
High-Performance Computing
– Case Study: N-Body Simulations –

Christian Plessl

High-Performance IT Systems Group
Paderborn University, Germany

version 1.2.0 2018-01-08



• Introduction N-Body Problem
• Implementation of parallel N-Body Solvers

– shared memory systems
– distributed memory systems

Outline
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• Compute positions and velocities of a collection of 
interacting particles over a period of time
– many important use cases

• Astrophysics
– particles: stars, planets, ...
– forces: gravitation
– applications: compute formation of galaxies

• Molecular dynamics
– particles: atoms, molecules, ...
– forces: van der Waals, electrostatic, ...
– applications: material science, drug discovery

• N-body solvers compute solution to n-body 
problem by simulating the behavior of the particles

N-Body Problems

mass

positiontime 0velocitytime 0

positiontime xvelocitytime x

N-body solver
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Simulating Motion of Planets

Determine the positions and velocities: 
– Newton’s second law of motion
– Newton’s law of universal gravitation

gravitational force (scalar) between particles q and k with masses mq and mk
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particle k is given by

fqk(t) = �
Gmqmk

��sq(t) � sk(t)
��3

⇥
sq(t) � sk(t)

⇤
. (6.1)

Here, G is the gravitational constant (6.673 ⇥ 10�11m3/(kg · s2)), and mq and mk

are the masses of particles q and k, respectively. Also, the notation
��sq(t) � sk(t)

��
represents the distance from particle k to particle q. Note that in general the positions,
the velocities, the accelerations, and the forces are vectors, so we’re using boldface
to represent these variables. We’ll use an italic font to represent the other, scalar,
variables, such as the time t and the gravitational constant G.

We can use Formula 6.1 to find the total force on any particle by adding the forces
due to all the particles. If our n particles are numbered 0,1,2, . . . ,n � 1, then the total
force on particle q is given by

Fq(t) =
n�1X

k=0
k 6=q

fqk = �Gmq

n�1X

k=0
k 6=q

mk

��sq(t) � sk(t)
��3

⇥
sq(t) � sk(t)

⇤
. (6.2)

Recall that the acceleration of an object is given by the second derivative of its posi-
tion and that Newton’s second law of motion states that the force on an object is given
by its mass multiplied by its acceleration, so if the acceleration of particle q is aq(t),
then Fq(t) = mqaq(t) = mqs00

q
(t), where s00

q
(t) is the second derivative of the position

sq(t). Thus, we can use Formula 6.2 to find the acceleration of particle q:

s00
q
(t) = �G

n�1X

j=0
j6=q

mj

��sq(t) � sj(t)
��3

⇥
sq(t) � sj(t)

⇤
. (6.3)

Thus Newton’s laws give us a system of differential equations—equations involving
derivatives—and our job is to find at each time t of interest the position sq(t) and
velocity vq(t) = s0

q
(t).

We’ll suppose that we either want to find the positions and velocities at the times

t = 0,1t,21t, . . . ,T1t,

or, more often, simply the positions and velocities at the final time T1t. Here, 1t and
T are specified by the user, so the input to the program will be n, the number of parti-
cles, 1t, T , and, for each particle, its mass, its initial position, and its initial velocity.
In a fully general solver, the positions and velocities would be three-dimensional vec-
tors, but in order to keep things simple, we’ll assume that the particles will move in
a plane, and we’ll use two-dimensional vectors instead.

The output of the program will be the positions and velocities of the n particles
at the timesteps 0,1t,21t, . . . , or just the positions and velocities at T1t. To get the
output at only the final time, we can add an input option in which the user specifies
whether she only wants the final positions and velocities.

gravitational force (vector) between moving particles q and k 
with positions sq(t) and sk(t)
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Gravitational Force between Masses

• Consider the interaction of all particles with a fixed particle q
– summation forces exerted by all other particle k=0..n-1

• Newton’s second law of motion

• Applied to all particles

272 CHAPTER 6 Parallel Program Development

particle k is given by

fqk(t) = �
Gmqmk

��sq(t) � sk(t)
��3

⇥
sq(t) � sk(t)

⇤
. (6.1)

Here, G is the gravitational constant (6.673 ⇥ 10�11m3/(kg · s2)), and mq and mk

are the masses of particles q and k, respectively. Also, the notation
��sq(t) � sk(t)

��
represents the distance from particle k to particle q. Note that in general the positions,
the velocities, the accelerations, and the forces are vectors, so we’re using boldface
to represent these variables. We’ll use an italic font to represent the other, scalar,
variables, such as the time t and the gravitational constant G.

We can use Formula 6.1 to find the total force on any particle by adding the forces
due to all the particles. If our n particles are numbered 0,1,2, . . . ,n � 1, then the total
force on particle q is given by

Fq(t) =
n�1X

k=0
k 6=q

fqk = �Gmq

n�1X

k=0
k 6=q

mk

��sq(t) � sk(t)
��3

⇥
sq(t) � sk(t)

⇤
. (6.2)

Recall that the acceleration of an object is given by the second derivative of its posi-
tion and that Newton’s second law of motion states that the force on an object is given
by its mass multiplied by its acceleration, so if the acceleration of particle q is aq(t),
then Fq(t) = mqaq(t) = mqs00

q
(t), where s00

q
(t) is the second derivative of the position

sq(t). Thus, we can use Formula 6.2 to find the acceleration of particle q:

s00
q
(t) = �G

n�1X

j=0
j6=q

mj

��sq(t) � sj(t)
��3

⇥
sq(t) � sj(t)

⇤
. (6.3)
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q
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We’ll suppose that we either want to find the positions and velocities at the times

t = 0,1t,21t, . . . ,T1t,

or, more often, simply the positions and velocities at the final time T1t. Here, 1t and
T are specified by the user, so the input to the program will be n, the number of parti-
cles, 1t, T , and, for each particle, its mass, its initial position, and its initial velocity.
In a fully general solver, the positions and velocities would be three-dimensional vec-
tors, but in order to keep things simple, we’ll assume that the particles will move in
a plane, and we’ll use two-dimensional vectors instead.

The output of the program will be the positions and velocities of the n particles
at the timesteps 0,1t,21t, . . . , or just the positions and velocities at T1t. To get the
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We’ll suppose that we either want to find the positions and velocities at the times
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or, more often, simply the positions and velocities at the final time T1t. Here, 1t and
T are specified by the user, so the input to the program will be n, the number of parti-
cles, 1t, T , and, for each particle, its mass, its initial position, and its initial velocity.
In a fully general solver, the positions and velocities would be three-dimensional vec-
tors, but in order to keep things simple, we’ll assume that the particles will move in
a plane, and we’ll use two-dimensional vectors instead.

The output of the program will be the positions and velocities of the n particles
at the timesteps 0,1t,21t, . . . , or just the positions and velocities at T1t. To get the
output at only the final time, we can add an input option in which the user specifies
whether she only wants the final positions and velocities.
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Basic Idea for N-Body Solver

• Goal: determine position and velocity at discrete time steps

• Pseudo code
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6.1.2 Two serial programs
In outline, a serial n-body solver can be based on the following pseudocode:

1 Get input data;
2 for each timestep {
3 if (timestep output) Print positions and velocities of

particles;
4 for each particle q
5 Compute total force on q;
6 for each particle q
7 Compute position and velocity of q;
8 }
9 Print positions and velocities of particles;

We can use our formula for the total force on a particle (Formula 6.2) to refine our
pseudocode for the computation of the forces in Lines 4–5:

for each particle q {
for each particle k != q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
forces[q][X] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
forces[q][Y] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

}
}

Here, we’re assuming that the forces and the positions of the particles are stored as
two-dimensional arrays, forces and pos, respectively. We’re also assuming we’ve
defined constants X = 0 and Y = 1. So the x-component of the force on particle
q is forces[q][X] and the y-component is forces[q][Y]. Similarly, the compo-
nents of the position are pos[q][X] and pos[q][Y]. (We’ll take a closer look at data
structures shortly.)

We can use Newton’s third law of motion, that is, for every action there is an
equal and opposite reaction, to halve the total number of calculations required for the
forces. If the force on particle q due to particle k is fqk, then the force on k due to q is
�fqk. Using this simplification we can modify our code to compute forces, as shown
in Program 6.1. To better understand this pseudocode, imagine the individual forces
as a two-dimensional array:

2

666664

0 f01 f02 · · · f0,n�1
�f01 0 f12 · · · f1,n�1
�f02 �f12 0 · · · f2,n�1

...
...

...
. . .

...
�f0,n�1 �f1,n�1 �f2,n�1 · · · 0

3

777775
.

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q = 0, the body of the loop

6



Computation of the Forces

• Data structures
– pos[] array containing the positions of the particles
– forces[] array for summing forces exerted on each particle in a time step

• Direct computation
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In outline, a serial n-body solver can be based on the following pseudocode:
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2 for each timestep {
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7 Compute position and velocity of q;
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We can use our formula for the total force on a particle (Formula 6.2) to refine our
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Computation of the Forces (2)

• Direct (naïve) computation is wasteful
– actio = reactio i.e. fqk = -fkq

• Individual forces shown as array
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2

666664

0 f01 f02 · · · f0,n�1
�f01 0 f12 · · · f1,n�1
�f02 �f12 0 · · · f2,n�1

...
...

...
. . .

...
�f0,n�1 �f1,n�1 �f2,n�1 · · · 0

3

777775
.

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q = 0, the body of the loop
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Reduced Algorithm for Computing Forces
274 CHAPTER 6 Parallel Program Development

for each particle q
forces[q] = 0;

for each particle q {
for each particle k > q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
force qk[X] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
force qk[Y] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];

}
}

Program 6.1: A reduced algorithm for computing n-body forces

for each particle q will add the entries in row 0 into forces[0]. It will also add
the kth entry in column 0 into forces[k] for k = 1,2, . . . ,n � 1. In general, the qth
iteration will add the entries to the right of the diagonal (that is, to the right of the 0)
in row q into forces[q], and the entries below the diagonal in column q will be
added into their respective forces, that is, the kth entry will be added in to forces[k].

Note that in using this modified solver, it’s necessary to initialize the forces
array in a separate loop, since the qth iteration of the loop that calculates the forces
will, in general, add the values it computes into forces[k] for k = q + 1,q + 2, . . . ,
n � 1, not just forces[q].

In order to distinguish between the two algorithms, we’ll call the n-body solver
with the original force calculation, the basic algorithm, and the solver with the
number of calculations reduced, the reduced algorithm.

The position and the velocity remain to be found. We know that the acceleration
of particle q is given by

aq(t) = s00
q
(t) = Fq(t)/mq,

where s00
q
(t) is the second derivative of the position sq(t) and Fq(t) is the force on

particle q. We also know that the velocity vq(t) is the first derivative of the position
s0

q
(t), so we need to integrate the acceleration to get the velocity, and we need to

integrate the velocity to get the position.
We might at first think that we can simply find an antiderivative of the function in

Formula 6.3. However, a second look shows us that this approach has problems: the
right-hand side contains unknown functions sq and sk—not just the variable t—so
we’ll instead use a numerical method for estimating the position and the velocity.
This means that rather than trying to find simple closed formulas, we’ll approximate

6.1 Two n-Body Solvers 273
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In outline, a serial n-body solver can be based on the following pseudocode:

1 Get input data;
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8 }
9 Print positions and velocities of particles;

We can use our formula for the total force on a particle (Formula 6.2) to refine our
pseudocode for the computation of the forces in Lines 4–5:

for each particle q {
for each particle k != q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
forces[q][X] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
forces[q][Y] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;
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Here, we’re assuming that the forces and the positions of the particles are stored as
two-dimensional arrays, forces and pos, respectively. We’re also assuming we’ve
defined constants X = 0 and Y = 1. So the x-component of the force on particle
q is forces[q][X] and the y-component is forces[q][Y]. Similarly, the compo-
nents of the position are pos[q][X] and pos[q][Y]. (We’ll take a closer look at data
structures shortly.)

We can use Newton’s third law of motion, that is, for every action there is an
equal and opposite reaction, to halve the total number of calculations required for the
forces. If the force on particle q due to particle k is fqk, then the force on k due to q is
�fqk. Using this simplification we can modify our code to compute forces, as shown
in Program 6.1. To better understand this pseudocode, imagine the individual forces
as a two-dimensional array:

2

666664

0 f01 f02 · · · f0,n�1
�f01 0 f12 · · · f1,n�1
�f02 �f12 0 · · · f2,n�1

...
...

...
. . .
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�f0,n�1 �f1,n�1 �f2,n�1 · · · 0

3

777775
.

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q = 0, the body of the loop

compute upper triangle force matrix only
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• We compute forces, but we are interested in 
positions and velocities of particles

• Use force to compute acceleration, velocity and 
position with Newton’s law of motion

• We don’t don’t work with an analytic representation 
here, thus we numerically solve this ordinary 
differential equation

• Euler method
– there are many methods for numerically solving differential 

equations
– we will use the Euler method, the most basic method

10

Solving the Differential Equation
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Leonhard Euler (1707-1783)



• Basic Idea: Approximate a 
function with a tangent

• Assume we have an 
unknown function g for 
which we know
1. the value g(t0) at time t0 and
2. the derivative g’(t0) of the 

function at time t0

• Then we can estimate the 
value of g at time g(t)

Euler Method (1)

6.1 Two n-Body Solvers 275

y

y =g(t0 )+g′(t0 ) (t– t0 )

t0 t

y=g(t)

g(t0 +∆t)

t0 +∆t

g(t0 )

g(t0 )+g′(t0 ) ∆t

FIGURE 6.1

Using the tangent line to approximate a function

the values of the position and velocity at the times of interest. There are many possible
choices for numerical methods, but we’ll use the simplest one: Euler’s method, which
is named after the famous Swiss mathematician Leonhard Euler (1707–1783). In
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0(t0) at time t0, then we can approximate its value at time t0 + 1t by using the tangent

line to the graph of g(t0). See Figure 6.1 for an example. Now if we know a point
(t0,g(t0)) on a line, and we know the slope of the line g

0(t0), then an equation for the
line is given by

y = g(t0) + g
0(t0)(t � t0).

Since we’re interested in the time t = t0 + 1t, we get

g(t + 1t) ⇡ g(t0) + g
0(t0)(t + 1t � t) = g(t0) + 1tg

0(t0).

Note that this formula will work even when g(t) and y are vectors: when this is the
case, g

0(t) is also a vector and the formula just adds a vector to a vector multiplied by
a scalar, 1t.

Now we know the value of sq(t) and s0
q
(t) at time 0, so we can use the tangent line

and our formula for the acceleration to compute sq(1t) and vq(1t):
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q
(0) = sq(0) + 1t vq(0),

vq(1t) ⇡ vq(0) + 1t v0
q
(0) = vq(0) + 1t aq(0) = vq(0) + 1t

1
mq

Fq(0).

When we try to extend this approach to the computation of sq(21t) and s0
q
(21t), we

see that things are a little bit different, since we don’t know the exact value of sq(1t)
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• The estimate will have an 
error, but if the error is 
small we can repeat this 
scheme to compute 
function s(t)

• Hence, we can complete 
our pseudo code with the 
computation of 
the positions and velocities

Euler Method (2)276 CHAPTER 6 Parallel Program Development
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Euler’s method

and s0
q
(1t). However, if our approximations to sq(1t) and s0

q
(1t) are good, then we

should be able to get a reasonably good approximation to sq(21t) and s0
q
(21t) using

the same idea. This is what Euler’s method does (see Figure 6.2).
Now we can complete our pseudocode for the two n-body solvers by adding in

the code for computing position and velocity:

pos[q][X] += delta t⇤vel[q][X];
pos[q][Y] += delta t⇤vel[q][Y];
vel[q][X] += delta t/masses[q]⇤forces[q][X];
vel[q][Y] += delta t/masses[q]⇤forces[q][Y];

Here, we’re using pos[q], vel[q], and forces[q] to store the position, the velocity,
and the force, respectively, of particle q.

Before moving on to parallelizing our serial program, let’s take a moment to look
at data structures. We’ve been using an array type to store our vectors:

#define DIM 2

typedef double vect t[DIM];

A struct is also an option. However, if we’re using arrays and we decide to change
our program so that it solves three-dimensional problems, in principle, we only need
to change the macro DIM. If we try to do this with structs, we’ll need to rewrite the
code that accesses individual components of the vector.

For each particle, we need to know the values of

. its mass,. its position,
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Here, we’re using pos[q], vel[q], and forces[q] to store the position, the velocity,
and the force, respectively, of particle q.

Before moving on to parallelizing our serial program, let’s take a moment to look
at data structures. We’ve been using an array type to store our vectors:

#define DIM 2

typedef double vect t[DIM];

A struct is also an option. However, if we’re using arrays and we decide to change
our program so that it solves three-dimensional problems, in principle, we only need
to change the macro DIM. If we try to do this with structs, we’ll need to rewrite the
code that accesses individual components of the vector.

For each particle, we need to know the values of

. its mass,. its position,

velocities from previous
time step

numerical integration
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• Apply Foster’s methodology
– initially, we want a lot of tasks
– tasks: computations of the positions, the 

velocities, and the total forces at each 
time step

• N-Body problems have abundant 
parallelism
– O(n2) forces that can be computed 

independently

13
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Communications among tasks in the basic n-body solver

computation of Fq(t), the total force on particle q at time t, requires the positions
of each of the particles sr(t), for each r. The computation of vq(t + 1t) requires the
velocity at the previous timestep, vq(t), and the force, Fq(t), at the previous timestep.
Finally, the computation of sq(t + 1t) requires sq(t) and vq(t). The communications
among the tasks can be illustrated as shown in Figure 6.3. The figure makes it clear
that most of the communication among the tasks occurs among the tasks associated
with an individual particle, so if we agglomerate the computations of sq(t),vq(t), and
Fq(t), our intertask communication is greatly simplified (see Figure 6.4). Now the
tasks correspond to the particles and, in the figure, we’ve labeled the communications
with the data that’s being communicated. For example, the arrow from particle q at
timestep t to particle r at timestep t is labeled with sq, the position of particle q.

For the reduced algorithm, the “intra-particle” communications are the same. That
is, to compute sq(t + 1t) we’ll need sq(t) and vq(t), and to compute vq(t + 1t),
we’ll need vq(t) and Fq(t). Therefore, once again it makes sense to agglomerate the
computations associated with a single particle into a composite task.
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Communications among agglomerated tasks in the basic n-body solver
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Task Agglomeration in Basic N-Body Solver

• Most communication occurs only between tasks concerning the same particle, 
simplify structure by agglomerating tasks for same time step and particle
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Task Agglomeration in Reduced N-Body Solver

6.1 Two n-Body Solvers 279

q

s q
v q
Fq

s r
v r
Fr

t

r
s r(t)

fqr(t)

t +Δt
s r (t+Δt)

fqr (t+Δt)

FIGURE 6.5

Communications among agglomerated tasks in the reduced n-body solver (q < r)

Recollect that in the reduced algorithm, we make use of the fact that the force
frq = �fqr. So if q < r, then the communication from task r to task q is the same as in
the basic algorithm—in order to compute Fq(t), task/particle q will need sr(t) from
task/particle r. However, the communication from task q to task r is no longer sq(t),
it’s the force on particle q due to particle r, that is, fqr(t). See Figure 6.5.

The final stage in Foster’s methodology is mapping. If we have n particles and
T timesteps, then there will be nT tasks in both the basic and the reduced algorithm.
Astrophysical n-body problems typically involve thousands or even millions of par-
ticles, so n is likely to be several orders of magnitude greater than the number of
available cores. However, T may also be much larger than the number of available
cores. So, in principle, we have two “dimensions” to work with when we map tasks to
cores. However, if we consider the nature of Euler’s method, we’ll see that attempt-
ing to assign tasks associated with a single particle at different timesteps to different
cores won’t work very well. Before estimating sq(t + 1t) and vq(t + 1t), Euler’s
method must “know” sq(t), vq(t), and aq(t). Thus, if we assign particle q at time t to
core c0, and we assign particle q at time t + 1t to core c1 6= c0, then we’ll have to
communicate sq(t),vq(t), and Fq(t) from c0 to c1. Of course, if particle q at time t and
particle q at time t + 1t are mapped to the same core, this communication won’t be
necessary, so once we’ve mapped the task consisting of the calculations for particle q

at the first timestep to core c0, we may as well map the subsequent computations for
particle q to the same cores, since we can’t simultaneously execute the computations
for particle q at two different timesteps. Thus, mapping tasks to cores will, in effect,
be an assignment of particles to cores.

At first glance, it might seem that any assignment of particles to cores that assigns
roughly n/thread count particles to each core will do a good job of balancing
the workload among the cores, and for the basic algorithm this is the case. In the
basic algorithm the work required to compute the position, velocity, and force is
the same for every particle. However, in the reduced algorithm the work required in
the forces computation loop is much greater for lower-numbered iterations than the
work required for higher-numbered iterations. To see this, recall the pseudocode that
computes the total force on particle q in the reduced algorithm:

forces are computed only once: hence, task q sends fqr
to task r instead of its position 15



Mapping Computations to Cores

• Last step of Foster’s method
– the algorithm offers plenty of parallelism
– typically the number of particles is very high (orders of magnitude higher the #cores)

• Considerations
– Euler methods must know sq(t), vq(t) and aq(t) to estimate sq(t+Δt) and vq (t+Δt), hence assigning 

particles to same core in each time step reduces need for communication
– Assigning each core the same number of particles works for basic solver but leads to a load 

imbalance on reduced solver

iterating over particles
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6.1.2 Two serial programs
In outline, a serial n-body solver can be based on the following pseudocode:

1 Get input data;
2 for each timestep {
3 if (timestep output) Print positions and velocities of

particles;
4 for each particle q
5 Compute total force on q;
6 for each particle q
7 Compute position and velocity of q;
8 }
9 Print positions and velocities of particles;

We can use our formula for the total force on a particle (Formula 6.2) to refine our
pseudocode for the computation of the forces in Lines 4–5:

for each particle q {
for each particle k != q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
forces[q][X] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
forces[q][Y] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

}
}

Here, we’re assuming that the forces and the positions of the particles are stored as
two-dimensional arrays, forces and pos, respectively. We’re also assuming we’ve
defined constants X = 0 and Y = 1. So the x-component of the force on particle
q is forces[q][X] and the y-component is forces[q][Y]. Similarly, the compo-
nents of the position are pos[q][X] and pos[q][Y]. (We’ll take a closer look at data
structures shortly.)

We can use Newton’s third law of motion, that is, for every action there is an
equal and opposite reaction, to halve the total number of calculations required for the
forces. If the force on particle q due to particle k is fqk, then the force on k due to q is
�fqk. Using this simplification we can modify our code to compute forces, as shown
in Program 6.1. To better understand this pseudocode, imagine the individual forces
as a two-dimensional array:

2

666664

0 f01 f02 · · · f0,n�1
�f01 0 f12 · · · f1,n�1
�f02 �f12 0 · · · f2,n�1

...
...

...
. . .

...
�f0,n�1 �f1,n�1 �f2,n�1 · · · 0

3

777775
.

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q = 0, the body of the loop
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First Attempt for OpenMP Parallelization

Are there race conditions caused by 
loop-carried dependences?

6.1 Two n-Body Solvers 281

more or less simultaneously, the order in which the output appears will be unpre-
dictable. Even worse, one thread’s output may not even appear as a single line. It
can happen that the output from one thread appears as multiple segments, and the
individual segments are separated by output from other threads.

Thus, as we’ve noted earlier, except for debug output, we generally assume that
one process/thread does all the I/O, and when we’re timing program execution, we’ll
use the option to only print output for the final timestep. Furthermore, we won’t
include this output in the reported run-times.

Of course, even if we’re ignoring the cost of I/O, we can’t ignore its existence.
We’ll briefly discuss its implementation when we discuss the details of our parallel
implementations.

6.1.5 Parallelizing the basic solver using OpenMP
How can we use OpenMP to map tasks/particles to cores in the basic version of our
n-body solver? Let’s take a look at the pseudocode for the serial program:

for each timestep {
if (timestep output) Print positions and velocities of particles;
for each particle q

Compute total force on q;
for each particle q

Compute position and velocity of q;
}

The two inner loops are both iterating over particles. So, in principle, parallelizing
the two inner for loops will map tasks/particles to cores, and we might try something
like this:

for each timestep {
if (timestep output) Print positions and velocities of

particles;
# pragma omp parallel for

for each particle q
Compute total force on q;

# pragma omp parallel for
for each particle q

Compute position and velocity of q;
}

We may not like the fact that this code could do a lot of forking and joining of threads,
but before dealing with that, let’s take a look at the loops themselves: we need to see
if there are any race conditions caused by loop-carried dependences.

In the basic version the first loop has the following form:

# pragma omp parallel for
for each particle q {

forces[q][X] = forces[q][Y] = 0;
for each particle k != q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];

17



First Loop

• No race conditions
– iterations of outer loop (for each particle q) are partitioned among the threads, hence, only one 

thread ever writes to forces[q] array for a given particle q
– shared arrays pos and masses are only read
– the other variables hold only temporary values and can have private scope
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dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
forces[q][X] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
forces[q][Y] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

}
}

Since the iterations of the for each particle q loop are partitioned among the
threads, only one thread will access forces[q] for any q. Different threads do access
the same elements of the pos array and the masses array. However, these arrays are
only read in the loop. The remaining variables are used for temporary storage in a
single iteration of the inner loop, and they can be private. Thus, the parallelization of
the first loop in the basic algorithm won’t introduce any race conditions.

The second loop has the form:

# pragma omp parallel for
for each particle q {

pos[q][X] += delta t⇤vel[q][X];
pos[q][Y] += delta t⇤vel[q][Y];
vel[q][X] += delta t/masses[q]⇤forces[q][X];
vel[q][Y] += delta t/masses[q]⇤forces[q][Y];

}

Here, a single thread accesses pos[q], vel[q], masses[q], and forces[q] for any
particle q, and the scalar variables are only read, so parallelizing this loop also won’t
introduce any race conditions.

Let’s return to the issue of repeated forking and joining of threads. In our
pseudocode, we have

for each timestep {
if (timestep output) Print positions and velocities of

particles;
# pragma omp parallel for

for each particle q
Compute total force on q;

# pragma omp parallel for
for each particle q

Compute position and velocity of q;
}

We encountered a similar issue when we parallelized odd-even transposition sort
(see Section 5.6.2). In that case, we put a parallel directive before the outermost
loop and used OpenMP for directives for the inner loops. Will a similar strategy
work here? That is, can we do something like this?

# pragma omp parallel
for each timestep {

if (timestep output) Print positions and velocities of
particles;

# pragma omp for
for each particle q
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Second loop

• No race conditions either
– arrays pos, vel, forces are accessed only by a single thread for any particle q
– scalar delta_t is only read
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the first loop in the basic algorithm won’t introduce any race conditions.

The second loop has the form:

# pragma omp parallel for
for each particle q {

pos[q][X] += delta t⇤vel[q][X];
pos[q][Y] += delta t⇤vel[q][Y];
vel[q][X] += delta t/masses[q]⇤forces[q][X];
vel[q][Y] += delta t/masses[q]⇤forces[q][Y];

}

Here, a single thread accesses pos[q], vel[q], masses[q], and forces[q] for any
particle q, and the scalar variables are only read, so parallelizing this loop also won’t
introduce any race conditions.

Let’s return to the issue of repeated forking and joining of threads. In our
pseudocode, we have

for each timestep {
if (timestep output) Print positions and velocities of

particles;
# pragma omp parallel for

for each particle q
Compute total force on q;

# pragma omp parallel for
for each particle q

Compute position and velocity of q;
}

We encountered a similar issue when we parallelized odd-even transposition sort
(see Section 5.6.2). In that case, we put a parallel directive before the outermost
loop and used OpenMP for directives for the inner loops. Will a similar strategy
work here? That is, can we do something like this?

# pragma omp parallel
for each timestep {

if (timestep output) Print positions and velocities of
particles;

# pragma omp for
for each particle q
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Compute total force on q;
# pragma omp for

for each particle q
Compute position and velocity of q;

}

This will have the desired effect on the two for each particle loops: the same
team of threads will be used in both loops and for every iteration of the outer loop.
However, we have a clear problem with the output statement. As it stands now, every
thread will print all the positions and velocities, and we only want one thread to do
the I/O. However, OpenMP provides the single directive for exactly this situation:
we have a team of threads executing a block of code, but a part of the code should
only be executed by one of the threads. Adding the single directive gives us the
following pseudocode:

# pragma omp parallel
for each timestep {

if (timestep output) {
# pragma omp single

Print positions and velocities of particles;
}

# pragma omp for
for each particle q

Compute total force on q;
# pragma omp for

for each particle q
Compute position and velocity of q;

}

There are still a few issues that we need to address. The most important has to
do with possible race conditions introduced in the transition from one statement to
another. For example, suppose thread 0 completes the first for each particle loop
before thread 1, and it then starts updating the positions and velocities of its assigned
particles in the second for each particle loop. Clearly, this could cause thread
1 to use an updated position in the first for each particle loop. However, recall
that there is an implicit barrier at the end of each structured block that has been
parallelized with a for directive. So, if thread 0 finishes the first inner loop before
thread 1, it will block until thread 1 (and any other threads) finish the first inner loop,
and it won’t start the second inner loop until all the threads have finished the first. This
will also prevent the possibility that a thread might rush ahead and print positions and
velocities before they’ve all been updated by the second loop.

There’s also an implicit barrier after the single directive, although in this pro-
gram the barrier isn’t necessary. Since the output statement won’t update any memory
locations, it’s OK for some threads to go ahead and start executing the next iteration
before output has been completed. Furthermore, the first inner for loop in the next
iteration only updates the forces array, so it can’t cause a thread executing the output
statement to print incorrect values, and because of the barrier at the end of the first
inner loop, no thread can race ahead and start updating positions and velocities in

Reduce Forking and Joining of Threads

the same team of threads will be used
in both loops and for every iteration 
of the outer loop

ensure that only a 
single thread will 
print all the 
positions and 
velocities
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Parallelizing the Reduced Solver w/ OpenMP

• Consideration
– does this code have any race conditions?
– is the computational load balanced between threads?
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the second inner loop before the output has been completed. Thus, we could modify
the single directive with a nowait clause. If the OpenMP implementation supports
it, this simply eliminates the implied barrier associated with the single directive. It
can also be used with for, parallel for, and parallel directives. Note that in this
case, addition of the nowait clause is unlikely to have much effect on performance,
since the two for each particle loops have implied barriers that will prevent any
one thread from getting more than a few statements ahead of any other.

Finally, we may want to add a schedule clause to each of the for directives in
order to insure that the iterations have a block partition:

# pragma omp for schedule(static, n/thread count)

6.1.6 Parallelizing the reduced solver using OpenMP
The reduced solver has an additional inner loop: the initialization of the forces
array to 0. If we try to use the same parallelization for the reduced solver, we
should also parallelize this loop with a for directive. What happens if we try this?
That is, what happens if we try to parallelize the reduced solver with the following
pseudocode?

# pragma omp parallel
for each timestep {

if (timestep output) {
# pragma omp single

Print positions and velocities of particles;
}

# pragma omp for
for each particle q

forces[q] = 0.0;
# pragma omp for

for each particle q
Compute total force on q;

# pragma omp for
for each particle q

Compute position and velocity of q;
}

Parallelization of the initialization of the forces should be fine, as there’s no depen-
dence among the iterations. The updating of the positions and velocities is the same
in both the basic and reduced solvers, so if the computation of the forces is OK, then
this should also be OK.

How does parallelization affect the correctness of the loop for computing the
forces? Recall that in the reduced version, this loop has the following form:

# pragma omp for /⇤ Can be faster than memset ⇤/
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {
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• There is a race condition 
because writes to the 
forces array are not 
restricted to particle q

• Example: 4 particles, 2 
threads, block partitioning
– F3 = -f03 –f13 – f23

– thread 0 computes f03 and f13

– thread 1 computes f23
– hence: updates to F3 create a 

race condition

Race Condition in Reduced Solver
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the second inner loop before the output has been completed. Thus, we could modify
the single directive with a nowait clause. If the OpenMP implementation supports
it, this simply eliminates the implied barrier associated with the single directive. It
can also be used with for, parallel for, and parallel directives. Note that in this
case, addition of the nowait clause is unlikely to have much effect on performance,
since the two for each particle loops have implied barriers that will prevent any
one thread from getting more than a few statements ahead of any other.

Finally, we may want to add a schedule clause to each of the for directives in
order to insure that the iterations have a block partition:

# pragma omp for schedule(static, n/thread count)

6.1.6 Parallelizing the reduced solver using OpenMP
The reduced solver has an additional inner loop: the initialization of the forces
array to 0. If we try to use the same parallelization for the reduced solver, we
should also parallelize this loop with a for directive. What happens if we try this?
That is, what happens if we try to parallelize the reduced solver with the following
pseudocode?

# pragma omp parallel
for each timestep {

if (timestep output) {
# pragma omp single

Print positions and velocities of particles;
}

# pragma omp for
for each particle q

forces[q] = 0.0;
# pragma omp for

for each particle q
Compute total force on q;

# pragma omp for
for each particle q

Compute position and velocity of q;
}

Parallelization of the initialization of the forces should be fine, as there’s no depen-
dence among the iterations. The updating of the positions and velocities is the same
in both the basic and reduced solvers, so if the computation of the forces is OK, then
this should also be OK.

How does parallelization affect the correctness of the loop for computing the
forces? Recall that in the reduced version, this loop has the following form:

# pragma omp for /⇤ Can be faster than memset ⇤/
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {
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x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
force qk[X] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
force qk[Y] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];

}
}

As before, the variables of interest are pos, masses, and forces, since the values in
the remaining variables are only used in a single iteration, and hence, can be private.
Also, as before, elements of the pos and masses arrays are only read, not updated.
We therefore need to look at the elements of the forces array. In this version, unlike
the basic version, a thread may update elements of the forces array other than those
corresponding to its assigned particles. For example, suppose we have two threads
and four particles and we’re using a block partition of the particles. Then the total
force on particle 3 is given by

F3 = �f03 � f13 � f23.

Furthermore, thread 0 will compute f03 and f13, while thread 1 will compute f23. Thus,
the updates to forces[3] do create a race condition. In general, then, the updates to
the elements of the forces array introduce race conditions into the code.

A seemingly obvious solution to this problem is to use a critical directive
to limit access to the elements of the forces array. There are at least a couple of
ways to do this. The simplest is to put a critical directive before all the updates to
forces

# pragma omp critical
{

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];

}

However, with this approach access to the elements of the forces array will be
effectively serialized. Only one element of forces can be updated at a time, and
contention for access to the critical section is actually likely to seriously degrade the
performance of the program. See Exercise 6.3.

An alternative would be to have one critical section for each particle. However,
as we’ve seen, OpenMP doesn’t readily support varying numbers of critical sections,
so we would need to use one lock for each particle instead and our updates would
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First Solution Attempt

• Critical section with #pragma omp critical has severe drawbacks
– access to forces arrays is effectively serialized
– using a named critical section (one per thread) doesn’t help either, because OpenMP supports 

only statically named critical sections

before all the updates to forces
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x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
force qk[X] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
force qk[Y] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];

}
}

As before, the variables of interest are pos, masses, and forces, since the values in
the remaining variables are only used in a single iteration, and hence, can be private.
Also, as before, elements of the pos and masses arrays are only read, not updated.
We therefore need to look at the elements of the forces array. In this version, unlike
the basic version, a thread may update elements of the forces array other than those
corresponding to its assigned particles. For example, suppose we have two threads
and four particles and we’re using a block partition of the particles. Then the total
force on particle 3 is given by

F3 = �f03 � f13 � f23.

Furthermore, thread 0 will compute f03 and f13, while thread 1 will compute f23. Thus,
the updates to forces[3] do create a race condition. In general, then, the updates to
the elements of the forces array introduce race conditions into the code.

A seemingly obvious solution to this problem is to use a critical directive
to limit access to the elements of the forces array. There are at least a couple of
ways to do this. The simplest is to put a critical directive before all the updates to
forces

# pragma omp critical
{

forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];

}

However, with this approach access to the elements of the forces array will be
effectively serialized. Only one element of forces can be updated at a time, and
contention for access to the critical section is actually likely to seriously degrade the
performance of the program. See Exercise 6.3.

An alternative would be to have one critical section for each particle. However,
as we’ve seen, OpenMP doesn’t readily support varying numbers of critical sections,
so we would need to use one lock for each particle instead and our updates would
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Second Solution Attempt

• Avoid global mutex on forces array, use fine-grained lock
– OpenMP provides a library functions for locking
– use one lock for each particle

• Performs much better than global lock but still very high overheads
– system call for every lock

• Idea for improvement
– use private forces array per thread, do summation later

286 CHAPTER 6 Parallel Program Development

look something like this:

omp set lock(&locks[q]);
forces[q][X] += force qk[X];
forces[q][Y] += force qk[Y];
omp unset lock(&locks[q]);

omp set lock(&locks[k]);
forces[k][X] �= force qk[X];
forces[k][Y] �= force qk[Y];
omp unset lock(&locks[k]);

This assumes that the master thread will create a shared array of locks, one for
each particle, and when we update an element of the forces array, we first set
the lock corresponding to that particle. Although this approach performs much bet-
ter than the single critical section, it still isn’t competitive with the serial code. See
Exercise 6.4.

Another possible solution is to carry out the computation of the forces in two
phases. In the first phase, each thread carries out exactly the same calculations it
carried out in the erroneous parallelization. However, now the calculations are stored
in its own array of forces. Then, in the second phase, the thread that has been assigned
particle q will add the contributions that have been computed by the different threads.
In our example above, thread 0 would compute �f03 � f13, while thread 1 would
compute �f23. After each thread was done computing its contributions to the forces,
thread 1, which has been assigned particle 3, would find the total force on particle 3
by adding these two values.

Let’s look at a slightly larger example. Suppose we have three threads and six
particles. If we’re using a block partition of the particles, then the computations in
the first phase are shown in Table 6.1. The last three columns of the table show
each thread’s contribution to the computation of the total forces. In phase 2 of the
computation, the thread specified in the first column of the table will add the contents
of each of its assigned rows—that is, each of its assigned particles.

Note that there’s nothing special about using a block partition of the particles.
Table 6.2 shows the same computations if we use a cyclic partition of the particles.

Table 6.1 First-Phase Computations for a Reduced Algorithm

with Block Partition

Thread

Thread Particle 0 1 2

0 0 f01 + f02 + f03 + f04 + f05 0 0

1 �f01 + f12 + f13 + f14 + f15 0 0

1 2 �f02 � f12 f23 + f24 + f25 0

3 �f03 � f13 �f23 + f34 + f35 0

2 4 �f04 � f14 �f24 � f34 f45

5 �f05 � f15 �f25 � f35 �f45
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First Phase for Reduced Alg. (Block Partitioning)

• Block partitioning leads to very poor load balancing

for each particle q {
for each particle k > q {

compute force fqk
}

}

thread responsible 
for particles

forces computed

0 0
1

f01, f02, f03, f04, f05
f12, f13, f14, f15

1 2
3

f23, f24, f25
f34, f35

2 4
5

f45
–
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First Phase for Reduced Alg.  (Cyclic Partitioning)

• Cyclic partitioning improves load balancing

thread responsible 
for particles

forces computed

0 0
3

f01, f02, f03, f04, f05
f34, f35

1 1
4

f12, f13, f14, f15
f45

2 2
5

f23, f24, f25
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Revised Algorithm – Phase I

• Store forces into thread-local array loc_forces (no race conditions)
• Aggregate forces in Phase II
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Table 6.2 First-Phase Computations for a Reduced Algorithm with Cyclic Partition

Thread

Thread Particle 0 1 2

0 0 f01 + f02 + f03 + f04 + f05 0 0

1 1 �f01 f12 + f13 + f14 + f15 0

2 2 �f02 �f12 f23 + f24 + f25

0 3 �f03 + f34 + f35 �f13 �f23

1 4 �f04 � f34 �f14 + f45 �f24

2 5 �f05 � f35 �f15 � f45 �f25

Note that if we compare this table with the table that shows the block partition, it’s
clear that the cyclic partition does a better job of balancing the load.

To implement this, during the first phase our revised algorithm proceeds as
before, except that each thread adds the forces it computes into its own subarray
of loc forces:

# pragma omp for
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
force qk[X] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
force qk[Y] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

loc forces[my rank][q][X] += force qk[X];
loc forces[my rank][q][Y] += force qk[Y];
loc forces[my rank][k][X] �= force qk[X];
loc forces[my rank][k][Y] �= force qk[Y];

}
}

During the second phase, each thread adds the forces computed by all the threads for
its assigned particles:

# pragma omp for
for (q = 0; q < n; q++) {

forces[q][X] = forces[q][Y] = 0;
for (thread = 0; thread < thread count; thread++) {

forces[q][X] += loc forces[thread][q][X];
forces[q][Y] += loc forces[thread][q][Y];

}
}

Before moving on, we should make sure that we haven’t inadvertently introduced
any new race conditions. During the first phase, since each thread writes to its own
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• Each thread adds the forces computed by all the threads for its assigned particles
• Ensure we didn’t introduce new race conditions

– phase 1: all writes only to thread-private arrays → OK
– phase 2: threads only write to global forces array for their assigned particles → OK
– implied barrier guarantees that phase 2 starts only after completion 

of phase 1 → OK

Revised Algorithm – Phase II
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Table 6.2 First-Phase Computations for a Reduced Algorithm with Cyclic Partition

Thread

Thread Particle 0 1 2

0 0 f01 + f02 + f03 + f04 + f05 0 0

1 1 �f01 f12 + f13 + f14 + f15 0

2 2 �f02 �f12 f23 + f24 + f25

0 3 �f03 + f34 + f35 �f13 �f23

1 4 �f04 � f34 �f14 + f45 �f24

2 5 �f05 � f35 �f15 � f45 �f25

Note that if we compare this table with the table that shows the block partition, it’s
clear that the cyclic partition does a better job of balancing the load.

To implement this, during the first phase our revised algorithm proceeds as
before, except that each thread adds the forces it computes into its own subarray
of loc forces:

# pragma omp for
for each particle q {

force qk[X] = force qk[Y] = 0;
for each particle k > q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
force qk[X] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
force qk[Y] = G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

loc forces[my rank][q][X] += force qk[X];
loc forces[my rank][q][Y] += force qk[Y];
loc forces[my rank][k][X] �= force qk[X];
loc forces[my rank][k][Y] �= force qk[Y];

}
}

During the second phase, each thread adds the forces computed by all the threads for
its assigned particles:

# pragma omp for
for (q = 0; q < n; q++) {

forces[q][X] = forces[q][Y] = 0;
for (thread = 0; thread < thread count; thread++) {

forces[q][X] += loc forces[thread][q][X];
forces[q][Y] += loc forces[thread][q][Y];

}
}

Before moving on, we should make sure that we haven’t inadvertently introduced
any new race conditions. During the first phase, since each thread writes to its own
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• The parallelization with Pthreads works very similar 
to OpenMP with two main differences

• 1. Barriers
– not all Pthreads implementations provide barriers which is 

needed after the end of inner loops
– Hence, if no barrier is available we need to either join and 

re-spawn the threads or use a condition variable
• 2. Loop parallelization

– due to the lack of a “parallel for”-like operation in Pthreads
the assignment of loop iterations to threads must be coded 
explicitly

Parallelizing the Solvers Using Pthreads

29
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Parallelizing the Basic Solver Using MPI

• Basic parallelization of N-Body code with MPI is fairly straight-forward
• For computing new position of a particle the following data is needed

– previous position and velocity of particle
– positions and masses of all other particles

• Strategy
– assign each process an equal share of particles
– keep copy of all data required to compute forces for assigned particles in each process
– compute forces, velocities and new positions
– re-distribute positions at end of time step with MPI_Allgather
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Parallelizing the Basic Solver Using MPI (2)

31

m1m0 m127…

v1v0 v127…

s1s0 s127…

process 0 process 1 process 2 process 3



Parallelizing the Basic Solver Using MPI (2)

32

Broadcast(m) 
Broadcast(s)
Scatter(v)

m1m0 m127… m1m0 m127… m1m0 m127… m1m0 m127…

s1s0 s127… s1s0 s127… s1s0 s127… s1s0 s127…

v1v0 v31… v33v32 v63… v65v64 v95… v97v96 v127…

m1m0 m127…

v1v0 v127…

s1s0 s127…

process 0 process 1 process 2 process 3



Parallelizing the Basic Solver Using MPI (2)

33

• compute forces f0..31 using m and s
• compute new positions s’0..31 with
integration using f0..31 and v0..31

s’1s’0 s’31… s’33s’32 s’63… s’65s’64 s’95… s’97s’96 s’127…

• compute forces f32..63 using m and s
• compute new positions s’32..63 with
integration using f32..63 and v32..63

• compute forces f64..95 using m and s
• compute new positions s’64..95 with
integration using f64..95 and v64..95

• compute forces f96..127 using m and s
• compute new positions s’96..127 with
integration using f96..127 and v96..127

Broadcast(m) 
Broadcast(s)
Scatter(v)

m1m0 m127… m1m0 m127… m1m0 m127… m1m0 m127…

s1s0 s127… s1s0 s127… s1s0 s127… s1s0 s127…

v1v0 v31… v33v32 v63… v65v64 v95… v97v96 v127…

m1m0 m127…

v1v0 v127…

s1s0 s127…

process 0 process 1 process 2 process 3



Parallelizing the Basic Solver Using MPI (2)

34

MPI_Allgather(… s’ … s[0] …) MPI_Allgather(… s’ … s[32] …) MPI_Allgather(… s’ … s[64] …) MPI_Allgather(… s’ … s[96] …)

s31s0 s127… s32 s127… … …s63 s64 s127… s127… …s95 s96 …… …s0 s0

• compute forces f0..31 using m and s
• compute new positions s’0..31 with
integration using f0..31 and v0..31

s’1s’0 s’31… s’33s’32 s’63… s’65s’64 s’95… s’97s’96 s’127…

• compute forces f32..63 using m and s
• compute new positions s’32..63 with
integration using f32..63 and v32..63

• compute forces f64..95 using m and s
• compute new positions s’64..95 with
integration using f64..95 and v64..95

• compute forces f96..127 using m and s
• compute new positions s’96..127 with
integration using f96..127 and v96..127

Broadcast(m) 
Broadcast(s)
Scatter(v)

m1m0 m127… m1m0 m127… m1m0 m127… m1m0 m127…

s1s0 s127… s1s0 s127… s1s0 s127… s1s0 s127…

v1v0 v31… v33v32 v63… v65v64 v95… v97v96 v127…

m1m0 m127…

v1v0 v127…

s1s0 s127…

process 0 process 1 process 2 process 3



• Array of Structs

– collect all information about particles in 
single data structure

– can be expressed as MPI derived data 
type

– can be communicated with single MPI 
transfer

– communication of derived data types can 
be slower (marshalling MPI message)
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Data Structures for Basic Solver Using MPI (1)

• Flat Arrays

– problem data scattered over multiple 
arrays

– use native MPI data types
– communication requires several MPI 

transfers (one per array)
– communicating basic MPI types is fast 

(simple marshalling)
– more flexible, allows to communicate just 

required arrays instead of whole structure

struct particle_t {
double mass;
double pos_x, pos_y;
double v_x, v_y;

};
particle_t particles[N];

double mass[N];
double pos_x[N], pos_y[N];
double v_x[N], v_y[N];



Data Structures for Basic Solver Using MPI (2)

• Choices in Paceo’s implementation
• Each rank stores

– masses for all particles (immutable data, prevent retransmission)
– positions of all particles (enables to compute all forces)
– velocities and new positions for owned particles

• Data stored as simple arrays of tuples
– position and velocity are vectors with 2 components (x, y)
– definition of derived MPI data type vect_mpi_t for tuples (vector of two doubles)

• Tradeoffs
– pro: simple implementation
– con: duplication of data, (masses, positions)
– acceptable solution for small problems, but for large problems an implementation with less 

redundant data storage is required (see Ring Buffer scheme, discussed later)
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Pseudo-Code for the MPI Version of the 
Basic N-Body Solver

292 CHAPTER 6 Parallel Program Development

1 Get input data;
2 for each timestep {
3 if (timestep output)
4 Print positions and velocities of particles;
5 for each local particle loc q
6 Compute total force on loc q;
7 for each local particle loc q
8 Compute position and velocity of loc q;
9 Allgather local positions into global pos array;

10 }
11 Print positions and velocities of particles;

Program 6.2: Pseudocode for the MPI version of the basic n-body solver

will need the global array of positions for the first computation of forces in the main
for loop, we just broadcast pos. However, velocities are only used locally for the
updates to positions and velocities, so we scatter vel.

Notice that we gather the updated positions in Line 9 at the end of the body
of the outer for loop of Program 6.2. This insures that the positions will be avail-
able for output in both Line 4 and Line 11. If we’re printing the results for each
timestep, this placement allows us to eliminate an expensive collective communica-
tion call: if we simply gathered the positions onto process 0 before output, we’d have
to call MPI Allgather before the computation of the forces. With this organization
of the body of the outer for loop, we can implement the output with the following
pseudocode:

Gather velocities onto process 0;
if (my rank == 0) {

Print timestep;
for each particle

Print pos[particle] and vel[particle]
}

6.1.10 Parallelizing the reduced solver using MPI
The “obvious” implementation of the reduced algorithm is likely to be extremely
complicated. Before computing the forces, each process will need to gather a subset
of the positions, and after the computation of the forces, each process will need to
scatter some of the individual forces it has computed and add the forces it receives.
Figure 6.6 shows the communications that would take place if we had three processes,
six particles, and used a block partitioning of the particles among the processes.
Not suprisingly, the communications are even more complex when we use a cyclic
distribution (see Exercise 6.13). Certainly it would be possible to implement these
communications. However, unless the implementation were very carefully done, it
would probably be very slow.

Fortunately, there’s a much simpler alternative that uses a communication struc-
ture that is sometimes called a ring pass. In a ring pass, we imagine the processes
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}

6.1.10 Parallelizing the reduced solver using MPI
The “obvious” implementation of the reduced algorithm is likely to be extremely
complicated. Before computing the forces, each process will need to gather a subset
of the positions, and after the computation of the forces, each process will need to
scatter some of the individual forces it has computed and add the forces it receives.
Figure 6.6 shows the communications that would take place if we had three processes,
six particles, and used a block partitioning of the particles among the processes.
Not suprisingly, the communications are even more complex when we use a cyclic
distribution (see Exercise 6.13). Certainly it would be possible to implement these
communications. However, unless the implementation were very carefully done, it
would probably be very slow.

Fortunately, there’s a much simpler alternative that uses a communication struc-
ture that is sometimes called a ring pass. In a ring pass, we imagine the processes

Input / Distribute data to processes

Output

if (my_rank == 0) {
for each particle

Read masses[particle], pos[particle], vel[particle];
}
MPI_Bcast(masses, n, MPI_DOUBLE, 0, comm);
MPI_Bcast(pos, n, vect_mpi_t 0, comm); 
MPI_Scatter(vel, loc_n, vect_mpi_t, loc_vel, loc_n, vect_mpi_t, 0, comm);
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• Difficult and cumbersome to implement
• Irregular communication

– each process must: 1) gather subset of positions; 2) compute forces; 3) scatter forces to 
processes that need them

• Load balancing further complicates implementation
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FIGURE 6.6

Communication in a possible MPI implementation of the reduced n-body solver

as being interconnected in a ring (see Figure 6.7). Process 0 communicates directly
with processes 1 and comm sz� 1, process 1 communicates with processes 0 and 2,
and so on. The communication in a ring pass takes place in phases, and during each
phase each process sends data to its “lower-ranked” neighbor, and receives data from
its “higher-ranked” neighbor. Thus, 0 will send to comm sz� 1 and receive from 1. 1
will send to 0 and receive from 2, and so on. In general, process q will send to process
(q � 1 + comm sz)%comm sz and receive from process (q + 1)%comm sz.

0 1

3 2

FIGURE 6.7

A ring of processes

By repeatedly sending and receiving data using this ring structure, we can arrange
that each process has access to the positions of all the particles. During the first phase,
each process will send the positions of its assigned particles to its “lower-ranked”
neighbor and receive the positions of the particles assigned to its higher-ranked neigh-
bor. During the next phase, each process will forward the positions it received in the
first phase. This process continues through comm sz� 1 phases until each process has
received the positions of all of the particles. Figure 6.8 shows the three phases if there
are four processes and eight particles that have been cyclically distributed.

Of course, the virtue of the reduced algorithm is that we don’t need to compute all
of the inter-particle forces since fkq = �fqk, for every pair of particles q and k. To see



MPI Implementation with Ring Pass

• Objective: Support simulations with very high particle count
– avoid redundant data storage and computations
– simplify communication scheme
– find different tradeoff between storage, computation and communication

• Approach
– each process owns a subset of particles and is responsible for computing and accumulating the 

corresponding forces in the upper triangle matrix (actio)
– the counter-acting force (reactio) are also aggregated but not stored locally but communicated to 

the next process
– i.e. each process participates in a ring communication scheme

§ receives positions s, masses m and partial forces fi
- acting on these particles

§ uses additional particle information to compute additional (owned) forces fi
+ and updates the partial 

forces fi
- acting on the received particles

§ passes the information about particle position and partial forces to the next process in the ring
– after the particle information has passed around the full ring once, process updates s, v, and a for 

owned particles
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• Example
– 3 processes, 6 particles, cyclic partitioning
– process 0

§ owns s0 and s3
§ computes forces f01, f02, f03, f04, f05, f34, f35

§ sums up owned forces F0
+ , F3

+

§ contributes to not-owned forces F1
-, F2

-, F4
-, F5

-

Ownership of Particles and Forces

computed by owner of particle 0

computed by owner of particle 1
computed by owner of particle 2
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6.1.2 Two serial programs
In outline, a serial n-body solver can be based on the following pseudocode:

1 Get input data;
2 for each timestep {
3 if (timestep output) Print positions and velocities of

particles;
4 for each particle q
5 Compute total force on q;
6 for each particle q
7 Compute position and velocity of q;
8 }
9 Print positions and velocities of particles;

We can use our formula for the total force on a particle (Formula 6.2) to refine our
pseudocode for the computation of the forces in Lines 4–5:

for each particle q {
for each particle k != q {

x diff = pos[q][X] � pos[k][X];
y diff = pos[q][Y] � pos[k][Y];
dist = sqrt(x diff⇤x diff + y diff⇤y diff);
dist cubed = dist⇤dist⇤dist;
forces[q][X] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ x diff;
forces[q][Y] �= G⇤masses[q]⇤masses[k]/dist cubed ⇤ y diff;

}
}

Here, we’re assuming that the forces and the positions of the particles are stored as
two-dimensional arrays, forces and pos, respectively. We’re also assuming we’ve
defined constants X = 0 and Y = 1. So the x-component of the force on particle
q is forces[q][X] and the y-component is forces[q][Y]. Similarly, the compo-
nents of the position are pos[q][X] and pos[q][Y]. (We’ll take a closer look at data
structures shortly.)

We can use Newton’s third law of motion, that is, for every action there is an
equal and opposite reaction, to halve the total number of calculations required for the
forces. If the force on particle q due to particle k is fqk, then the force on k due to q is
�fqk. Using this simplification we can modify our code to compute forces, as shown
in Program 6.1. To better understand this pseudocode, imagine the individual forces
as a two-dimensional array:

2

666664

0 f01 f02 · · · f0,n�1
�f01 0 f12 · · · f1,n�1
�f02 �f12 0 · · · f2,n�1

...
...

...
. . .

...
�f0,n�1 �f1,n�1 �f2,n�1 · · · 0

3

777775
.

(Why are the diagonal entries 0?) Our original solver simply adds all of the entries
in row q to get forces[q]. In our modified solver, when q = 0, the body of the loopF2 = F2

- + F2
+ = (-f02 –f12) + (f23+f24 + f25)
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Ring Pass Scheme (1)

0

2 1

process 0 ownership
• particles: 0,3
• computes forces:

• f01,f02,f03,f04,f05
• f34,f35

• sums up partial forces:
• F0

+ = f01+f02+f03+f04+f05
• F3

+ = f34+f35

process 1 ownership
• particles: 1,4
• …

process 2 ownership
• particles: 2,5
• …

data for p0
s0,s3 (m0,m3
opt.)
F0-
F3-

data for p2
s2,s5 (m2,m6
opt.)
F2-
F5-

data for p1
s1,s4 (m1,m4
opt.)
F1-
F4-
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Ring Pass Scheme (2)

• Algorithm for each time step

receive message from neighbor
if message origin != my_rank

for each owned force fm,n that can be computed with local data and received message
compute fm,n

update local partial force Fm+ = Fm+ + fm,n
update partial force in received message Fn- = Fn- - fm,n

pass updated message to neighbor
else

for each owned particle m
Fm = Fm+ + Fm-
update a(t), v(t), s(t)

endif
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Performance of the OpenMP and MPI N-Body Solvers
298 CHAPTER 6 Parallel Program Development

Table 6.5 Performance of the MPI

n-Body Solvers (times in seconds)

Processes Basic Reduced

1 17.30 8.68

2 8.65 4.45

4 4.35 2.30

8 2.20 1.26

16 1.13 0.78

Table 6.6 Run-Times for OpenMP and MPI n-Body

Solvers (times in seconds)

OpenMP MPI

Basic Reduced Basic Reduced

Processes/

Threads

1 15.13 8.77 17.30 8.68

2 7.62 4.42 8.65 4.45

4 3.85 2.26 4.35 2.30

For example, the efficiency of the basic solver on 16 nodes is about 0.95, while the
efficiency of the reduced solver on 16 nodes is only about 0.70.

A point to stress here is that the reduced MPI solver makes much more efficient
use of memory than the basic MPI solver; the basic solver must provide storage for
all n positions on each process, while the reduced solver only needs extra storage for
n/comm sz positions and n/comm sz forces. Thus, the extra storage needed on each
process for the basic solver is nearly comm sz/2 times greater than the storage needed
for the reduced solver. When n and comm sz are very large, this factor can easily make
the difference between being able to run a simulation only using the process’ main
memory and having to use secondary storage.

The nodes of the cluster on which we took the timings have four cores, so we can
compare the performance of the OpenMP implementations with the performance of
the MPI implementations (see Table 6.6). We see that the basic OpenMP solver is a
good deal faster than the basic MPI solver. This isn’t surprising since MPI Allgather
is such an expensive operation. Perhaps surprisingly, though, the reduced MPI solver
is quite competitive with the reduced OpenMP solver.

Let’s take a brief look at the amount of memory required by the MPI and OpenMP
reduced solvers. Say that there are n particles and p threads or processes. Then each
solver will allocate the same amount of storage for the local velocities and the local
positions. The MPI solver allocates n doubles per process for the masses. It also
allocates 4n/p doubles for the tmp pos and tmp forces arrays, so in addition to the
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Concluding Remarks

• N-Body problems are used in many areas of science
• This lecture showed very simple, direct solvers

– O(n2) in numbers of particles
– simple Euler integration

• A lot of progress has bene made in N-Body problems
– methods with lower complexity for computing force fields, e.g. Barnes-Hut, Fast Multipole
– better numerical integration, e.g. Runge-Kutta
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