'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

High-Performance Computing
— Advanced MPI —

Christian Plessl

High-Performance IT Systems Group
Paderborn University, Germany

Paderborn
Center for
Parallel
Computing

version 1.0.2 2018-01-23

Derived Data Types
Non-Blocking Communication
One-Sided Communication
Hybrid Parallel Programming

Outline

Derived Data Types

Basic MPI Data Types

e Each communication in MPI requires to define data type and length

e MPI standard defines a set of basic (intrinsic) MPI data types
— correspond native data types of C/Fortran
- e.g. signed int - MPL_INT, double — MPI_DOUBLE, ..
— single elements or contiguous arrays of same type can be transferred

e Example: send 100 double values in array a to rank 42

double buf[100];
MPI Send(buf, len, MPI DOUBLE, 42, ©, MPI_COMM WORLD);

Derived Data Types

¢ Derived data types can express arbitrary data structures that are communicated

— hierarchical construction based on basic or derived types
— MPI runtime constructs efficient (de)serialization methods

e Purpose
— communication of non-contiguous data (e.g. arrays with strided access)
— communication heterogeneous data (e.g. structs comprising different types)
— raise abstraction level of program (more expressive and shorter code)
— increase communication efficiency (fewer data transfers)

¢ All communication types are supported
— point-to-point, collective, blocking, non-blocking

Motivation: Sending Matrix Column in C

Two dimensional arrays in C are stored in row-
major order

Communicating a row the array with basic MPI
data types is not efficiently possible because data
Is non-contiguous

Workarounds for communicating a row
— one transfer per row element (a11, a21, a31)
- transfer of whole array, discard unneeded elements
— copying data to temporary contiguous buffer, which is then
sent (manual marshalling)
All workarounds are inefficient or cumbersome and
increase complexity of code

all al2 a13
a21 a22 a23

a31 a32 a33

2D array ain C

all al12 al3 a21 a22 a23 a31 a32 a33

storage in memory (C
uses row major order)

Motivation: Sending Matrix Column in C (2)

e Solution: create derived data types
for expressing a column in the array
— enables to send a row with single MPI

transfer
double A[N][N];
° Example MPI Datatype row_t;
— assume 2D NxN array of doubles MPI Type vector(N, 1, N, MPI_DOUBLE, &row t);
— build custom data type for representinga "FL-Type_commit(&row_t);
row MPI Send(&A[©][1], 1, row_t, 42, ©, MPI_COMM _WORLD);
e MPI_Type_vector constructor MPI_Type_free(&row_t);
— N elements

— groups of 1 (single) elements,
— stride N (spacing between elements)
- base type MPI_DOUBLE

Type Lifecycle Management

e Creating a name for a derived data type
- expressed with variable of type MPI_Datatype

e Declaration of new data type

- MPI_Type_create constructor functions define new types based on existing types (flat or
hierarchical)

¢ Finalizing the construction of data type
— calling the MPI_Type_commit function instructs MPI that the type is final
— triggers generation of optimized methods for (de)serialization

- committing is only needed for types that are actually used in communication (intermediate types
used just for hierarchical definitions do not need to be committed)

* Releasing resources
- if atype is no longer needed, resources can be released with MPI_Type_free

Available Type Constructors

MPI_Type contiguous Contiguous data types

MPI_Type vector Block of array elements with regular strides

MPI_Type create hvector Block of array elements with regular stride
(specified in bytes instead of size of oldtype)

MPI|_Type create indexed block Blocks of array elements with irregular block
lengths and strides

MPI_Type indexed Block of array elements with irregular strides

MPI_Type create_struct Most general data type

MPI_Type create subarray Data type for n-dimensional array slices

some frequently used type constructors (there are many more)

MPI_Type_Contiguous

MPI_Type contiguous(int , MPI_Datatype , MPI_Datatype *)

e Declare contiguous array of oldtype
: number of elements

e Do not used as last type (use length
parameter of send/recv instead)

oldtype (e.g. MPI_FLOAT) . oldtype (struct)
01 2 3 4 6 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 6 6 7 8 9 10 11 12 13 14 15
newtype . . . newtype
Y \ Y J \ Y J \ Y J
contiguous struct struct struct

\ J
1

contiguous

10

MPI_Type_vector

MPI_Type_vector(int , int , int , MPI_Datatype s
MPI Datatype *)

e Declare data type of identical blocks with fixed stride
: number of blocks
: number of elements in each block
: displacements between blocks

e Use cases

... : .y : stride measured in extent
— communicating rows or planes in multi-dimensional arrays

of oldtype, i.e. second

— arrays of more complex structures, e.g. vector of structs struct could not start at
offset 7
count = 2, blocklength = 1, stride = 2
count = 3, blocklength = 3, stride = 4 ° ' 2 i t 506759 1Oi12 18 14 15
01 2 8 4 5 6 7 8 9 10 1 12 13 14 15 1 :] N :]
struct struct
vector

vector 11

MPI_Type_create_hvector

MPI_Type_ create_hvector(int , int , MPI_Aint ,
MPI_Datatype , MPI_Datatype *)

e Same function as regular vector, but stride is specified in bytes instead of size
of oldtype

— allows for using strides that are not evenly divisible by length of oldtype

e Declare data type of identical blocks with fixed stride

: number of blocks
: number of elements in each block
: displacements between blocks in bytes (not extent of oldtype)

count = 2, blocklength = 2, stride =10

601 2 3 4 6 6 7 8 9 10 11 12 13 14 16 16 16

\ J \ J \ J\ J
|
struct str'uct str'uct str'uct

1
hvector 12

MPI_Type_create_indexed_block

MPI_Type_ create_indexed block(int , const int ’
const int , MPI_Datatype , MPI_Datatype *)

e Extracts variable sized and spaced blocks of data comprising identical
elements
: length of blocks
: displacements expressed in size (extent) of oldtype

01 2 3 4 6 6 7 8 9 10 11 12 13 14 156 156 16

blocklength = 2
displacements ={0, 4,11, 13, 15}

indexed_blocked

13

MPI_Type_indexed

MPI_Type_indexed(int , const int , const int ,
MPI_Datatype , MPI_Datatype *)

e Extracts variable sized and spaced blocks of data comprising identical
elements
: length of blocks as array
: displacements expressed in size (extent) of oldtype
- there is also a MPI_Type_create_hindexed variant that uses displacements in bytes

60 1 2 83 4 6§ 6 7 8 9 10 11 12 18 14 16 15 16

blocklengths ={2,1, 3, 2,2}
displacements ={0,4,7,13, 15}

indexed

14

MPI_Type_create_subarray

MPI_Type_ create_subarray(int , const int , const int)
const int , int , MPI_Datatype * MPI_Datatype *)

e Create an n-dimensional subarrays from an n-dimensional array which is
stored in a linearized way.
: numbe of dimensions of full array (must match length of arrays size, subsize, start)
: size of original array
: size of subarray
: start of subarray, indexes start at 0

: MPI_ORDER_C (array is stored in row-major order), or MPI_ORDER_FORTRAN
(column-major order)

15

MPI_Type_create_subarray Example

TR

e Send 4 quadrants of array from master process to TL
ranks 1-4 for further processing
BL BR
double *array e

int array_sz[2] = {8,8};
int sub sz[2] {4,4};

int off_TL[2] = {0,0}, off _TR[2] = {0,4}, off BL[2] = {4,0}, off _BR[2] = {4,4};
MPI_Datatype TL, TR, BL, BR;

I — 1l
.

MPI Type create_subarray(2, array sz, sub sz, off TL, MPI ORDER _C, MPI DOUBLE, &TL);
MPI Type commit(&TL);
MPI Type create_subarray(2, array sz, sub sz, off TR, MPI _ORDER _C, MPI_ DOUBLE, &TR);
MPI_Type_commit(&TR);

if(rank==0) {

MPISend(array, 1, TL, 1, 0, MPI_COMM _WORLD);
MPISend(array, 1, TR, 2, 0, MPI_COMM WORLD);
MPISend(array, 1, BL, 3, ©, MPI_COMM_WORLD);
MPISend(array, 1, BR, 4, 0, MPI_COMM WORLD);

16

MPI_Type_create_struct

MPI_Type create_struct(int , const int s
const MPI_Aint , const MPI_Datatype s
MPI Datatype *)

e Fully general constructor for creating new type with arbitrary many elements,

displacements and types
: length of blocks as array
byte displacements of each block as array
type of elements in each block (array of MPI_Datatype elements)

The displacement can be determined in portable way using the function

MPI Get address(cosnt void * , MPI Aint *)

e see example

17

MPI_Type_create_struct Example (simple case)

typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} particle_t;

particle t p[N];

declaration of C struct type for particles

MPI Datatype particletype;

MPI_Datatype oldtypes[3] = {MPI_FLOAT, MPI_CHAR, MPI_DOUBLE};
int len[3] = {4, 10, 1};

int disp[3];

disp[@] = ©;

disp[1] = disp[@] + 4*sizeof(float);

disp[2] disp[1l] + 10*sizeof(char);

MPI Type create struct(3, len, disp, oldtypes, &tmp);

MPI Type create resized(tmp, 0, sizeof(particle t), &particletype);
MPI Type commit(&particletype);

MPI Send(p, N, particletype, dest, tag, comm);

CAUTION: This example may be incorrect, depending
on CPU architecture and compiler options/defaults

18

Complications by Struct Padding and Alignment

e The C compiler can exploit different performance / storage size trade-offs for
structs

- dense packing minimizes storage requirements but data may be poorly aligned for loads and
stores, caching and vectorization

— compiler can insert padding elements in struct for optimization
- since handling of structs and unions is architecture and compiler specific, structs can cause
problems with portability
e |SO C standard, “6.7.2.1 structure and union specifiers”

— 14. Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

- 15. Within a structure object, the non-bit-field members [...] have addresses that increase in the
order in which they are declared. [...] There may be unnamed padding within a structure object,
but not at its beginning.

— 17. There may be unnamed padding at the end of a structure or union

19

Example: Struct Alignment with GCC on x86 Linux

e GCC allows controlling struct packing and alignment in struct declaration and as
variable attributes

— __ attribute__((packed)) use dense packing of struct elements

— __ attribute__((aligned (n))) force compiler to allocate and align variable at (at least) an n-byte
boundary

typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} __attribute ((packed)) attribute_ ((aligned (8))) particle t;

Index

Packed Alig_;ned Sizeof 01 2 3 456 7|8 91011121314 15[(16 17 18 19 20 21 22 23|24 25 26 27 28 29 30 31(32 33 34 35 36 37 38 39|40 41 42 43 44 45 46 47

Default Default 40
Yes Default 34
Yes 8 40
No 8 40
Yes 16 48
No 16 48

PPPPPDP
64bit

20

MPIL_Type_create_struct Example (max. Portability)

typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} particle_t;

particle t p[N];

declaration of C struct type for particles

MPI_Datatype particletype, tmp;

MPI Datatype oldtypes[3] = {MPI_FLOAT, MPI CHAR, MPI DOUBLE};
int len[3] = {4, 10, 1};
MPI Aint base, disp[3];

MPI Get address(particle[@].name, disp[1]); determining address of variables
MPI Get address(particle[@].mass, disp[2]);

base = disp[e@]; displacements are relative to
for (int i=0; i<3; i++) disp[i] = MPI_Aint_diff(disp[i], base); base. use MP| Aint diff to

compute in portable wa
MPI Type create struct(3, len, disp, oldtypes, &tmp); P P y

MPI Type create resized(tmp, @, sizeof(particle t), &particletype); Compiler could add padding after
MPI Type commit(&particletype); each struct element in array.
MPI_Send(p, N, particletype, dest, tag, comm); MPI_Type_create_resized adjusts

size if needed
21

Data Type Conversion in MPI

e MPI offers limited forms of “data type” conversion

- simple data layout conversions are supported, e.g. from contiguous to vector layouts

— there is however no conversion between the actual data types (‘leaves’ of a data structure
definition), e.g. no conversion from MPI_FLOAT to MPI_DOUBLE

e Example

rank O

rank 1

MPI Type my vec_ t;

MPI Type vector(N, 1, 2, MPI FLOAT, my vec_t);
float *a = (float*)malloc(N*sizeof(float));
init(a);

if (rank == 0) {

MPI_Send(a, 1, , 1, ©, MPI_COMM_WORLD);
} else {
MPI Recv(buf, N, , 0, 0, MPI_COMM_WORLD);

}

22

Advise on Defining and Using MPI Datatypes

e Tradeoff between abstraction/convenience and performance

¢ Rule of thumb
- the more parameter a MPI_Type_create constructor has, the slower the performance
— predefined < contig < vector < index_block < index < struct
e Tips
— construct data types hierarchically, from bottom up
— use few, long data transfers instead of many small transfers

— don’t use contiguous as the outermost MPI Datatype because multiple elements can be sent
using the count argument of peer-to-peer or collective communication functions

23

Non-Blocking Communication

Non-Blocking Communication Objectives

Blocking MPI_Send / MPI_Recv cause overheads

- MPIL_Send blocks until the message has been delivered to receiver (see MPI standard for precise
semantics and guarantees)
— when sending or receiving multiple independent messages, MPI_Send/Recv enforce ordering

— overlapping of computation and communication is not possible

Non-blocking MPI communication

- non-blocking send (MPI_Isend) and receive (MPI_Irecv) immediately return and handle
communication in background

— completion of communication can be tested and enforced with additional functions
— allows to overlap communication and computation
— can avoid many common deadlocking problems

Blocking and non-blocking communication can be mixed
- MPI_Isend can be received by MPI_Recv

25

Non-Blocking Send and Receive

MPI Isend(const void *buf, int , MPI_Datatype , int s
int , MPI_Comm , MPI_Request *request)

e Same parameters and types as MPI_Send

e Additional parameter used for query status of communication or waiting
for completion

MPI Irecv(const void *buf, int , MPI_Datatype , int s
int , MPI_Comm , MPI_Request *request)

e Same parameters and types as MPI_Recv but no status parameter

e Additional parameter used for query status of communication or waiting
for completion

26

Testing and Waiting for Non-Blocking Communication

MPI Test(MPI_Request * , int * , MPI_Status *)

e Test for completion of a single MPI request
handle to a request returned by MPI_Isend / MPI_Irecv
returns true if operation has logically completed

delivers additional information, if application does not need additional status
information MPI_STATUS_IGNORE can be passed to save resources

MPI Wait(MPI_Request * , MPI_Status *)

e Wait for completion of a single MPI requests
handle to a request returned by MPI_Isend / MPI_Irecv

delivers additional information, if application does not need additional status
information MPI_STATUS_IGNORE can be passed to save resources

27

Testing and Waiting for Non-Blocking Communication

e Additional functions for testing of — or waiting on — multiple MPI requests

concurrently

— function return which requests have completed

MPI_Testall
MPI_Testany
MPI_Testsome
MPI_Waitall
MPI_Waitany
MPI_Waitsome

Test for completion of all requests in a set

Test for completion of zero or one request in a set
Test for completion of one or more requests

Wait for completion of all requests in a set

Wait for completion of zero or one request in a set
Wait for completion of one or more requests

28

Testing MPI Request Sets (1)

MPI Testall(int , MPI_Request , int * , MPI_Status)

e Test for completion of all requests in a set
: number of requests
: arrays of requests (length = count)
: returns true if all operations have completed
: like in MPI_Test, use constant MPI_STATUSES_IGNORE if not needed

MPI_Testany (int » MPI_Request , int * , int *
MPI_Status *)

e Test for completion of zero or one request in a set

: returns true if a request has completed, index of request is returned in
— other parameters like MPI|_Testall

29

Testing MPI Request Sets (2)

MPI_Testsome(int , MPI_Request , int * , int s
MPI_Status *)

¢ Test for completion of one or more request in a set
: number of requests
: arrays of requests (length = incount)
: returns number of requests that have completed
returns array with indices of requests that have completed

30

Waiting For MPI Request Sets

MPI Waitall(int , MPI_Request , MPI_Status)

e Wait for completion of all requests in a set

: number of requests
: arrays of requests (length = count)

MPI_Waitany (int ,» MPI_Request , int * , MPI_Status *)

e Wait for completion of zero or one request in a set
: index of handle that completed

MPI_Waitsome(int , MPI_Request , int * , int
MPI Status *)

e Wait for completion of one or more request in a set
— parameters analogous to MPI|_Testsome

31

Typical Use Case for Non-Blocking Communication

« Example from exercise Conway’s Game of Life

each cell updates requires data from 1-neighborhood rank 0

parallelization can be done by duplicate bordering data
(so-called “halo” or “ghost-cells”)

data not depending on halo can be computed concurrently
with data exchange

after halo data arrives, the remaining computation can be

completed rank 1
foreach timestep {
MPI_Irecv()
MPI_Isend(border_data)
compute()
MPI_Waitall
compute(border_data) rank 2

}

32

Further Non-Blocking Operations

e MPI-3 has added non-blocking collective
operations in addition to the non-blocking point to
point communication

- MPIL_Ibcast
- MPI_Ireduce

33

One-Sided Communication

Overview One-Sided Communication

e Two-sided communication (blocking and non-blocking)
- two processes are involved: send and matching receive operation
— combines data transfer and synchronization

¢ One-sided communication added in MPI-2
— moves data without requiring the remote process to synchronize
— each process exposes a section of memory (window) to other processes
— other processes can directly read or write to this window (global address space)
— communication is always non-blocking

global

window window window window
address space

private private private private
memory memory memory memory

35

Remote Direct Memory Access (RDMA)

The data transfers to and from remote memory are very efficient

— Remote Direct Memory Access (RDMA) mechanism
— network cards directly access memory and copy data through the network

Ideally
— no operating system interaction required
— close to zero CPU load
— all handled autonomously by hardware in special HPC networks and network cards
— zero-copy, i.e. data is moved from main memory to networks without copying to OS kernel

Operations that are typically supported
— data copy (send and receive)
- atomic operations

36

Motivation and Terminology

e Motivation
— irregular communication patterns are easier to implement
— lower overhead due to efficient RDMA transfers and
explicit synchronization
e Origin / Target Process

— processes can initiate a send to a remote location (PUT)
and a receive from a remote location (GET), hence the
usual terms sender/receiver are ambiguous

— origin: process which initiates the data movement window w1
- target: process whose memory is accessed

¢ Remote Memory Access (RMA) Window private private

— section of process memory that is available for one-sided memory A
(RMA) communication

— created by collective calls
— can differ between processes

window w0

37

Overview: RMA Operations in MPI-2

e MPI_Put

— copy data from local buffer in origin to remote window in target process

e MPI_Get

— copy data from remote window in target to local buffer in origin

e MPI_Accumulate
— use data in local buffer at origin to modify data in window in target process
— for example, add values in local buffer to remote buffer (one-sided reduction)

38

Overview: RMA Synchronization in MPI-2

e RMA data access model

— when is a process allowed to perform RMA operations on target?
— when is it safe for process Y to read data on target that was written by process X?

e Synchronization takes place in "epochs” can be started and ended with multiple

mechanisms
— access epoch: origin my access window in different process with RMA operations
— exposure epoch: target is offering other processes access to its window with RMA operations

¢ Three RMA synchronization models
— active target: both origin and target explicitly start and end epochs with collective operations

— generalized active target: post-start-complete-wait
— passive target: use lock/unlock operations, no fence operations at target

39

Allocate Memory and Creating a Window

MPI Win allocate (MPI_Aint , int » MPI_Info ,
MPI_Comm , void* 5 MPI_Win *win)

¢ Allocate new memory and expose it as an RMA window
— collective operation that needs to be called by all processes in communicator

e Parameters
size of local data in bytes
local unit size for displacements in bytes
hints to MPI implementation for improving efficiency
MPI communicator
returns initial address of created window
returns handle for identifying RMA window

40

Creating a Window to Existing Memory

MPI Win create (void * , MPI_Aint , int , MPI_Info s
MPI_Comm 5 MPI_Win *win)

e Expose an existing memory region in an RMA window

— collective operation that needs to be called by all processes in communicator
- memory must be previously allocated with MPI_Alloc mem

e Parameters
pointer to local data to expose
size of local data in bytes
local unit size for displacements in bytes
hints to MPI implementation for improving efficiency
MPI communicator
returns handle for identifying RMA window

¢ If window is no longer used, it can be deallocated with MpP1I_win free(win)

41

MPI_Put

MPI Put (const void * , int , MPI_Datatype s
int , MPI_Aint , int ,
MPI_Datatype 5 MPI_Win)

e Move data from origin to target

e Parameters
pointer to local data to be sent to target
number of elements to put and its MPI data type
rank of target process
displacement from the beginning of the target window
number of elements and data type in target
RMA window to be used

42

MPI_Get

MPI Get (void * , int , MPI_Datatype ,
int , MPI_Aint , int ,
MPI_Datatype 5 MPI_Win)

e Move data from origin to target

e Parameters
initial address of origin buffer where data will be copied to
number of elements to get and its MPI data type
rank of target process
displacement from the beginning of the target window
number of elements and data type in target
RMA window to be used

43

MPIl_Accumulate

MPI Accumulate (void * , int , MPI_Datatype ’
int , MPI_Aint , int ,
MPI_Datatype s MPI Op op, MPI_Win)

e Update data at target atomically, generalization of a put
— reduces origin and target into the target buffer using op as reduction operation

e Parameters (like mp1_prut)

MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO _ORP, ...
MPI_REPLACE acts like an MPI_Put

44

Ordering of RMA Operations

e Ordering of Get/Put operations is not guaranteed

— result of concurrent Put to same location is undefined

- result of Get is undefined if concurrent Put or Accumulate
to same operations are active

¢ Results of concurrent Accumulates from same
process to same location is defined
— complete in the order of issue

45

Active Target Synchronization with Fences

MPI Win fence (int assert, MPI_Win win)

e (Collective synchronization method for starting and
ending both access and exposure epochs on all
processes in window

— first call to MPI_Win_fence starts the epoch

— all processes can perform PUT/GET/ACCUMULATE
operations now

— all processes must call MPT_Win_ fence again to close the
epoch

e All operations complete at the second fence
synchronization

¢ Within the epoch, all processes perform RMA

. process process process
operations on all targets 0 1 2

46

Active Target Synchronization with Fences (2)

e Assert argument for MPI_Win_fence can improve
performance by specifying hints to runtime

- MPI_MODE_NOSTORE: the local window was not updated
by local stores (or local get or receive calls) since last
synchronization

— MPI_MODE_NOPUT: the local window will not be updated
by put or accumulate calls after the fence call, until the
following (fence) synchronization

- MPI_MODE_NOPRECEDE: the fence does not complete
any sequence of locally issued RMA calls

- MPI_MODE_NOSUCCEED: the fence does not start any
sequence of locally issued RMA calls

47

Example: MPI_Put with Active Target Synchronization

int data;
MPI Win window;

data = rank;

// Create window

MPI Win create(&data, sizeof(int), sizeof(int),
MPI_INFO_NULL, MPI_COMM_WORLD,&window);

MPI Win fence(®, window);
if (rank == 0)

MPI Put(&data, 1, MPI_INT, 1, ©, 1, MPI_INT, window);
MPI Win fence(®, window);

MPI Win free(&window);

48

Generalized Active Target Synchronization

MPI Win post/start(MPI_Group , int s MPI_Win) Post &
MPI Win_ complete/wait(MPI_Win y T e

e Generalizes synchronization with fences but origin
and target specify with whom they communicate

e Target: Exposure epoch
- opened with MPI_Win_post
— closed with MPI_Win_wait

e Origin: Access epoch
— opened with MPI_Win_start Wait
— closed with MPI_Win_complete

e Synchronization methods may block to enforce

Post-Start-Complete-Wait ordering target origin
process process

Complete

49

Passive Target Synchronization with Lock/Unlock

e Target does not participate
in synchronization

- true passive, one-sided
asynchronous
communication

— shared memory-like model

Active Target Mode Passive Target Mode

Post

Start - Lock

Complete

Wait - Unlock

target
process

origin
process

target
process

origin
process

50

Passive Target Synchronization with Lock/Unlock (2)

MPI Win_lock/lock all (int , int , int 5 MPI_Win)
MPI_Win_unlock/unlock_all (int 5 MPI_Win)
MPI_Win_flush/flush_local(int » MPI_Win)

e« MPI Win lock/unlock: start/end a passive mode epoch for
— only called at origin (not target)
— multiple passive target epochs to different processes can be active
— concurrent epochs to same process not allowed

- lock_all/unlock_all variants lock access to all processes in win with type
MPI_LOCK_SHARED

- MPI_LOCK_SHARED: other process using shared can access concurrently
- MPI_LOCK_EXCLUSIVE: no other processes can access concurrently
e MPI _Win_flush

— complete all outstanding RMA operations at origin and target, after completion target or other
process can read consistent data in window

e MPI Win_flush_local

— complete all local RMA operations to the target process
51

How to Chose a Synchronization Model

RMA communication has lower overheads than MPI _Send/Recv

- two-sided : message matching, queuing, buffering, waiting for readiness to receive, etc.
— one-sided: no message matching and buffering, always ready to receive
- RDMA makes transfer even more efficient

Active mode
— useful for synchronizing after bulk data exchange, e.g. halo regions

Passive mode
— useful for moving data with unstructured access and synchronization pattern
- distributed shared memory in global address space
— lock/unlock: when exclusive epochs are needed
— lock_all/unlock_all: when only shared epochs are needed

52

Hybrid Parallel Programming

MPI and Threads

e MPI dates back to time when CPUs only had a single (or very few) cores
— single thread per rank
— distributed memory
— core-level parallelism must be exploited by running multiple MPI ranks per CPU

¢ Advantages of MPIl-only programs
— same code and programming model everywhere (reduce software complexity)
— memory locality is also favorable for multi-cores
- simple job scheduling, ranks can be placed anywhere

¢ Advantages of using multi-threading on node and MPI between nodes
— eliminate need for domain decomposition on node
— automatic memory sharing, coherency and high local bandwidth
— faster synchronization routines

54

Thread-Safety of MPI (1)

e MPI can be used in multi-threaded environments
— application must explicitly state, which level of thread-safety is required

higher degree of thread safety, comes with higher overheads

e Levels of thread safety

MPI_THREAD_SINGLE: only one thread will execute per rank

MPI_THREAD_FUNNELD: each rank may be multi-threaded but only the thread that called
MPI_Init_thread is allowed to make MPI calls

MPI_THREAD_SERIALIZED: each rank my be multi-threaded but one thread at a time makes MPI
calls

MPI_THREAD_MULTIPLE: each rank may be multi-threaded and multiple threads may call MPI at
once without restrictions

¢ |ncreasing thread-safety levels include each other, i.e. an application that requires
MPI_THREAD_FUNNELED runs with MPI_THREAD_SERIALIZED too

55

Thread-Safety of MPI (2)

The application requests the desired thread-safety level using a variant of MPL_Init

MPI_Init_thread(int* , Char** , int , int*)

: specifies the desired thread-safety level, e.g. MPI_THREAD_FUNNELED
: returns the available level of thread support

MPI implementations are not required to support higher levels than
MPI_THREAD_SINGLE, hence provided may be different from requested

Multi-threaded programs must call MPL_Init_thread (because MPI_Init implies
MPI_THREAD_SINGLE)

Levels FUNNELED and SERIAL are typically sufficient for bulk synchronous parallel
programming (in particular OpenMP work sharing)

Unrestricted multi-threading and MPI in MPI_THREAD_MULTIPLE mode, is tricky
and can lead to very hard to find bugs related to thread-scheduling and race
conditions (out of scope for this lecture)

56

MPI + OpenMP with MPI_THREAD_FUNNELED

e All MPI calls are made by the OpenMP master thread, either

— outside OpenMP parallel region
— orin an OpenMP master region within an OpenMP parallel region

e Example: MPI call outside of parallel region

int main(int argc, char * argv[]) {
int provided;
int a[N] = ...

MPI Init thread(&argc, &argv, MPI_THREAD_ FUNNELED, &provided);
if (provided < MPI_THREAD FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

// no MPI calls within this parallel region

for(int i=0; i<N; i++){
a[i] = f(i);
}

// ouside parallel region, MPI calls can be made
MPI Send(...);

MPI_Finalize();

return 0;

57

MPI + OpenMP with MPI_THREAD_FUNNELED (2)

Example: MPI call from within a parallel region

int main(int argc, char * argv[]) {
int provided;
int a[N] = ...

MPI Init thread(&argc, &argv, MPI_THREAD FUNNELED, &provided);
if (provided < MPI_THREAD FUNNELED) MPI_Abort(MPI_COMM WORLD,1);

// MPI calls only from within master region

for(int i=0; i<N; i++){
a[i] = f(1);
if (i % 10) {

MPI Send(...);

}

}
MPI Finalize();

return 0;

OpenMP master region has no
implied barrier

to make
sure memory state is consistent,
in particular all buffers to be
communicated with MPI are
consistent before and after the
MPI calls
Second barrier also implies cache
flush

58

Overlapping Computation and Communication

e Example: halo communication for stencils (e.g. Conway’s Game of Life)

- how do we create on thread for communication and let the others to the work?
— here: create threads with nested parallelism, alternative: use OpenMP tasks

{
if('omp _get thread num()) {

MPI_Send/Recv(..) // one thread exchanges halo data
} else {

for{int i=0; i<N; i++) {
// other threads do work not involving halos

}

{
for{int i=0; i<N; i++) {
// all threads work now on remaining data that need halos

}

59

Running Hybrid MPI + OpenMP Programs on Oculus

Example: hybrid MPI + OpenMP program and a resource budget of 64 cores

— reminder: regular Oculus nodes have 2 sockets with 8 core CPUs, i.e. 16 cores per node (resource
type ‘norm’)

Variant 1: 64 MPI ranks (MPI-only) on 4 nodes with 16 MPI ranks per node

ccsalloc --res=rset=4:mpiprocs=16:ncpus=16:norm=true:place=:excl

Variant 2: 4 nodes, 4 MPI ranks (1 per node), 16 OpenMP threads per MPI rank

ccsalloc --res=rset=4:ncpus=16:mpiprocs=1:ompthreads=16,place=:excl

Variant 3: 4 nodes, 1 MPI ranks per CPU (2 per node), 8 OpenMP thr. per MPI rank

ccsalloc --res=rset=4:ncpus=16:mpiprocs=2:ompthreads=8,place=:excl

Variant 4: 4 nodes, 2 MPI ranks per CPU, 4 OpenMP threads per MPI rank

ccsalloc --res=rset=4:ncpus=16:mpiprocs=4:ompthreads=4,place=:excl

Variant 5: 16 chunks with 1 MPI rank and 4 OpenMP threads per MPI rank (let CCS
decide whether
ccsalloc --res=rset=16:ncpus=4:mpiprocs=1:ompthreads=4
60

Acknowledgements

e This lecture is based materials from these sources

— CSC.fi course materials on Advanced MPI
— SC17 tutorial on Advanced MPI Programming

61

Change Log

e 1.0.2 (2018-01-23)

— cosmetics
— add warning to slide 18
— fix struct declaration on slide 18 and 19 (last field is double mass, not int type)

e 1.0.1 (2018-01-22)

— added section on hybrid parallel programming

e 1.0.0 (2018-01-16)

— initial version of slides

62

