 input, it has far more

Table 5.4 Run-Times and Efficiencies of Matrix-Vector

Multiplication (times in seconds)

Matrix Dimension

8,000,000 ⇥ 8 8000 ⇥ 8000 8 ⇥ 8,000,000

Threads Time Eff. Time Eff. Time Eff.

1 0.322 1.000 0.264 1.000 0.333 1.000
2 0.219 0.735 0.189 0.698 0.300 0.555
4 0.141 0.571 0.119 0.555 0.303 0.275

Run-times and efficiencies
of matrix-vector multiplication
(times are in seconds)

48

Concluding Remarks
▪ OpenMP is a standard for programming shared-memory systems

- controlled with directives, runtime-library functions and environment variables
- OpenMP programs start multiple threads rather than multiple processes
- Many OpenMP directives can be modified by clauses

▪ A major problem in the development of shared memory programs is the
possibility of race conditions
- OpenMP provides several mechanisms for insuring mutual exclusion in critical sections

▪ OpenMP offers a variety of scheduling options.
- by default most systems use a block-partitioning of the iterations in a parallelized for loop

▪ In OpenMP the scope of a variable is the collection of threads to which the
variable is accessible.
▪ A reduction is a computation that repeatedly applies the same reduction

operator to a sequence of operands in order to get a single result

49

Acknowledgements
▪ Peter S. Pacheco / Elsevier

- for providing the lecture slides on which this presentation is based

▪ OpenMP tutorial published by Lawrence Livermore National Lab
- https://computing.llnl.gov/tutorials/openMP/

50

Change log
▪ 1.1.1 (2017-11-27)

- update for winter term 2017/18
- update outline slide 2
- fix terminology and typos on slide 12, 14, 18, 19, 25, 28

▪ 1.1.0 (2017-07-13)
- fix typo on slide 44

▪ 1.0.1 (2017-01-30)
- fix typo on slide 30, 48

▪ 1.0.0 (2017-01-19)
- initial version of slides

51

