High-Performance Computing

- Case Study: N-Body Simulations -

Christian Pless|

High-Performance IT Systems Group
Paderborn University, Germany

Outline

- Introduction N-Body Problem
- Implementation of parallel N-Body Solvers
- shared memory systems
- distributed memory systems

N-Body Problems

- Compute positions and velocities of a collection of interacting particles over a period of time
- many important use cases
- Astrophysics
- particles: stars, planets, ...
- forces: gravitation
- applications: compute formation of galaxies
- Molecular dynamics
- particles: atoms, molecules, ...
- forces: van der Waals, electrostatic, ...
- applications: material science, drug discovery
- N -body solvers compute solution to n -body problem by simulating the behavior of the particles

Simulating Motion of Planets

Determine the positions and velocities:

- Newton's second law of motion
- Newton's law of universal gravitation

$$
F=\frac{G m_{q} m_{k}}{r^{2}}
$$

gravitational force (scalar) between particles q and k with masses m_{q} and m_{k}

$$
\mathbf{f}_{q k}(t)=-\frac{G m_{q} m_{k}}{\left|\mathbf{s}_{q}(t)-\mathbf{s}_{k}(t)\right|^{3}}\left[\mathbf{s}_{q}(t)-\mathbf{s}_{k}(t)\right]
$$

gravitational force (vector) between moving particles q and k with positions $\mathrm{s}_{\mathrm{q}}(\mathrm{t})$ and $\mathrm{s}_{\mathrm{k}}(\mathrm{t})$

Gravitational Force between Masses

- Consider the interaction of all particles with a fixed particle q
- summation forces exerted by all other particle $k=0 . . n-1$

$$
\mathbf{F}_{q}(t)=\sum_{\substack{k=0 \\ k \neq q}}^{n-1} \mathbf{f}_{q k}=-G m_{q} \sum_{\substack{k=0 \\ k \neq q}}^{n-1} \frac{m_{k}}{\left|\mathbf{s}_{q}(t)-\mathbf{s}_{k}(t)\right|^{3}}\left[\mathbf{s}_{q}(t)-\mathbf{s}_{k}(t)\right]
$$

- Newton's second law of motion

$$
F_{q}(\mathrm{t})=m_{q} a(t)=m_{q} s_{q}^{\prime \prime}(t)
$$

- Applied to all particles

$$
\mathbf{s}_{q}^{\prime \prime}(t)=-G \sum_{\substack{j=0 \\ j \neq q}}^{n-1} \frac{m_{j}}{\left|\mathbf{s}_{q}(t)-\mathbf{s}_{j}(t)\right|^{3}}\left[\mathbf{s}_{q}(t)-\mathbf{s}_{j}(t)\right]
$$

Basic Idea for N-Body Solver

- Goal: determine position and velocity at discrete time steps

$$
t=0, \Delta t, 2 \Delta t, \ldots, T \Delta t
$$

- Pseudo code

```
Get input data;
for each timestep {
    if (timestep output) Print positions and velocities of
        particles;
    for each particle q
        Compute total force on q;
    for each particle q
        Compute position and velocity of q;
}
Print positions and velocities of particles;
```


Computation of the Forces

- Data structures
- pos[] array containing the positions of the particles
- forces[] array for summing forces exerted on each particle in a time step
- Direct computation

```
for each particle q {
    for each particle k != q {
        X_diff = pos[q][X] - pos[k][X];
        y_diff = pos[q][Y] - pos[k][Y];
        dist = sqrt(x_diff*x_diff + y_diff*y_diff);
        dist_cubed = dist*dist*dist;
        forces[q][X] -= G*masses[q]*masses[k]/dist_cubed * X_diff;
        forces[q][Y] -= G*masses[q]*masses[k]/dist_cubed * y_diff;
    }
}
```


Computation of the Forces (2)

- Direct (naïve) computation is wasteful
- actio $=$ reactio i.e. $f_{q k}=-f_{k q}$
- Individual forces shown as array

$$
\left[\begin{array}{ccccc}
0 & \mathbf{f}_{01} & \mathbf{f}_{02} & \cdots & \mathbf{f}_{0, n-1} \\
-\mathbf{f}_{01} & 0 & \mathbf{f}_{12} & \cdots & \mathbf{f}_{1, n-1} \\
-\mathbf{f}_{02} & -\mathbf{f}_{12} & 0 & \cdots & \mathbf{f}_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
-\mathbf{f}_{0, n-1} & -\mathbf{f}_{1, n-1} & -\mathbf{f}_{2, n-1} & \cdots & 0
\end{array}\right]
$$

Reduced Algorithm for Computing Forces

```
for each particle q
    forces[q] = 0;
for each particle q {
    for each particle k > q {
        X_diff = pos[q][X] - pos[k][X];
        y_diff = pos[q][Y] - pos[k][Y];
        dist = sqrt(x_diff*x_diff + y_diff*y_diff);
        dist_cubed = dist*dist*dist;
        force_qk[X] = G*masses[q]*masses[k]/dist_cubed * X_diff;
        force_qk[Y] = G*masses[q]*masses[k]/dist_cubed * y_diff
        forces[q][X] += force_qk[X];
        forces[q][Y] += force_qk[Y];
        forces[k][X] -= force_qk[X];
        forces[k][Y] -= force_qk[Y];
    }
}
compute upper triangle force matrix only
```


Solving the Differential Equation

- We compute forces, but we are interested in positions and velocities of particles
- Use force to compute acceleration, velocity and position with Newton's law of motion

$$
F_{q}(\mathrm{t})=m_{q} a(t)=m_{q} s_{q}^{\prime \prime}(t)
$$

- We don't don't work with an analytic representation here, thus we numerically solve this ordinary differential equation
- Euler method
- there are many methods for numerically solving differential equations
- we will use the Euler method, the most basic method

Leonhard Euler (1707-1783)

Euler Method (1)

- Basic Idea: Approximate a function with a tangent
- Assume we have an unknown function g for which we know

1. the value $g\left(t_{0}\right)$ at time t_{0} and
2. the derivative $g^{\prime}\left(t_{0}\right)$ of the function at time t_{0}

- Then we can estimate the value of g at time $g(t)$

$$
y=g\left(t_{0}\right)+g^{\prime}\left(t_{0}\right)\left(t-t_{0}\right) .
$$

hence:

$$
g(t+\Delta t) \approx g\left(t_{0}\right)+g^{\prime}\left(t_{0}\right)(t+\Delta t-t)=g\left(t_{0}\right)+\Delta t g^{\prime}\left(t_{0}\right) .
$$

Euler Method (2)

- The estimate will have an error, but if the error is small we can repeat this scheme to compute function $s(t)$

- Hence, we can complete our pseudo code with the computation of the positions and velocities

```
pos[q][X] += delta_t*ve1[q][X]; velocities from previous
pos[q][Y] += delta_t*vel[q][Y]; time step
vel[q][X] += delta_t/masses[q]*forces[q][X];
ve1[q][Y] += de1ta_t/masses[q]*forces[q][Y];
```

numerical integration

Parallelizing the \mathbf{N}-Body Solvers

- Apply Foster's methodology
- initially, we want a lot of tasks
- tasks: computations of the positions, the velocities, and the total forces at each time step
- N -Body problems have abundant parallelism
- $O\left(n^{2}\right)$ forces that can be computed independently

communication between tasks
(forces between particles q and r)

Task Agglomeration in Basic N-Body Solver

- Most communication occurs only between tasks concerning the same particle, simplify structure by agglomerating tasks for same time step and particle

Task Agglomeration in Reduced N-Body Solver

forces are computed only once: hence, task q sends $f_{q r}$ to task r instead of its position

Mapping Computations to Cores

- Last step of Foster's method
- the algorithm offers plenty of parallelism
- typically the number of particles is very high (orders of magnitude higher the \#cores)

```
for each timestep {
    if (timestep output) Print positions and velocities of
        particles;
    for each particle q
        Compute total force on q;
        iterating over particles
    for each particle q
        Compute position and velocity of q;
}
```

- Considerations
- Euler methods must know $s_{q}(t), v_{q}(t)$ and $a_{q}(t)$ to estimate $s_{q}(t+\Delta t)$ and $v_{q}(t+\Delta t)$, hence assigning particles to same core in each time step reduces need for communication
- Assigning each core the same number of particles works for basic solver but leads to a load imbalance on reduced solver

First Attempt for OpenMP Parallelization

```
    for each timestep {
        if (timestep output) Print positions and velocities of
        particles;
非 pragma omp parallel for
        for each particle q
            Compute total force on q;
非 pragma omp parallel for
    for each particle q
        Compute position and velocity of q;
    }
```

Are there race conditions caused by loop-carried dependences?

First Loop

```
# pragma omp parallel for
    for each particle q {
        forces[q][X]= forces[q][Y] = 0;
        for each particle k != q {
            x_diff = pos[q][X] - pos[k][X];
            y_diff = pos[q][Y] - pos[k][Y];
            dist = sqrt(x_diff*x_diff + y_diff*y_diff);
            dist_cubed = dist*dist*dist;
            forces[q][X] -= G*masses[q]*masses[k]/dist_cubed * X_diff;
            forces[q][Y] -= G*masses[q]*masses[k]/dist_cubed * y_diff;
        }
    }
```

- No race conditions
- iterations of outer loop (for each particleq) are partitioned among the threads, hence, only one thread ever writes to forces [q] array for a given particle q
- shared arrays pos and masses are only read
- the other variables hold only temporary values and can have private scope

Second loop

```
# pragma omp parallel for
for each particle q {
        pos[q][X] += delta_t*ve1[q][X];
        pos[q][Y] += de1ta_t*ve1[q][Y];
        vel[q][X] += delta_t/masses[q]*forces[q][X];
        vel[q][Y] += delta_t/masses[q]*forces[q][Y];
}
```

- No race conditions either
- arrays pos, vel, forces are accessed only by a single thread for any particle q
- scalar delta_t is only read

Reduce Forking and Joining of Threads

```
the same team of threads will be used in both loops and for every iteration
```

```
非 pragma omp paralle1 of the outer loop
```

非 pragma omp paralle1 of the outer loop
for each timestep {
if (timestep output) {
\#⿰⿰三丨⿰丨三一隹 pragma omp single
Print positions and xelocities of particles;
}
\#⿰⿰三丨⿰丨三一\mp@code{pragma omp for}
for each particle q
Compute total force on q;
\#⿰⿰三丨⿰丨三一的 pragma omp for
for each particle q
Compute position and velocity of q; single thread will
}

```
ensure that only a single thread will print all the positions and velocities

\section*{Parallelizing the Reduced Solver w／OpenMP}
```

\#⿰⿰三丨⿰丨三一隹 pragma omp parallel
for each timestep {
if (timestep output) {
\#⿰⿰三丨⿰丨三一隹 pragma omp single
Print positions and velocities of particles;
}
\#⿰⿰三丨⿰丨三一隹 pragma omp for
for each particle q
forces[q] = 0.0;
pragma omp for
for each particle q
Compute total force on q;
pragma omp for
for each particle q
Compute position and velocity of q;
}

```
－Consideration
－does this code have any race conditions？
－is the computational load balanced between threads？

\section*{Race Condition in Reduced Solver}
- There is a race condition because writes to the forces array are not restricted to particle q
- Example: 4 particles, 2 threads, block partitioning
- \(F_{3}=-f_{03}-f_{13}-f_{23}\)
- thread 0 computes \(f_{03}\) and \(f_{13}\)
- thread 1 computes \(f_{23}\)
- hence: updates to \(F_{3}\) create a race condition
```

非 pragma omp for /* Can be faster than memset */
for each particle q {
force_qk[X] = force_qk[Y] = 0;
for each particle k > q {
x_diff = pos[q][X] - pos[k][X];
y_diff = pos[q][Y] - pos[k][Y];
dist = sqrt(x_diff*x_diff + y_diff*y_diff);
dist_cubed = dist*dist*dist;
force_qk[X] = G*masses[q]*masses[k]/dist_cubed * x_diff;
force_qk[Y] = G*masses[q]*masses[k]/dist_cubed * y_diff;
forces[q][X] += force_qk[X];
forces[q][Y] += force_qk[Y];
forces[k][X] -= force_qk[X];
forces[k][Y] -= force_qk[Y];
}
}

```

\section*{First Solution Attempt}

- Critical section with \#pragma omp critical has severe drawbacks
- access to forces arrays is effectively serialized
- using a named critical section (one per thread) doesn't help either, because OpenMP supports only statically named critical sections

\section*{Second Solution Attempt}
```

omp_set_1ock(\&1ocks[q]);
forces[q][X] += force_qk[X];
forces[q][Y] += force_qk[Y];
omp_unset_lock(\&]ocks[q]);
omp_set_1ock(\&locks[k]);
forces[k][X] -= force_qk[X];
forces[k][Y] -= force_qk[Y];
omp_unset_lock(\&]ocks[k]);

```
- Avoid global mutex on forces array, use fine-grained lock
- OpenMP provides a library functions for locking
- use one lock for each particle
- Performs much better than global lock but still very high overheads
- system call for every lock
- Idea for improvement
- use private forces array per thread, do summation later

\section*{First Phase for Reduced Alg. (Block Partitioning)}
- Block partitioning leads to very poor load balancing
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{```
for each particle q {
    for each particle k > q {
        compute force fqk
    }
```} \\
\hline thread & responsible for particles & forces computed \\
\hline 0 & \[
\begin{aligned}
& 0 \\
& 1
\end{aligned}
\] & \[
\begin{aligned}
& \text { f01, f02, f03, f04, f05 } \\
& \mathrm{f} 12, \mathrm{f} 13, \mathrm{f} 14, \mathrm{f} 15
\end{aligned}
\] \\
\hline 1 & \[
\begin{aligned}
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { f23, f24, f25 } \\
& \text { f34, f35 }
\end{aligned}
\] \\
\hline 2 & \[
\begin{aligned}
& 4 \\
& 5
\end{aligned}
\] & \[
\mathfrak{f 4 5}
\] \\
\hline
\end{tabular}

\section*{First Phase for Reduced Alg. (Cyclic Partitioning)}
- Cyclic partitioning improves load balancing
\begin{tabular}{|c|c|c|}
\hline thread & responsible for particles & forces computed \\
\hline 0 & \[
\begin{aligned}
& 0 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& \text { f01, f02, f03, f04, f05 } \\
& \text { f34, f35 }
\end{aligned}
\] \\
\hline 1 & \[
\begin{aligned}
& 1 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{f} 12, \mathrm{f} 13, \mathrm{f} 14, \mathrm{f} 15 \\
& \mathrm{f} 45
\end{aligned}
\] \\
\hline 2 & \[
\begin{aligned}
& 2 \\
& 5
\end{aligned}
\] & f23, f24, f25 \\
\hline
\end{tabular}

\title{
Revised Algorithm－Phase I
}
```

\#⿰⿰三丨⿰丨三一隹 pragma omp for
for each particle q {
force_qk[X] = force_qk[Y] = 0;
for each particle k > q {
X_diff = pos[q][X] - pos[k][X];
y_diff = pos[q][Y] - pos[k][Y];
dist = sqrt(x_diff*x_diff + y_diff*y_diff);
dist_cubed = dist*dist*dist;
force_qk[X] = G*masses[q]*masses[k]/dist_cubed * X_diff;
force_qk[Y] = G*masses[q]*masses[k]/dist_cubed * y_diff;
loc_forces[my_rank][q][X] += force_qk[X];
loc_forces[my_rank][q][Y] += force_qk[Y];
loc_forces[my_rank][k][X] -= force_qk[X];
loc_forces[my_rank][k][Y] -= force_qk[Y];
}

```
－Store forces into thread－local array loc＿forces（no race conditions）
－Aggregate forces in Phase II

\section*{Revised Algorithm－Phase II}
```

\#⿰⿰三丨⿰丨三一的 pragma omp for
for (q = 0; q < n; q++) {
forces[q][X] = forces[q][Y] = 0;
for (thread = 0; thread < thread_count; thread++) {
forces[q][X] += loc_forces[thread][q][X];
forces[q][Y] += loc_forces[thread][q][Y];
}
}

```
－Each thread adds the forces computed by all the threads for its assigned particles
－Ensure we didn＇t introduce new race conditions
－phase 1：all writes only to thread－private arrays \(\rightarrow\) OK
－phase 2：threads only write to global forces array for their assigned particles \(\rightarrow\) OK
－implied barrier guarantees that phase 2 starts only after completion of phase \(1 \rightarrow\) OK

\section*{Parallelizing the Solvers Using Pthreads}
- The parallelization with Pthreads works very similar to OpenMP with two main differences
- 1. Barriers
- not all Pthreads implementations provide barriers which is needed after the end of inner loops
- Hence, if no barrier is available we need to either join and re-spawn the threads or use a condition variable
- 2. Loop parallelization
- due to the lack of a "parallel for"-like operation in Pthreads the assignment of loop iterations to threads must be coded explicitly
```

code: cf. implementation provided by Pacheo

```

\section*{Parallelizing the Basic Solver Using MPI}
- Basic parallelization of N-Body code with MPI is fairly straight-forward
- For computing new position of a particle the following data is needed
- previous position and velocity of particle
- positions and masses of all other particles
- Strategy
- assign each process an equal share of particles
- keep copy of all data required to compute forces for assigned particles in each process
- compute forces, velocities and new positions
- re-distribute positions at end of time step with MPI_Allgather

\section*{Parallelizing the Basic Solver Using MPI (2)}
process 0
process 1
process 2
process 3

\section*{Parallelizing the Basic Solver Using MPI (2)}
process 2
process 3

\section*{Parallelizing the Basic Solver Using MPI (2)}
process 0
\begin{tabular}{|c|c|c|c|}
\hline\(m_{0}\) & \(m_{1}\) & \(\ldots\) & \(m_{127}\) \\
\hline \(\mathrm{v}_{0}\) & \(\mathrm{v}_{1}\) & \(\ldots\) & \(\mathrm{v}_{127}\) \\
\hline \(\mathrm{~s}_{0}\) & \(\mathrm{~s}_{1}\) & \(\ldots\) & \(s_{127}\) \\
\hline
\end{tabular}

Broadcast(m)
Broadcast(s)
Scatter(v)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{m}_{0}\) & \(\mathrm{m}_{1}\) & & ... & \(\mathrm{m}_{127}\) \\
\hline \(\mathrm{s}_{0}\) & \(\mathrm{s}_{1}\) & & ... & \(\mathrm{s}_{127}\) \\
\hline \(\mathrm{v}_{0}\) & \(\mathrm{v}_{1}\) & \(\ldots\) & \(\mathrm{v}_{31}\) & \\
\hline
\end{tabular}
- compute forces \(\mathrm{f}_{0 . .31}\) using m and s - compute new positions s' \({ }_{0 . .31}\) with integration using \(\mathrm{f}_{0 . .31}\) and \(\mathrm{v}_{0 . .31}\)
process 1
process 2

- compute forces \(\mathrm{f}_{64 . .95}\) using m and s - compute new positions s' \(64 . .95\) with integration using \(\mathrm{f}_{64 . .95}\) and \(\mathrm{v}_{64 . .95}\)
\[
\begin{array}{|l|l|l|l|}
\hline \mathrm{s}^{\prime} 64 & \mathrm{~s}^{\prime} 65 & \ldots & \mathrm{~s}^{\prime} 95 \\
\hline
\end{array}
\]
process 3

- compute forces \(\mathrm{f}_{96 . .127}\) using m and s - compute new positions s'96.. 127 with integration using \(\mathrm{f}_{96 . .127}\) and \(\mathrm{v}_{96 . .127}\)
\[
\begin{array}{|l|l|l|l|}
\hline s^{\prime} 96 & s^{\prime} 97 & \ldots & s^{\prime}{ }_{127} \\
\hline
\end{array}
\]

\section*{Parallelizing the Basic Solver Using MPI (2)}
process 2
process 3
process 0
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{m}_{0}\) & \(\mathrm{m}_{1}\) & ... & \(\mathrm{m}_{127}\) \\
\hline \(\mathrm{v}_{0}\) & \(\mathrm{v}_{1}\) & ... & \(\mathrm{v}_{127}\) \\
\hline \(\mathrm{s}_{0}\) & \(\mathrm{s}_{1}\) & ... & \(\mathrm{s}_{127}\) \\
\hline
\end{tabular}

Broadcast(m)
Broadcast(s)
Scatter(v)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{m}_{0}\) & \(\mathrm{m}_{1}\) & & ... & \(\mathrm{m}_{127}\) \\
\hline \(\mathrm{s}_{0}\) & \(\mathrm{s}_{1}\) & & \(\ldots\) & \(\mathrm{s}_{127}\) \\
\hline \(\mathrm{v}_{0}\) & \(\mathrm{v}_{1}\) & ... & \(\mathrm{v}_{31}\) & \\
\hline
\end{tabular}
- compute forces \(\mathrm{f}_{0 . .} 31\) using m and s - compute new positions s' \({ }_{0 . .31}\) with integration using \(\mathrm{f}_{0 . .31}\) and \(\mathrm{v}_{0 . .31}\)
\[
\begin{array}{|l|l|l|l|}
\hline \mathrm{s}_{0}^{\prime} & \mathrm{s}_{1}^{\prime} & \ldots & \mathrm{s}_{31} \\
\hline
\end{array}
\]

MPI_Allgather(\(: \therefore\) s' ... s[0] ...)
\begin{tabular}{|l|l|l|l|l|}
\hline\(s_{0}\) & \(\ldots\) & \(s_{31}\) & \(\ldots\) & \(s_{127}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline\(m_{0}\) & \(m_{1}\) & \(\ldots\) & \(m_{127}\) \\
\hline \begin{tabular}{|c|c|c|c|}
\hline\(s_{0}\) & \(s_{1}\) & & \(\ldots\) \\
\(v_{127}\) \\
\hline\(v_{32}\) & \(v_{33}\) & \(\ldots\) & \(v_{63}\) \\
\hline
\end{tabular} & \\
\hline
\end{tabular}
- compute forces \(f_{32 . .63}\) using \(m\) and \(s\) - compute new positions s' \(32 . .63\) with integration using \(f_{32 . .63}\) and \(\mathrm{v}_{32 . .63}\)
\[
\begin{array}{|l|l|l|l|}
\hline s^{\prime} 32 & s^{\prime} 33 & \ldots & s^{\prime} 63 \\
\hline
\end{array}
\]

MPI_Allgather(... s'.. s[32] ...)
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(\ldots\) & \(s_{32}\) & \(\ldots\) & \(s_{63}\) & \(\ldots\) & \(s_{127}\) \\
\hline
\end{tabular}
process 1

- compute forces \(f_{64 . .95}\) using \(m\) and \(s\) - compute new positions s' \(64 . .95\) with integration using \(\mathrm{f}_{64 . .95}\) and \(\mathrm{v}_{64 . .95}\)
\[
\begin{array}{|l|l|l|l|}
\hline \mathrm{s}^{\prime} 64 & \mathrm{~s}^{\prime} 65 & \ldots & \mathrm{~s}^{\prime} 95 \\
\hline
\end{array}
\]

MPI Allgather(... s' ... \(s[64] \ldots\))

- compute forces \(\mathrm{f}_{96 . .127}\) using m and s - compute new positions s'96.. 127 with integration using \(\mathrm{f}_{96 . .127}\) and \(\mathrm{v}_{96 . .127}\)
\[
\begin{array}{|l|l|l|l|}
\hline \mathrm{s}^{\prime} 96 & \mathrm{~s}^{\prime} 97 & \ldots & s^{\prime}{ }_{127} \\
\hline
\end{array}
\]

MPI_Aillgather(... s' ... s[96] ...)
\begin{tabular}{|l|l|l|l|l|}
\hline \(\mathrm{s}_{0}\) & \(\ldots\) & \(\mathrm{~s}_{96}\) & \(\ldots\) & \(\mathrm{~s}_{127}\) \\
\hline
\end{tabular}

\section*{Data Structures for Basic Solver Using MPI (1)}
- Array of Structs
```

struct particle_t {
double mass;
double pos_x, pos_y;
double v_x, v_y;
};
particle_t particles[N];

```
- collect all information about particles in single data structure
- can be expressed as MPI derived data type
- can be communicated with single MPI transfer
- communication of derived data types can be slower (marshalling MPI message)
- Flat Arrays
```

double mass[N];
double pos_x[N], pos_y[N];
double v_x[N], v_y[N];

```
- problem data scattered over multiple arrays
- use native MPI data types
- communication requires several MPI transfers (one per array)
- communicating basic MPI types is fast (simple marshalling)
- more flexible, allows to communicate just required arrays instead of whole structure

\section*{Data Structures for Basic Solver Using MPI (2)}
- Choices in Paceo's implementation
- Each rank stores
- masses for all particles (immutable data, prevent retransmission)
- positions of all particles (enables to compute all forces)
- velocities and new positions for owned particles
- Data stored as simple arrays of tuples
- position and velocity are vectors with 2 components (\(x, y\))
- definition of derived MPI data type vect_mpi_t for tuples (vector of two doubles)
- Tradeoffs
- pro: simple implementation
- con: duplication of data, (masses, positions)
- acceptable solution for small problems, but for large problems an implementation with less redundant data storage is required (see Ring Buffer scheme, discussed later)

\title{
Pseudo-Code for the MPI Version of the Basic N-Body Solver
}
```

Get input data;
for each timestep {
if (timestep output)
Print positions and velocities of particles;
for each local particle loc_q
Compute total force on loc_q;
for each local particle loc_q
Compute position and velocity of loc_q;
Allgather local positions into global pos array;
}
Print positions and velocities of particles;

```

\section*{Pseudo-Code for Input and Output}
```

if (my_rank == 0) {
for each particle
Read masses[particle], pos[particle], vel[particle];
}
MPI_Bcast(masses, n, MPI_DOUBLE, 0, comm);
MPI_Bcast(pos, n, vect_mpi_t 0, comm);
MPI_Scatter(vel, loc_n, vect_mpi_t, loc_vel, loc_n, vect_mpi_t, 0, comm);
Input / Distribute data to processes

```
```

Gather velocities onto process 0;

```
Gather velocities onto process 0;
if (my_rank == 0) {
if (my_rank == 0) {
 Print timestep;
 Print timestep;
 for each particle
 for each particle
 Print pos[particle] and vel[particle]
 Print pos[particle] and vel[particle]
}
```

}

```

Output

\section*{MPI Implementation of a Reduced N-Body Solver}

- Difficult and cumbersome to implement
- Irregular communication
- each process must: 1) gather subset of positions; 2) compute forces; 3) scatter forces to processes that need them
- Load balancing further complicates implementation

\section*{MPI Implementation with Ring Pass}
- Objective: Support simulations with very high particle count
- avoid redundant data storage and computations
- simplify communication scheme
- find different tradeoff between storage, computation and communication
- Approach
- each process owns a subset of particles and is responsible for computing and accumulating the corresponding forces in the upper triangle matrix (actio)
- the counter-acting force (reactio) are also aggregated but not stored locally but communicated to the next process
- i.e. each process participates in a ring communication scheme
- receives positions \(s\), masses \(m\) and partial forces \(f_{i}\) acting on these particles
- uses additional particle information to compute additional (owned) forces \(\mathrm{f}_{\mathrm{i}}{ }^{+}\)and updates the partial forces \(f_{i}^{-}\)acting on the received particles
- passes the information about particle position and partial forces to the next process in the ring
- after the particle information has passed around the full ring once, process updates \(s, v\), and a for owned particles

\section*{Ownership of Particles and Forces}

\section*{- Example}
- 3 processes, 6 particles, cyclic partitioning
- process 0
- owns s0 and s3
- computes forces \(f_{01}, f_{022}, f_{03}, f_{04}, f_{05}, f_{34}, f_{35}\)
- sums up owned forces \(\mathrm{F}_{0}{ }^{+}, \mathrm{F}_{3}{ }^{+}\)
- contributes to not-owned forces \(F_{1}, F_{2}, F_{4}, F_{5}\)

\section*{Ring Pass Scheme (1)}

process 2 ownership
- particles: 2,5
- particles: 1,4
- ...

\section*{Ring Pass Scheme (2)}
- Algorithm for each time step
```

receive message from neighbor
if message origin != my_rank
for each owned force f}\mp@subsup{f}{m,n}{}\mathrm{ that can be computed with local data and received message
compute fr,n
update local partial force }\mp@subsup{F}{m}{+}=\mp@subsup{F}{m}{+}+\mp@subsup{f}{m,n}{
update partial force in received message F F}\mp@subsup{}{}{-}=\mp@subsup{F}{n}{}\mp@subsup{}{}{-}-\mp@subsup{f}{m,n}{
pass updated message to neighbor
else
for each owned particle m
Fm}=\mp@subsup{F}{m}{+}+\mp@subsup{F}{m}{-
update a(t), v(t), s(t)
endif

```

\section*{Performance of the OpenMP and MPI N-Body Solvers}
\begin{tabular}{|c|cc|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Table 6.5
\end{tabular}} \\
\(n\) Performance of the MPI \\
\(n\)-Body Solvers (times in seconds) \\
Processes & Basic & Reduced \\
1 & 17.30 & 8.68 \\
2 & 8.65 & 4.45 \\
4 & 4.35 & 2.30 \\
8 & 2.20 & 1.26 \\
16 & 1.13 & 0.78 \\
\hline
\end{tabular}

Table 6.6 Run-Times for OpenMP and MPI n-Body Solvers (times in seconds)
\begin{tabular}{|c|r|r|r|c|}
\hline \begin{tabular}{l}
Processes/ \\
Threads
\end{tabular} & \multicolumn{2}{|c|}{ OpenMP } & \multicolumn{2}{c|}{ MPI } \\
\hline 1 & 15.13 & 8.77 & 17.30 & 8.68 \\
2 & 7.62 & 4.42 & 8.65 & 4.45 \\
4 & 3.85 & 2.26 & 4.35 & 2.30 \\
\hline
\end{tabular}

\section*{Concluding Remarks}
- N-Body problems are used in many areas of science
- This lecture showed very simple, direct solvers
- \(O\left(n^{2}\right)\) in numbers of particles
- simple Euler integration
- A lot of progress has bene made in N-Body problems
- methods with lower complexity for computing force fields, e.g. Barnes-Hut, Fast Multipole
- better numerical integration, e.g. Runge-Kutta

\section*{Acknowledgements}
- Peter S. Pacheco / Elsevier
- for providing the lecture slides on which this presentation is based

\section*{Change log}
- 1.2.0 (2018-01-06)
- adapt to new template
- heavily revised description of MPI implementations
- 1.0.1 (2017-02-03)
- minor corrections
- 1.0.0 (2017-02-03)
- initial version of slides```

