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• Derived Data Types
• Non-Blocking Communication
• One-Sided Communication
• Hybrid Parallel Programming

Outline
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Derived Data Types
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• Each communication in MPI requires to define data type and length
• MPI standard defines a set of basic (intrinsic) MPI data types

– correspond native data types of C/Fortran
– e.g. signed int → MPI_INT, double → MPI_DOUBLE, ..
– single elements or contiguous arrays of same type can be transferred

• Example: send 100 double values in array a to rank 42
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Basic MPI Data Types

double buf[100];
MPI_Send(buf, len, MPI_DOUBLE, 42, 0, MPI_COMM_WORLD);



• Derived data types can express arbitrary data structures that are communicated
– hierarchical construction based on basic or derived types
– MPI runtime constructs efficient (de)serialization methods

• Purpose
– communication of non-contiguous data (e.g. arrays with strided access)
– communication heterogeneous data (e.g. structs comprising different types)
– raise abstraction level of program (more expressive and shorter code)
– increase communication efficiency (fewer data transfers)

• All communication types are supported
– point-to-point, collective, blocking, non-blocking
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Derived Data Types



• Two dimensional arrays in C are stored in row-
major order

• Communicating a row the array with basic MPI 
data types is not efficiently possible because data 
is non-contiguous

• Workarounds for communicating a row
– one transfer per row element (a11, a21, a31)
– transfer of whole array, discard unneeded elements
– copying data to temporary contiguous buffer, which is then 

sent (manual marshalling)
• All workarounds are inefficient or cumbersome and 

increase complexity of code
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Motivation: Sending Matrix Column in C

a11

a21

a31

a12

a22

a32

a13

a23

a33

a11 a21 a31a12 a22 a32a13 a23 a33

2D array a in C

storage in memory (C 
uses row major order)



• Solution: create derived data types 
for expressing a column in the array
– enables to send a row with single MPI 

transfer
• Example

– assume 2D NxN array of doubles
– build custom data type for representing a 

row
• MPI_Type_vector constructor

– N elements
– groups of 1 (single) elements, 
– stride N (spacing between elements)
– base type MPI_DOUBLE
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Motivation: Sending Matrix Column in C (2)

double A[N][N];

MPI_Datatype row_t;

MPI_Type_vector(N, 1, N, MPI_DOUBLE, &row_t);

MPI_Type_commit(&row_t);

MPI_Send(&A[0][1], 1, row_t, 42, 0, MPI_COMM_WORLD);

...

MPI_Type_free(&row_t);
send second 
column of array



• Creating a name for a derived data type
– expressed with variable of type MPI_Datatype

• Declaration of new data type
– MPI_Type_create constructor functions define new types based on existing types (flat or 

hierarchical)

• Finalizing the construction of data type
– calling the MPI_Type_commit function instructs MPI that the type is final
– triggers generation of optimized methods for (de)serialization
– committing is only needed for types that are actually used in communication (intermediate types 

used just for hierarchical definitions do not need to be committed) 

• Releasing resources
– if a type is no longer needed, resources can be released with MPI_Type_free
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Type Lifecycle Management



Available Type Constructors
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Constructor name Purpose
MPI_Type_contiguous Contiguous data types
MPI_Type_vector Block of array elements with regular strides
MPI_Type_create_hvector Block of array elements with regular stride 

(specified in bytes instead of size of oldtype)
MPI_Type_create_indexed_block Blocks of array elements with irregular block 

lengths and strides
MPI_Type_indexed Block of array elements with irregular strides

MPI_Type_create_struct Most general data type
MPI_Type_create_subarray Data type for n-dimensional array slices

some frequently used type constructors (there are many more)



• Declare contiguous array of oldtype
– count: number of elements

• Do not used as last type (use length 
parameter of send/recv instead)
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MPI_Type_Contiguous

MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

10 32 54 76 98 1110 1312 1514

contiguous

10 32 54 76 98 1110 1312 1514

struct struct struct

contiguous

newtype

oldtype (struct)

newtype

oldtype (e.g. MPI_FLOAT)



• Declare data type of identical blocks with fixed stride
– count: number of blocks
– blocklength: number of elements in each block
– stride: displacements between blocks

• Use cases
– communicating rows or planes in multi-dimensional arrays
– arrays of more complex structures, e.g. vector of structs
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MPI_Type_vector

MPI_Type_vector( int count, int blocklength, int stride, MPI_Datatype oldtype,
MPI_Datatype *newtype)

10 32 54 76 98 1110 1312 1514

vector

10 32 54 76 98 1110 1312 1514

struct struct

vector

count = 3, blocklength = 3, stride = 4

count = 2, blocklength = 1, stride = 2

stride measured in extent 
of oldtype, i.e. second 
struct could not start at 
offset 7



• Same function as regular vector, but stride is specified in bytes instead of size 
of oldtype
– allows for using strides that are not evenly divisible by length of oldtype

• Declare data type of identical blocks with fixed stride
– count: number of blocks
– blocklength: number of elements in each block
– stride: displacements between blocks in bytes (not extent of oldtype)
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MPI_Type_create_hvector

MPI_Type_create_hvector( int count, int blocklength, MPI_Aint stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

struct struct

10 32 54 76 98 1110 1312 1514

struct struct

hvector

count = 2, blocklength = 2, stride = 10
1615
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MPI_Type_create_indexed_block

• Extracts variable sized and spaced blocks of data comprising identical 
elements
– blocklengh: length of blocks
– displacements[]: displacements expressed in size (extent) of oldtype

MPI_Type_create_indexed_block( int count, const int blocklength,
const int displacements[], MPI_Datatype oldtype, MPI_Datatype *newtype)

10 32 54 76 98 1110 1312 1514

indexed_blocked

blocklength = 2
displacements = { 0, 4, 11, 13, 15 }

1615



• Extracts variable sized and spaced blocks of data comprising identical 
elements
– blocklengths[]: length of blocks as array
– displacements[]: displacements expressed in size (extent) of oldtype
– there is also a MPI_Type_create_hindexed variant that uses displacements in bytes
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MPI_Type_indexed

MPI_Type_indexed( int count, const int blocklengths[], const int displacements[],
MPI_Datatype oldtype, MPI_Datatype *newtype)

10 32 54 76 98 1110 1312 1514

indexed

blocklengths = { 2, 1, 3, 2, 2 }
displacements = { 0, 4, 7, 13, 15 }

1615
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MPI_Type_create_subarray

• Create an n-dimensional subarrays from an n-dimensional array which is 
stored in a linearized way.
– ndims: numbe of dimensions of full array (must match length of arrays size, subsize, start)
– size[]: size of original array
– subsize[]: size of subarray
– start[]: start of subarray, indexes start at 0
– order: MPI_ORDER_C (array is stored in row-major order), or MPI_ORDER_FORTRAN 

(column-major order)

MPI_Type_create_subarray( int ndims, const int size[], const int subsize[],
const int start[], int order, MPI_Datatype *oldtype, MPI_Datatype *newtype)



• Send 4 quadrants of array from master process to 
ranks 1–4 for further processing
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MPI_Type_create_subarray Example

double *array = ...;
int array_sz[2] = {8,8};
int sub_sz[2] = {4,4};
int off_TL[2] = {0,0}, off_TR[2] = {0,4}, off_BL[2] = {4,0}, off_BR[2] = {4,4};
MPI_Datatype TL, TR, BL, BR;

MPI_Type_create_subarray(2, array_sz, sub_sz, off_TL, MPI_ORDER_C, MPI_DOUBLE, &TL);
MPI_Type_commit(&TL);
MPI_Type_create_subarray(2, array_sz, sub_sz, off_TR, MPI_ORDER_C, MPI_DOUBLE, &TR);
MPI_Type_commit(&TR);
...

if(rank==0) {
MPISend(array, 1, TL, 1, 0, MPI_COMM_WORLD);
MPISend(array, 1, TR, 2, 0, MPI_COMM_WORLD);
MPISend(array, 1, BL, 3, 0, MPI_COMM_WORLD);
MPISend(array, 1, BR, 4, 0, MPI_COMM_WORLD);

} ...

TL

BL

TR

BR
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MPI_Type_create_struct

• Fully general constructor for creating new type with arbitrary many elements, 
displacements and types
– blocklengths[]: length of blocks as array
– displacements[]: byte displacements of each block as array
– types[]: type of elements in each block (array of MPI_Datatype elements)

• The displacement can be determined in portable way using the function

MPI_Get_address(cosnt void *location, MPI_Aint *address)

• see example

MPI_Type_create_struct( int count, const int blocklengths[], 
const MPI_Aint displacements[], const MPI_Datatype types[], 
MPI_Datatype *newtype)
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MPI_Type_create_struct Example (simple case)
typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} particle_t;
particle_t p[N];

MPI_Datatype particletype;

MPI_Datatype oldtypes[3] = {MPI_FLOAT, MPI_CHAR, MPI_DOUBLE};
int len[3] = {4, 10, 1};
int disp[3];
disp[0] = 0;
disp[1] = disp[0] + 4*sizeof(float);
disp[2] = disp[1] + 10*sizeof(char);

MPI_Type_create_struct(3, len, disp, oldtypes, &tmp);
MPI_Type_create_resized(tmp, 0, sizeof(particle_t), &particletype);
MPI_Type_commit(&particletype);
MPI_Send(p, N, particletype, dest, tag, comm);

declaration of C struct type for particles

what is the size of one particle_t structure?

The whole may be more 
than the sum of its parts

CAUTION: This example may be incorrect, depending 
on CPU architecture and compiler options/defaults



• The C compiler can exploit different performance / storage size trade-offs for 
structs
– dense packing minimizes storage requirements but data may be poorly aligned for loads and 

stores, caching and vectorization
– compiler can insert padding elements in struct for optimization
– since handling of structs and unions is architecture and compiler specific, structs can cause 

problems with portability
• ISO C standard, “6.7.2.1 structure and union specifiers”

– 14. Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

– 15. Within a structure object, the non-bit-field members [...] have addresses that increase in the 
order in which they are declared. [...] There may be unnamed padding within a structure object, 
but not at its beginning.

– 17. There may be unnamed padding at the end of a structure or union
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Complications by Struct Padding and Alignment



• GCC allows controlling struct packing and alignment in struct declaration and as 
variable attributes
– __attribute__((packed)) use dense packing of struct elements
– __attribute__((aligned (n))) force compiler to allocate and align variable at (at least) an n-byte 

boundary
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Example: Struct Alignment with GCC on x86 Linux

typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} __attribute__((packed))__ __attribute__((aligned (8))) particle_t;

Index
Packed Aligned Sizeof 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Default Default 40 x x x x y y y y z z z z v v v v n n n n n n n n n n p p p p p p m m m m m m m m
Yes Default 34 x x x x y y y y z z z z v v v v n n n n n n n n n n m m m m m m m m
Yes 8 40 x x x x y y y y z z z z v v v v n n n n n n n n n n m m m m m m m m p p p p p p
No 8 40 x x x x y y y y z z z z v v v v n n n n n n n n n n p p p p p p m m m m m m m m
Yes 16 48 x x x x y y y y z z z z v v v v n n n n n n n n n n m m m m m m m m p p p p p p p p p p p p p p
No 16 48 x x x x y y y y z z z z v v v v n n n n n n n n n n p p p p p p m m m m m m m m p p p p p p p p

64bit64bit 64bit 64bit64bit 64bit
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MPI_Type_create_struct Example (max. Portability)
typedef struct {
float x, y, z, velocity;
char name[10];
double mass;

} particle_t;
particle_t p[N];

MPI_Datatype particletype, tmp;

MPI_Datatype oldtypes[3] = {MPI_FLOAT, MPI_CHAR, MPI_DOUBLE};
int len[3] = {4, 10, 1};
MPI_Aint base, disp[3];
MPI_Get_address(particle[0].x, disp[0]);
MPI_Get_address(particle[0].name, disp[1]);
MPI_Get_address(particle[0].mass, disp[2]);
base = disp[0];
for (int i=0; i<3; i++) disp[i] = MPI_Aint_diff(disp[i], base);

MPI_Type_create_struct(3, len, disp, oldtypes, &tmp);
MPI_Type_create_resized(tmp, 0, sizeof(particle_t), &particletype);
MPI_Type_commit(&particletype);
MPI_Send(p, N, particletype, dest, tag, comm);

declaration of C struct type for particles

MPI_Get_address is a portable way of 
determining address of variables

displacements are relative to 
base, use MPI_Aint_diff to 
compute in portable way
Compiler could add padding after 
each struct element in array. 
MPI_Type_create_resized adjusts 
size if needed



• MPI offers limited forms of “data type” conversion
– simple data layout conversions are supported, e.g. from contiguous to vector layouts
– there is however no conversion between the actual data types (‘leaves’ of a data structure 

definition), e.g. no conversion from MPI_FLOAT to MPI_DOUBLE

• Example
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Data Type Conversion in MPI

MPI_Type my_vec_t;
MPI_Type_vector(N, 1, 2, MPI_FLOAT, my_vec_t);
float *a = (float*)malloc(N*sizeof(float));
init(a);

if (rank == 0) {
MPI_Send(a, 1, my_vec_t, 1, 0, MPI_COMM_WORLD);

} else {
MPI_Recv(buf, N, MPI_FLOAT, 0, 0, MPI_COMM_WORLD);

}

rank 0

rank 1

...

...



• Tradeoff between abstraction/convenience and performance
• Rule of thumb

– the more parameter a MPI_Type_create constructor has, the slower the performance
– predefined < contig < vector < index_block < index < struct

• Tips
– construct data types hierarchically, from bottom up
– use few, long data transfers instead of many small transfers
– don’t use contiguous as the outermost MPI Datatype because multiple elements can be sent 

using the count argument of peer-to-peer or collective communication functions

23

Advise on Defining and Using MPI Datatypes



Non-Blocking Communication
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• Blocking MPI_Send / MPI_Recv cause overheads
– MPI_Send blocks until the message has been delivered to receiver (see MPI standard for precise 

semantics and guarantees)
– when sending or receiving multiple independent messages, MPI_Send/Recv enforce ordering
– overlapping of computation and communication is not possible

• Non-blocking MPI communication
– non-blocking send (MPI_Isend) and receive (MPI_Irecv) immediately return and handle 

communication in background
– completion of communication can be tested and enforced with additional functions
– allows to overlap communication and computation
– can avoid many common deadlocking problems

• Blocking and non-blocking communication can be mixed
– MPI_Isend can be received by MPI_Recv

25

Non-Blocking Communication Objectives
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Non-Blocking Send and Receive

• Same parameters and types as MPI_Send
• Additional request parameter used for query status of communication or waiting 

for completion

• Same parameters and types as MPI_Recv but no status parameter
• Additional request parameter used for query status of communication or waiting 

for completion

MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irecv(const void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)
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Testing and Waiting for Non-Blocking Communication

• Test for completion of a single MPI request
– request: handle to a request returned by MPI_Isend / MPI_Irecv
– flag: returns true if operation has logically completed
– status: delivers additional information, if application does not need additional status 

information MPI_STATUS_IGNORE can be passed to save resources

• Wait for completion of a single MPI requests
– request: handle to a request returned by MPI_Isend / MPI_Irecv
– status: delivers additional information, if application does not need additional status 

information MPI_STATUS_IGNORE can be passed to save resources

MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

MPI_Wait(MPI_Request *request, MPI_Status *status)



• Additional functions for testing of – or waiting on – multiple MPI requests 
concurrently
– function return which requests have completed
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Testing and Waiting for Non-Blocking Communication

Function Purpose
MPI_Testall Test for completion of all requests in a set
MPI_Testany Test for completion of zero or one request in a set
MPI_Testsome Test for completion of one or more requests 
MPI_Waitall Wait for completion of all requests in a set
MPI_Waitany Wait for completion of zero or one request in a set
MPI_Waitsome Wait for completion of one or more requests 
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Testing MPI Request Sets (1)

• Test for completion of all requests in a set
– count: number of requests
– requests: arrays of requests (length = count) 
– flag: returns true if all operations have completed
– statuses: like in MPI_Test, use constant MPI_STATUSES_IGNORE if not needed

• Test for completion of zero or one request in a set
– flag: returns true if a request has completed, index of request is returned in index
– other parameters like MPI_Testall

MPI_Testall(int count, MPI_Request requests[], int *flag, MPI_Status statuses[])

MPI_Testany (int count, MPI_Request requests[], int *index, int *flag,
MPI_Status *status)
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Testing MPI Request Sets (2)

• Test for completion of one or more request in a set
– incount: number of requests
– requests: arrays of requests (length = incount) 
– outcount: returns number of requests that have completed
– indices: returns array with indices of requests that have completed

MPI_Testsome(int incount, MPI_Request requests[], int *outcount, int indices[],
MPI_Status *statuses[])
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Waiting For MPI Request Sets

• Wait for completion of all requests in a set
– count: number of requests
– requests: arrays of requests (length = count)

• Wait for completion of zero or one request in a set
– index: index of handle that completed

• Wait for completion of one or more request in a set
– parameters analogous to MPI_Testsome

MPI_Waitall(int count, MPI_Request requests[], MPI_Status statuses[])

MPI_Waitany (int count, MPI_Request requests[], int *index, MPI_Status *status)

MPI_Waitsome(int incount, MPI_Request requests[], int *outcount, int indices[],
MPI_Status *statuses[])



• Example from exercise Conway’s Game of Life
• each cell updates requires data from 1-neighborhood
• parallelization can be done by duplicate bordering data 

(so-called “halo” or “ghost-cells”)
• data not depending on halo can be computed concurrently 

with data exchange
• after halo data arrives, the remaining computation can be 

completed
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Typical Use Case for Non-Blocking Communication

foreach timestep {
MPI_Irecv(halo_data)
MPI_Isend(border_data)
compute(halo_independent_data)
MPI_Waitall
compute(border_data)

}

rank 0

rank 1

rank 2



• MPI-3 has added non-blocking collective 
operations in addition to the non-blocking point to 
point communication
– MPI_Ibcast
– MPI_Ireduce
– ...

33

Further Non-Blocking Operations



One-Sided Communication
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• Two-sided communication (blocking and non-blocking)
– two processes are involved: send and matching receive operation
– combines data transfer and synchronization

• One-sided communication added in MPI-2
– moves data without requiring the remote process to synchronize
– each process exposes a section of memory (window) to other processes
– other processes can directly read or write to this window (global address space)
– communication is always non-blocking
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Overview One-Sided Communication

process 0 process 1 process 2 process 3

private 
memory

private 
memory

private 
memory

private 
memory

windowwindowwindowwindow

PUT(data) GET(data)
global 
address space



• The data transfers to and from remote memory are very efficient
– Remote Direct Memory Access (RDMA) mechanism
– network cards directly access memory and copy data through the network

• Ideally
– no operating system interaction required
– close to zero CPU load
– all handled autonomously by hardware in special HPC networks and network cards
– zero-copy, i.e. data is moved from main memory to networks without copying to OS kernel

• Operations that are typically supported
– data copy (send and receive)
– atomic operations
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Remote Direct Memory Access (RDMA)



• Motivation
– irregular communication patterns are easier to implement
– lower overhead due to efficient RDMA transfers and 

explicit synchronization
• Origin / Target Process

– processes can initiate a send to a remote location (PUT) 
and a receive from a remote location (GET), hence the 
usual terms sender/receiver are ambiguous

– origin: process which initiates the data movement
– target: process whose memory is accessed

• Remote Memory Access (RMA) Window
– section of process memory that is available for one-sided 

(RMA) communication
– created by collective calls
– can differ between processes
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Motivation and Terminology

process 0 process 1

private 
memory

private 
memory

window w1

window w0
process 1 
puts data to 
w0

process 0 
gets data 
from w1



• MPI_Put
– copy data from local buffer in origin to remote window in target process

• MPI_Get
– copy data from remote window in target to local buffer in origin

• MPI_Accumulate
– use data in local buffer at origin to modify data in window in target process
– for example, add values in local buffer to remote buffer (one-sided reduction)

38

Overview: RMA Operations in MPI-2



• RMA data access model
– when is a process allowed to perform RMA operations on target?
– when is it safe for process Y to read data on target that was written by process X?

• Synchronization takes place in ”epochs” can be started and ended with multiple 
mechanisms
– access epoch: origin my access window in different process with RMA operations
– exposure epoch: target is offering other processes access to its window with RMA operations

• Three RMA synchronization models
– active target: both origin and target explicitly start and end epochs with collective operations
– generalized active target: post-start-complete-wait
– passive target: use lock/unlock operations, no fence operations at target

39

Overview: RMA Synchronization in MPI-2
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Allocate Memory and Creating a Window

• Allocate new memory and expose it as an RMA window
– collective operation that needs to be called by all processes in communicator

• Parameters
– size: size of local data in bytes
– disp_unit: local unit size for displacements in bytes
– info: hints to MPI implementation for improving efficiency
– comm: MPI communicator
– base: returns initial address of created window
– win: returns handle for identifying RMA window

MPI_Win_allocate (MPI_Aint size, int disp_unit, MPI_Info info, 
MPI_Comm comm, void* baseptr, MPI_Win *win)



41

Creating a Window to Existing Memory

• Expose an existing memory region in an RMA window
– collective operation that needs to be called by all processes in communicator
– memory must be previously allocated with MPI_Alloc_mem

• Parameters
– base: pointer to local data to expose
– size: size of local data in bytes
– disp_unit: local unit size for displacements in bytes
– info: hints to MPI implementation for improving efficiency
– comm: MPI communicator
– win: returns handle for identifying RMA window

• If window is no longer used, it can be deallocated with MPI_Win_free(win)

MPI_Win_create (void *base, MPI_Aint size, int disp_unit, MPI_Info info, 
MPI_Comm comm, MPI_Win *win)
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MPI_Put

• Move data from origin to target
• Parameters

– origin_addr: pointer to local data to be sent to target
– origin_count, origin_datatype: number of elements to put and its MPI data type
– target_rank: rank of target process
– target_disp: displacement from the beginning of the target window
– target_count, target_datatype: number of elements and data type in target
– win: RMA window to be used

MPI_Put (const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win)
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MPI_Get

• Move data from origin to target
• Parameters

– origin_addr: initial address of origin buffer where data will be copied to
– origin_count, origin_datatype: number of elements to get and its MPI data type
– target_rank: rank of target process
– target_disp: displacement from the beginning of the target window
– target_count, target_datatype: number of elements and data type in target
– win: RMA window to be used

MPI_Get (void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Win win)
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MPI_Accumulate

• Update data at target atomically, generalization of a put
– reduces origin and target into the target buffer using op as reduction operation

• Parameters (like MPI_Put)
– op: MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, ...

MPI_REPLACE acts like an MPI_Put

MPI_Accumulate (void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count,
MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)



• Ordering of Get/Put operations is not guaranteed
– result of concurrent Put to same location is undefined
– result of Get is undefined if concurrent Put or Accumulate 

to same operations are active
• Results of concurrent Accumulates from same 

process to same location is defined
– complete in the order of issue

45

Ordering of RMA Operations



• Collective synchronization method for starting and 
ending both access and exposure epochs on all 
processes in window
– first call to MPI_Win_fence starts the epoch
– all processes can perform PUT/GET/ACCUMULATE 

operations now
– all processes must call MPI_Win_fence again to close the 

epoch
• All operations complete at the second fence 

synchronization
• Within the epoch, all processes perform RMA 

operations on all targets
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Active Target Synchronization with Fences

MPI_Win_fence (int assert, MPI_Win win) Fence

Fence

process
0

process
1

process
2



• Assert argument for MPI_Win_fence can improve 
performance by specifying hints to runtime
– MPI_MODE_NOSTORE: the local window was not updated 

by local stores (or local get or receive calls) since last 
synchronization

– MPI_MODE_NOPUT: the local window will not be updated 
by put or accumulate calls after the fence call, until the 
following (fence) synchronization

– MPI_MODE_NOPRECEDE: the fence does not complete 
any sequence of locally issued RMA calls

– MPI_MODE_NOSUCCEED: the fence does not start any 
sequence of locally issued RMA calls

47

Active Target Synchronization with Fences (2)
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Example: MPI_Put with Active Target Synchronization

int data;
MPI_Win window;

data = rank;
// Create window
MPI_Win_create(&data, sizeof(int), sizeof(int), 
MPI_INFO_NULL, MPI_COMM_WORLD,&window);

...

MPI_Win_fence(0, window);
if (rank == 0)
MPI_Put(&data, 1, MPI_INT, 1, 0, 1, MPI_INT, window);

MPI_Win_fence(0, window);
...
MPI_Win_free(&window);



• Generalizes synchronization with fences but origin 
and target specify with whom they communicate

• Target: Exposure epoch
– opened with MPI_Win_post
– closed with MPI_Win_wait

• Origin: Access epoch
– opened with MPI_Win_start
– closed with MPI_Win_complete

• Synchronization methods may block to enforce 
Post-Start-Complete-Wait ordering
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Generalized Active Target Synchronization

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

Post

Wait

target
process

origin
process

Start

Complete



• Target does not participate 
in synchronization
– true passive, one-sided 

asynchronous 
communication

– shared memory-like model
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Passive Target Synchronization with Lock/Unlock

target
process

origin
process

Lock

Unlock

Post

Wait

target
process

origin
process

Start

Complete

Active Target Mode Passive Target Mode
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Passive Target Synchronization with Lock/Unlock (2)

• MPI_Win_lock/unlock: start/end a passive mode epoch for rank
– only called at origin (not target)
– multiple passive target epochs to different processes can be active
– concurrent epochs to same process not allowed
– lock_all/unlock_all variants lock access to all processes in win with type 

MPI_LOCK_SHARED
• lock_type

– MPI_LOCK_SHARED: other process using shared can access concurrently 
– MPI_LOCK_EXCLUSIVE: no other processes can access concurrently

• MPI_Win_flush
– complete all outstanding RMA operations at origin and target, after completion target or other 

process can read consistent data in window
• MPI_Win_flush_local

– complete all local RMA operations to the target process

MPI_Win_lock/lock_all (int lock_type, int rank, int assert, MPI_Win win)
MPI_Win_unlock/unlock_all (int rank, MPI_Win win)
MPI_Win_flush/flush_local(int rank, MPI_Win win)



• RMA communication has lower overheads than MPI_Send/Recv
– two-sided : message matching, queuing, buffering, waiting for readiness to receive, etc.
– one-sided: no message matching and buffering, always ready to receive
– RDMA makes transfer even more efficient

• Active mode
– useful for synchronizing after bulk data exchange, e.g. halo regions

• Passive mode
– useful for moving data with unstructured access and synchronization pattern
– distributed shared memory in global address space
– lock/unlock: when exclusive epochs are needed
– lock_all/unlock_all: when only shared epochs are needed
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How to Chose a Synchronization Model



Hybrid Parallel Programming

53



• MPI dates back to time when CPUs only had a single (or very few) cores
– single thread per rank
– distributed memory
– core-level parallelism must be exploited by running multiple MPI ranks per CPU

• Advantages of MPI-only programs
– same code and programming model everywhere (reduce software complexity)
– memory locality is also favorable for multi-cores
– simple job scheduling, ranks can be placed anywhere

• Advantages of using multi-threading on node and MPI between nodes
– eliminate need for domain decomposition on node
– automatic memory sharing, coherency and high local bandwidth
– faster synchronization routines
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MPI and Threads



• MPI can be used in multi-threaded environments
– application must explicitly state, which level of thread-safety is required
– higher degree of thread safety, comes with higher overheads

• Levels of thread safety
– MPI_THREAD_SINGLE: only one thread will execute per rank
– MPI_THREAD_FUNNELD: each rank may be multi-threaded but only the thread that called 

MPI_Init_thread is allowed to make MPI calls
– MPI_THREAD_SERIALIZED: each rank my be multi-threaded but one thread at a time makes MPI 

calls
– MPI_THREAD_MULTIPLE: each rank may be multi-threaded and multiple threads may call MPI at 

once without restrictions
• Increasing thread-safety levels include each other, i.e. an application that requires 

MPI_THREAD_FUNNELED runs with MPI_THREAD_SERIALIZED too
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Thread-Safety of MPI (1)



• The application requests the desired thread-safety level using a variant of MPI_Init

– required:  specifies the desired thread-safety level, e.g. MPI_THREAD_FUNNELED
– provided: returns the available level of thread support

• MPI implementations are not required to support higher levels than 
MPI_THREAD_SINGLE, hence provided may be different from requested

• Multi-threaded programs must call MPI_Init_thread (because MPI_Init implies 
MPI_THREAD_SINGLE)

• Levels FUNNELED and SERIAL are typically sufficient for bulk synchronous parallel 
programming (in particular OpenMP work sharing)

• Unrestricted multi-threading and MPI in MPI_THREAD_MULTIPLE mode, is tricky 
and can lead to very hard to find bugs related to thread-scheduling and race 
conditions (out of scope for this lecture)
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Thread-Safety of MPI (2)

MPI_Init_thread(int* argc, char** argv[], int required, int* provided)



• All MPI calls are made by the OpenMP master thread, either
– outside OpenMP parallel region
– or in an OpenMP master region within an OpenMP parallel region

• Example: MPI call outside of parallel region
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MPI + OpenMP with MPI_THREAD_FUNNELED

int main(int argc, char * argv[]) {
int provided;
int a[N] = ...

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

// no MPI calls within this parallel region
#pragma omp parallel for
for(int i=0; i<N; i++){

a[i] = f(i);  
}
// ouside parallel region, MPI calls can be made
MPI_Send(...);
MPI_Finalize();
return 0;

}



• Example: MPI call from within a parallel region

58

MPI + OpenMP with MPI_THREAD_FUNNELED (2)

int main(int argc, char * argv[]) {
int provided;
int a[N] = ...

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);
if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

// MPI calls only from within master region
#pragma omp parallel for
for(int i=0; i<N; i++){

a[i] = f(i);
if (i % 10) {

#pragma omp barrier
#pragma omp master
MPI_Send(...);
#pragma omp barrier

}
}
MPI_Finalize();
return 0;

}

• OpenMP master region has no 
implied barrier

• Explicit barrier needed to make 
sure memory state is consistent, 
in particular all buffers to be 
communicated with MPI are 
consistent before and after the 
MPI calls

• Second barrier also implies cache 
flush



• Example: halo communication for stencils (e.g. Conway’s Game of Life)
– how do we create on thread for communication and let the others to the work?
– here: create threads with nested parallelism, alternative: use OpenMP tasks
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Overlapping Computation and Communication

#pragma omp parallel num_threads(2)
{

if(!omp_get_thread_num()) {
MPI_Send/Recv(..)  // one thread exchanges halo data

} else {
#pragma omp parallel for num_threads(15)
for{int i=0; i<N; i++) {

// other threads do work not involving halos
}

}

#pragma omp parallel num_threads(16)
{

for{int i=0; i<N; i++) {
// all threads work now on remaining data that need halos

}
}



• Example: hybrid MPI + OpenMP program and a resource budget of 64 cores
– reminder: regular Oculus nodes have 2 sockets with 8 core CPUs, i.e. 16 cores per node (resource 

type ‘norm’)
• Variant 1: 64 MPI ranks (MPI-only) on 4 nodes with 16 MPI ranks per node

• Variant 2: 4 nodes, 4 MPI ranks (1 per node), 16 OpenMP threads per MPI rank

• Variant 3: 4 nodes, 1 MPI ranks per CPU (2 per node), 8 OpenMP thr. per MPI rank

• Variant 4: 4 nodes, 2 MPI ranks per CPU, 4 OpenMP threads per MPI rank

• Variant 5: 16 chunks with 1 MPI rank and 4 OpenMP threads per MPI rank (let CCS 
decide whether 
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Running Hybrid MPI + OpenMP Programs on Oculus

ccsalloc --res=rset=4:mpiprocs=16:ncpus=16:norm=true:place=:excl

ccsalloc --res=rset=4:ncpus=16:mpiprocs=2:ompthreads=8,place=:excl

ccsalloc --res=rset=16:ncpus=4:mpiprocs=1:ompthreads=4

ccsalloc --res=rset=4:ncpus=16:mpiprocs=1:ompthreads=16,place=:excl

ccsalloc --res=rset=4:ncpus=16:mpiprocs=4:ompthreads=4,place=:excl
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Change Log

• 1.0.2 (2018-01-23)
– cosmetics
– add warning to slide 18
– fix struct declaration on slide 18 and 19 (last field is double mass, not int type)

• 1.0.1 (2018-01-22)
– added section on hybrid parallel programming

• 1.0.0 (2018-01-16)
– initial version of slides
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