'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

High-Performance Computing
— Case Study: N-Body Simulations —

Christian Plessl|

High-Performance IT Systems Group
Paderborn University, Germany

Paderborn
Center for
Parallel
Computing

version 1.2.0 2018-01-08

Outline

¢ Introduction N-Body Problem

¢ Implementation of parallel N-Body Solvers
— shared memory systems
— distributed memory systems

Compute positions and velocities of a collection of
interacting particles over a period of time
— many important use cases

Astrophysics
— particles: stars, planets, ...
— forces: gravitation
— applications: compute formation of galaxies

Molecular dynamics

- particles: atoms, molecules, ...

— forces: van der Waals, electrostatic, ...

— applications: material science, drug discovery

N-body solvers compute solution to n-body
problem by simulating the behavior of the particles

N-Body Problems

mass

velocity, . o positiony o

N-body solver

velocity; . » POSItioN;jme

Simulating Motion of Planets

Determine the positions and velocities:
— Newton’s second law of motion
— Newton’s law of universal gravitation

P Gmgmy

7‘2
gravitational force (scalar) between particles g and k with masses m, and m,
Gmgmy,

Bk () = —
! 5,(1) — e[

[54(t) — si(D)]

gravitational force (vector) between moving particles q and k
with positions s,(t) and s, (t)

Gravitational Force between Masses

e Consider the interaction of all particles with a fixed particle g
— summation forces exerted by all other particle k=0..n-1

n—1
mi

n—1

F () =) fty=—Gm, 5
k=0 0 1840 — k()|
k#q k#q

[s4(t) — si(D)]

e Newton’s second law of motion

F,(t) =mga(t) = mgysy (t)

e Applied to all particles

S/() = —G B s, —si(0)]
' =0 (8¢ — Sj(t)|3 q :
J74

Basic Idea for N-Body Solver

e Goal: determine position and velocity at discrete time steps
t=0,At,2At,..., TAt,

e Pseudo code

1 Get input data;

2 for each timestep {

3 if (timestep output) Print positions and velocities of
particles;

4 for each particle q

5 Compute total force on q;

6 for each particle q

7 Compute position and velocity of q;

8 }

9 Print positions and velocities of particles;

Computation of the Forces

e Data structures
- pos][] array containing the positions of the particles
- forces|[] array for summing forces exerted on each particle in a time step

¢ Direct computation

for each particle q {
for each particle k I=q {
x.diff = pos[qllX] — pos[k]I[X]J;
y_diff = posl[qllY] — poslkILY];
dist = sqrt(x.diffsx_diff + y_diffxy_diff);
dist_cubed = distxdistxdist;
forces[q][X] — Gxmasses[qgJls«masses[k]/dist_cubed % x_diff;
forces[qlLY] — Gsmasses[qlxmasses[k]/dist_cubed % y_diff;

Computation of the Forces (2)

e Direct (naive) computation is wasteful
- actio =reactio i.e. fy = -f,

¢ Individual forces shown as array

0 fo1 foo o fon—1
—Tfo1 0 1§P) SRR S|
o (17) —f2 0 KRR L) |

—ton1 —tipr 1 -0

Reduced Algorithm for Computing Forces

0 fo1 fo2 oo fop—t |
—fo1 0 fi2 EEE S|
—fo —f2 0 EEES X
for each particle g | —fon-1 ~fip1 —f2p1 - 0

forces[qgl = 0;
for each particle q {

for each particle k > g {
x_.diff = poslqJ[X] — pos[kI[X];
ydiff = posl[qllY] — poslkI[Y];
dist = sqrt(x_.diffxx_diff + y_diffxy_diff);
dist_cubed = distxdistxdist;
force_gk[X] = Gxmasses[qlxmasses[k]/dist_cubed x x_diff;
force_qgk[Y] = Gxmasses[qglxmasses[k]/dist_cubed % y_diff

forces[qlJ[X] += force_gk[X];
forces[ql][Y] += force_qgk[Y];
forces[k]J[X] —= force_gk[X];
forces[k][Y] — force_gk[Y];

compute upper triangle force matrix only

Solving the Differential Equation

We compute forces, but we are interested in
positions and velocities of particles

Use force to compute acceleration, velocity and
position with Newton’s law of motion

F,(t) =mga(t) = mys; (t)

We don’t don’t work with an analytic representation
here, thus we numerically solve this ordinary
differential equation

Euler method

— there are many methods for numerically solving differential Leonhard Euler (1707-1783)
equations

- we will use the Euler method, the most basic method

10

e Basic Idea: Approximate a
function with a tangent

¢ Assume we have an
unknown function g for
which we know
1. the value g(t,) at time t, and

2. the derivative g’(t,) of the
function at time t,

e Then we can estimate the
value of g at time g(t)

Euler Method (1)

y = g(to) + &' (to) (t — 1).

hence:

g(t+ Ar) ~ g(tp) + g (o) (t + At — 1) = g(to) + Atg' (tp).

y

g(to) +g'(to) At -
g(t0+ At) 1

9(to)

to to+ At t

11

e The estimate will have an
error, but if the error is
small we can repeat this
scheme to compute
function s(t)

e Hence, we can complete
our pseudo code with the
computation of
the positions and velocities

Euler Method (2)

pos[qllX]
pos[qgllVY]
vel[qlLX]
vellqlLY]

tO T t0+2At T T

to + At to + 3At

+= delta_txvel[ql[X];
+= delta_txvel[qllY];
+= delta-t/masses[ql«xforces[ql[X];
+= delta-t/masses[ql«xforces[q][Y];

numerical integration

12

Parallelizing the N-Body Solvers

e Apply Foster’s methodology
— initially, we want a lot of tasks

- tasks: computations of the positions, the ‘
velocities, and the total forces at each

time step CFalt) D CFO D

e N-Body problems have abundant
parallelism

— O(n? forces that can be computed ‘
Gyt a0) @

independently

g(t+At) g(t+At) A(t+Al) Vv, (t+At)

communication between tasks
(forces between particles g and r)

Task Agglomeration in Basic N-Body Solver

e Most communication occurs only between tasks concerning the same particle,
simplify structure by agglomerating tasks for same time step and particle

S Vo Fyg s,V,F,
: Sq Sy :
t
S S,
\'; v,
F F,
V Sq S, V

14

Task Agglomeration in Reduced N-Body Solver

q r
s/(t)
t
7 '
for(t)
S S,
2 Vv,
F, F,
s, (f+ At)
for-(t+Af)

forces are computed only once: hence, task q sends f,,

to task r instead of its position .5

Mapping Computations to Cores

e |ast step of Foster’s method
— the algorithm offers plenty of parallelism
— typically the number of particles is very high (orders of magnitude higher the #cores)

for each timestep {
if (timestep output) Print positions and velocities of

particles;
for each particle ¢ . . .
Compute total force on q; iterating over particles

for each particle g
Compute position and velocity of q;

)
e (Considerations

— Euler methods must know s(t), v,(t) and a,(t) to estimate s (t+At) and v, (t+At), hence assigning
particles to same core in each time step reduces need for communication

— Assigning each core the same number of particles works for basic solver but leads to a load
imbalance on reduced solver

16

il

ild

First Attempt for OpenMP Parallelization

for each timestep {
if (timestep output) Print positions and velocities of
particles;
pragma omp parallel for
for each particle q
Compute total force on q;
pragma omp parallel for
for each particle q
Compute position and velocity of q;

Are there race conditions caused by
loop-carried dependences?

17

First Loop

pragma omp parallel for
for each particle q {
forces[ql[X] = forces[qllY] = 0;
for each particle k != q {
x.diff = pos[qllX] — pos[k]J[X];
y-diff = poslqllY] — posl[k]1[Y];
dist = sqrt(x.diffsx_diff + y_diff*xy_diff);
dist_cubed = distxdistxdist;
forces[ql[X] — Gsxmasses[qlxmasses[k]/dist_cubed x x_diff;
forces[ql[Y] — Gxmasses[qglxmasses[k]/dist_cubed % y_diff;
}
}

e No race conditions

— iterations of outer loop (for each particle q) are partitioned among the threads, hence, only one
thread ever writes to forces[q] array for a given particle q

— shared arrays pos and masses are only read
— the other variables hold only temporary values and can have private scope

18

Second loop

pragma omp parallel for
for each particle q {
pos[ql[X] += delta_txvell[qll[X];
pos[ql[Y] += delta_txvell[qllVY];
vel[qlLX] += delta_t/masseslqlxforceslqllX];
vel[qlLY] += delta_t/masses[qglxforces[q]LY];

}

¢ No race conditions either
— arrays pos, vel, forces are accessed only by a single thread for any particle q
— scalar delta_t is only read

19

il

il

il

il

Reduce Forking and Joining of Threads

the same team of threads will be used

/ in both loops and for every iteration

pragma omp paralle] of the outer loop

for each timestep {
if (timestep output) {
pragma omp single
Print positions and

elocities of particles;

}

pragma omp for

for each particle ¢
Compute total force on q;

pragma omp for

for each particle g ensure that only a

Compute position and velocity of q; Sir_lglethread will
] print all the

positions and
velocities

20

Parallelizing the Reduced Solver w/ OpenMP

pragma omp parallel
for each timestep {
if (timestep output) {
it pragma omp single
Print positions and velocities of particles;
}
it pragma omp for
for each particle g
forces[ql = 0.0;
it pragma omp for
for each particle g
Compute total force on q;
it pragma omp for
for each particle g
Compute position and velocity of q;

e Consideration
— does this code have any race conditions?
- is the computational load balanced between threads?

21

e There is a race condition
because writes to the
forces array are not
restricted to particle q

e Example: 4 particles, 2
threads, block partitioning

F3 = -fo3—f13 = f23
thread 0 computes fy; and f;;
thread 1 computes f,;

hence: updates to F; create a
race condition

Race Condition in Reduced Solver

pragma omp for /x Can be faster than memset x/
for each particle q {
force_gk[X] = force_qgk[Y] = 0;
for each particle k > q {
x.diff = pos[qlLX] — pos[kI[X];
y-diff = poslqllY] — posCkILY];
dist = sqrt(x.diffsx.diff + y_diffxy.diff);
dist_cubed = distxdistxdist;
force_gk[X] = Gsxmasses[ql«masses[k]/dist_cubed x x_diff;
force_gk[Y] = Gsmasses[qls«masses[k]l/dist_cubed * y_diff;

forces[ql[X] += force_gk[X];
forces[qllY] += force_gk[VY];
forces[k]J[X] — force_gk[X];
forces[k]J[Y] —= force_gk[Y];

22

;_\~ before all the updates to forces

First Solution Attempt

pragma omp critical

{
forces[qlLX]

forces[qlLY]
forces[k][X]
forces[k]LY]

J

e C(Critical section with #pragma omp critical has severe drawbacks

+= force_qk[X];
+= force_gk[Y];
— force_qk[X];
— force_qk[Y];

— access to forces arrays is effectively serialized

— using a named critical section (one per thread) doesn’t help either, because OpenMP supports

only statically named critical sections

23

Second Solution Attempt

omp_set_lTock(&locks[qgl);
forces[qJ[X] += force_gk[X];
forces[qJ[Y] += force_gk[Y];
omp-unset_lock(&locks[q]l);

omp_set_Tock(&locks[k]);
forces[k][X] — force_qk[X];
forces[k]J[Y] — force_qk[Y];
omp_unset_lTock(&locks[k]);

¢ Avoid global mutex on forces array, use fine-grained lock
— OpenMP provides a library functions for locking
— use one lock for each particle

e Performs much better than global lock but still very high overheads
— system call for every lock

¢ |dea for improvement
— use private forces array per thread, do summation later

24

First Phase for Reduced Alg. (Block Partitioning)

e Block partitioning leads to very poor load balancing

for each particle q {
for each particle k > g {
compute force f,

}
}

responsible | forces computed
for particles

0 0 f01, f02, 03, f04, f05
1 f12, f13, f14, f15

1 2 £23, 24, 25
3 f34, 35

2 4 f45
5 —

25

First Phase for Reduced Alg. (Cyclic Partitioning)

e (Cyclic partitioning improves load balancing

responsible | forces computed
for particles

0 0 f01, f02, 03, f04, f05
3 f34, 35

1 1 f12, f13, f14, f15
4 f45

2 2 £23, 24, 25
5

26

Revised Algorithm - Phase |

pragma omp for
for each particle q {

force_gk[X] = force_gk[Y] = 0;

for each particle k > q {
x-.diff = poslqllX] — pos[k]J[X];
y-diff = posl[qllY] — poslkILY];
dist = sqrt(x.diffsx_diff + y_.diffxy_diff);
dist_.cubed = distxdistxdist;
force_gk[X] = Gxmasses[qglxmasses[k]/dist_cubed x x_diff;
force_gk[Y] = Gxmasses[qlxmasses[k]/dist_cubed x y_diff;

loc_forces[my_rank][ql[X] += force_qk[X];
loc_forces[my_rank][qllY] += force_qk[Y];
loc_forces[my_rank][k][X] — force_qk[X];
loc_forces[my_rank][k][Y] — force_gk[Y];

}
}
e Store forces into thread-local array 1loc_forces (no race conditions)

e Aggregate forces in Phase i

27

Revised Algorithm - Phase I

pragma omp for
for (q =0; g < n; g++t) {
forces[ql[X] = forces[qllY] = 0;
for (thread = 0; thread < thread_.count; thread++) {
forces[ql[X] += loc_forces[thread][ql[X];
forces[qlLY] += loc_forces[threadllqllY];

}
e Each thread adds the forces computed by all the threads for its assigned particles

e Ensure we didn’t introduce new race conditions
— phase 1: all writes only to thread-private arrays — OK
— phase 2: threads only write to global forces array for their assigned particles — OK

— implied barrier guarantees that phase 2 starts only after completion
of phase 1 —» OK

28

Parallelizing the Solvers Using Pthreads

¢ The parallelization with Pthreads works very similar
to OpenMP with two main differences

e 1. Barriers

— not all Pthreads implementations provide barriers which is
needed after the end of inner loops

— Hence, if no barrier is available we need to either join and
re-spawn the threads or use a condition variable

e 2. Loop parallelization

— due to the lack of a “parallel for”-like operation in Pthreads
the assignment of loop iterations to threads must be coded
explicitly

code: cf. implementation provided by Pacheo

29

Parallelizing the Basic Solver Using MPI

Basic parallelization of N-Body code with MPI is fairly straight-forward
For computing new position of a particle the following data is needed

previous position and velocity of particle
positions and masses of all other particles

Strategy

assign each process an equal share of particles

keep copy of all data required to compute forces for assigned particles in each process
compute forces, velocities and new positions

re-distribute positions at end of time step with MPI_Allgather

30

process 0

Parallelizing the Basic Solver Using MPI (2)

process 1

process 2

process 3

Mo

my

my27

Vo

Vq

Vio27

So

$q

S127

31

Parallelizing the Basic Solver Using MPI (2)

process 0 process 1 process 2 process 3
Mo | M M127
Yo | V1 V127
S0 | S 127

Broadcast(m)

Broadcast(s)

Scatter(v)
Mo | M M27 Mo | M M127 Mo | M M127 Mo | M M127
S0 | S 127 S0 | S 127 S0 | S 127 S0 | S 127
Vo | V1 V31 V32 | V33 V63 Vo4 | Ves Vo5 Vo | Vo7 V127

Parallelizing the Basic Solver Using MPI (2)

process 0 process 1 process 2 process 3
Mo | M4 Mq27
Vo [1 Vi27
S0 | S 127

Broadcast(m)

Broadcast(s)

Scatter(v)
Mo | M4 Mq27 Mo | My Mq27 Mo | My M127 Mo | My M127
S0 | S 127 S0 | S 127 S0 | S 127 S0 | S 127
Vo | V4 | V3 Va2 | Va3 | .- | V63 Vea | V65 | .- | Vo5 Vog | Vo7 | .o V127

* compute forces fy 34 using mand s
* compute new positions S,O..31 with
integration using fO..31 and vg 34

So

S S'31

» compute forces f32..63 using m and s
* compute new positions s'go gg With
integration using f35 gz and vy oq

) ’)

$32|%33| .- |%63

» compute forces f64..95 using m and s
* compute new positions ', gg With
integration using fg4 g5 and vgy g5

Se4|%65| -+ |[So95

» compute forces f96..127 using m and s
* compute new positions S'gg 197 With
integration using fgg 407 and vgg 157

Sog |S97| ... [S127

33

Parallelizing the Basic Solver Using MPI (2)

process 0 process 1 process 2 process 3
Mo | M4 Mq27
Vo [1 Vi27
S0 | S 127

Broadcast(m)

Broadcast(s)

Scatter(v)
Mo | M4 Mq27 Mo | My Mq27 Mo | My M127 Mo | My Mqy27
S0 | S 127 S0 | S 127 S0 | S 127 S0 | S 127
Vo | V4 | V3 Va2 | Va3 | .- | V63 Vea | V65 | .- | Vo5 Vog | Vo7 | .o V127

* compute forces fy 34 using mand s
* compute new positions s’0.'31 with
integration using fO..31 and vg 34

So

S S'31

MPI_AIIgathelf'(.'J;"s’ ... s[0] ...)

S0 |---| S31 Sq27

» compute forces f32..63 using m and s
* compute new positions s'go gg With
integration using f35 gz and vy oq

) ’)

$32|%33| .- |%63

MPI_Allgather(... s’ ;.. s[32] ...)

S32 | ... | S63 | --- [S127

» compute forces f64..95 using m and s
* compute new positions ', gg With
integration using fg4 g5 and vgy g5

Se4|%65| -+ |[So95

MPI_Aligather(... s’ .., s[64] ...

So | ... | Sea |.--| S95 | ... [S127

» compute forces f96..127 using m and s
* compute new positions S'gg 197 With
integration using fgg 407 and vgg 157

Sog |S97| ... [S127

MPI_Ailgather(... s’ ... s[96] ...)

So So6 | ---[S127

34

Data Structures for Basic Solver Using MPI (1)

e Array of Structs e Flat Arrays

struct particle t {
double mass;
double pos x, pos_y;
double v_x, v y;

}s5

particle_t particles[N];

double mass[N];
double pos_x[N], pos_y[N];
double v_x[N], v_y[N];

— collect all information about particles in - problem data scattered over multiple
single data structure arrays
— can be expressed as MPI derived data — use native MPI data types
type — communication requires several MPI
— can be communicated with single MPI transfers (one per array)
transfer — communicating basic MPI types is fast
— communication of derived data types can (simple marshalling)
be slower (marshalling MPI message) — more flexible, allows to communicate just

required arrays instead of whole structure

35

Data Structures for Basic Solver Using MPI (2)

Choices in Paceo’s implementation

Each rank stores
— masses for all particles (immutable data, prevent retransmission)
— positions of all particles (enables to compute all forces)
— velocities and new positions for owned particles

Data stored as simple arrays of tuples

— position and velocity are vectors with 2 components (X, y)
— definition of derived MPI data type vect _mpi_t for tuples (vector of two doubles)

Tradeoffs
— pro: simple implementation
— con: duplication of data, (masses, positions)

— acceptable solution for small problems, but for large problems an implementation with less
redundant data storage is required (see Ring Buffer scheme, discussed later)

36

—_ =

—_ O 0 0 1IN Dt W

Pseudo-Code for the MPI Version of the
Basic N-Body Solver

Get input data;
for each timestep {
if (timestep output)
Print positions and velocities of particles;
for each local particle loc_q
Compute total force on loc_q;
for each local particle loc_q
Compute position and velocity of loc_q;
Allgather Tocal positions into global pos array;

}

Print positions and velocities of particles;

37

Pseudo-Code for Input and Output

if (my_rank == @) {
for each particle
Read masses[particle], pos[particle], vel[particle];
}
MPI Bcast(masses, n, MPI DOUBLE, @, comm);
MPI Bcast(pos, n, vect mpi_ t @, comm);
MPI Scatter(vel, loc _n, vect mpi t, loc vel, loc_n, vect mpi t, @, comm);

Input / Distribute data to processes

Gather velocities onto process 0;
if (my_rank == 0) /[
Print timestep;
for each particle
Print pos[particle] and vel[particle]

Output

38

MPI Implementation of a Reduced N-Body Solver

Process 0 Process 1 Process 2
Particles 0,1 2,3 4.5
% $4:55
o7 °%
CYS
Compute
forces
£ A
04, f,
) 205, 28 SN 2
= 15 3, £,
%, 2 5
2, £
Update J
velocities

¢ Difficult and cumbersome to implement

* Irregular communication

— each process must: 1) gather subset of positions; 2) compute forces; 3) scatter forces to
processes that need them

¢ Load balancing further complicates implementation

39

MPI Implementation with Ring Pass

e Obijective: Support simulations with very high particle count
- avoid redundant data storage and computations
— simplify communication scheme
- find different tradeoff between storage, computation and communication

e Approach

— each process owns a subset of particles and is responsible for computing and accumulating the
corresponding forces in the upper triangle matrix (actio)

— the counter-acting force (reactio) are also aggregated but not stored locally but communicated to
the next process

— i.e. each process participates in a ring communication scheme

" receives positions s, masses m and partial forces f;- acting on these particles

= uses additional particle information to compute additional (owned) forces f;* and updates the partial
forces f;- acting on the received particles

= passes the information about particle position and partial forces to the next process in the ring

— after the particle information has passed around the full ring once, process updates s, v, and a for
owned particles

40

Ownership of Particles and Forces

0 fo1 fo2 oo fon—1
—fo1 0 f12 R S
—fo2 o 1) 0 KR X |

| —fon—1 Hvizr —tpu1 - 0

computed by owner of particle 0
computed by owner of particle 1
computed by owner of particle 2

Fy=Fy + Fyt = (o, 1)) + (fe+fy, + f15)

e Example
- 3 processes, 6 particles, cyclic partitioning
— process 0

owns s0 and s3

computes forces f,,, fy,, o3, fou Tosr f34 T35

sums up owned forces F,*, F;*

contributes to not-owned forces F,, F,, F,, F<

41

data for p0

So,S3 (Mg,M

opt.)

Fo

Fs
data for p2
$2,S5 (My,mg
opt.)
F,
Fe

process 2 ownership

particles: 2,5

Ring Pass Scheme (1)

process 0 ownership
* particles: 0,3
* computes forces:

f01 ’f02'f03'f04'f05

f30f35
* sums up partial forces:

* Fot =for+Hfoatfos+fostfos

data for p1 o Fyt=13,+f5
$1,54 (My, M,
opt.)
Fi
Fo

process 1 ownership
* particles: 1,4

42

Ring Pass Scheme (2)

Algorithm for each time step

receive message from neighbor
if message origin != my_rank
for each owned force f, , that can be computed with local data and received message
compute f,
update local partial force F* = F* + f |
update partial force in received message F,~ = F~ - f |
pass updated message to neighbor
else
for each owned particle m
F, = F,* + F,
update a(t), v(t), s(t)
endif

43

Performance of the OpenMP and MPI N-Body Solvers

Table 6.5 Performance of the MPI
n-Body Solvers (times in seconds)

Processes Basic Reduced

1 17.30 8.68
2 8.65 4.45
4 4.35 2.30
38 2.20 1.26
6

1 1.13 0.78

Table 6.6 Run-Times for OpenMP and MPI n-Body
Solvers (times in seconds)

Processes/ OpenMP MPI
Threads Basic Reduced Basic Reduced
1 15.13 8.77 17.30 8.68
2 7.62 4.42 8.65 4.45
4 3.85 2.26 4.35 2.30

44

Concluding Remarks

e N-Body problems are used in many areas of science

e This lecture showed very simple, direct solvers
— O(n? in numbers of particles
— simple Euler integration

¢ A lot of progress has bene made in N-Body problems
- methods with lower complexity for computing force fields, e.g. Barnes-Hut, Fast Multipole
— better numerical integration, e.g. Runge-Kutta

45

Acknowledgements

e Peter S. Pacheco / Elsevier
— for providing the lecture slides on which this presentation is based

46

Change log

e 1.2.0 (2018-01-06)

— adapt to new template
— heavily revised description of MPI implementations

e 1.0.1 (2017-02-03)

— minor corrections

e 1.0.0 (2017-02-03)

— initial version of slides

47

