
High-Performance Computing
– Performance Engineering Case Study –

Christian Plessl & Michael Lass

High-Performance IT Systems Group
Paderborn University, Germany

version 1.1.0 2018-02-02

• Vectorization
• Roofline model
• Case study: Performance optimization for n-body solver

Outline

2

Vectorization

3

• Recent CPUs architectures have increasingly
powerful SIMD, e.g. Intel:
– width of SIMD registers

§ SSE (128bit): 2 double precision (DP) or 4 single precision (SP)
§ AVX (256bit): 4 DP / 8 SP
§ AVX512 (512bit): 8 DP / 16 SP

– SIMD operations have become more versatile and efficient
(see examples on next slides)

• Applications that do not use vectorization can only
exploit a small fraction of the peak performance of
modern CPUs

• We use the terms vector and SIMD instructions as
synonyms; there are differences but they do not
matter for this discussion

4

Vectorization

Examples for SIMD instructions

5Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm

6

� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

vaddpd dest, source1, source2

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit

vector addition

Examples for SIMD instructions (2)

6

fused multiply-add (FMA)Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm

7

� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3
+

vfmadd213pd source1, source2, source3

Combines two floating-point operations into a single instruction (multiplication and addition).
This instruction achieves the peak floating-point performance

Examples for SIMD instructions (3)

7

vector addition with masks
Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm

8

� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vaddpd dest{k1}, source2, source3

Can selectively write results to vector depending on mask-bit. Essential
for efficient vectorization of codes with conditional execution.

Examples for SIMD instructions (4)

8

vector permutation

Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm

9

� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

shuffle

move

vpermilpd dest{k1}, source, pattern

• Vectorization is typically applied to loops
– a couple of independent loop iterations are executed concurrently using SIMD instructions

• Challenges
– number of loop iterations may be not evenly divisible by vector length
– data to be processed (typ. arrays) may not be properly aligned for efficient transfer to SIMD

registers

• Anatomy of a vectorized loop
– peel (optional): used for unaligned iterations of loop, uses scalar instructions or slower SIMD

instructions
– body: fully vectorized, uses complete vector length
– remainder (optional): process remaining iterations

9

Loop Vectorization

Loop Vectorization (2)

10

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.Intel Confidential 39

What are peels and remainders?

2 4

6 8

10 12

14 16

18

3

7

11

15

5

9

13

17

1

Vectorized
Body

Peel

Remainder

// xAVX
// 256 bits wide regs
// holds 4 x 64bit vals

void Func(double *pA)
{
for (int i=0; i<19;i++)

pA[i] = …;
}

0

32
 b

yt
e

bo
un

da
ry

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 40

Working on aligned arrays

0 2

4 6

8 10

12 14

16

1

5

9

13

3

7

11

15

18

Vectorized
Body

(No Peel)

Vectorized Body

// xAVX
// 256 bits wide regs
// holds 4 x 64bit vals

for(i=0; i<lbsy.nq+1; i++)
{
// . . .

}
17

32
 b

yt
e

bo
un

da
ry

19

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.Intel Confidential 41

Alignment and remainders on AVX512

0 2

4 6

8 10

12 14

16

1

5

9

13

3

7

11

15

18

Vectorized
Body

(No Peel)

(Vectorized) Remainder17

32
 b

yt
e

bo
un

da
ry

19

vectorized loop with peel
and remainder (unaligned)

vectorized loop with
remainder (aligned),
remainder executed with
scalar instructions

vectorized loop with
remainder (aligned),
remainder executed with
SIMD instructions and
masks

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.Intel Confidential 39

What are peels and remainders?

2 4

6 8

10 12

14 16

18

3

7

11

15

5

9

13

17

1

Vectorized
Body

Peel

Remainder

// xAVX
// 256 bits wide regs
// holds 4 x 64bit vals

void Func(double *pA)
{
for (int i=0; i<19;i++)

pA[i] = …;
}

0

32
 b

yt
e

bo
un

da
ry

• 1. Use optimized libraries that have vectorization built-in
– examples: Intel Math Kernel Library (MKL), AMD Core Math Library (ACML), IBM Engineering and

Scientific Subroutine Library (ESSL), etc.

• 2. Auto-vectorizing compiler
– recent compilers support automatic vectorization of code
– compilers must make conservative assumptions to avoid breaking code
– rewrite performance-critical code sections to make them vectorizable or to convince the compiler

that vectorization is safe

• 3. Code annotations to mark sections that are safe for vectorization
– compiler-specific directives #pragmas (e.g. ICC has #pragma ivdep)
– OpenMP offers a portable directive #pragma omp simd

• 4. Intrinsics or assembly code
11

How to Generate Vectorized Code

• Most recent compilers (Intel ICC, GCC, LLVM) support automatic vectorization of
regular loops

• Intel ICC
– enable vectorization with option -vec (automatically enabled with -O3)
– -vec-report and -opt-report generate detailed diagnostics explaining what code parts have been

successfully vectorized and which parts could not be vectorized and what prevented the
compiler from vectorization

– -xHost instructs compiler to use instructions for local CPU architecture

• GCC
– -O -ftree-vectorize enables autovectorization (automatically enabled with -O3)
– -fopt-info-vec, -fopt-info-vec-missed generates diagnostics about successful and failed

vectorization of loops
– -march=native instructs compiler to use instructions for local CPU architecture

12

Auto Vectorization

Obstacles to Vectorization: Non-Contiguous Memory Access

13

for (i=0; i<=MAX; i++) {
c[i]=a[i]+b[i];

}

code the is ideally suited for
vectorization

// arrays accessed with stride 2
for (int i=0; i<SIZE; i+=2)
b[i] += a[i] * x[i];

// inner loop accesses a with stride SIZE
for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) {
b[i] += a[i][j] * x[j];

}
}

// indirect addressing of x using index array
for (int i=0; i<SIZE; i+=2) {
b[i] += a[i] * x[index[i]];

}

loading data efficiently into SIMD
registers requires that data is
stored contiguously in main
memory

typical problems preventing vectorization due to
non-contiguous memory access

Obstacles to Vectorization: Data Dependencies

14

Read-after-write (flow)
dependency

A[0]=0;
for (j=1; j<MAX; j++) {
A[j]=A[j-1]+1;

}

// equivalent to
A[1]=A[0]+1;
A[2]=A[1]+1;
A[3]=A[2]+1;
A[4]=A[3]+1;

Cannot execute several
iterations concurrently,
because values A[j-1]
required in iteration j is
known only after iteration j-1
has finished

Write-after-read
dependency

for (j=1; j<MAX; j++) {
A[j-1]=A[j]+1;

}

// equivalent to
A[0]=A[1]+1;
A[1]=A[2]+1;
A[2]=A[3]+1;
A[3]=A[4]+1;

Not safe for general
parallelization but safe for
vectorization! We know that
no iteration with a higher
value of j can be executed
before iteration with lower
value of j

Write-after-read
dependency

for (j=1; j<MAX; j++) {
A[j-1]=A[j]+1;
B[j]=A[j]*2;

}

// equivalent to
A[0]=A[1]+1;
A[1]=A[2]+1;
A[2]=A[3]+1;
A[3]=A[4]+1;

Not safe for vectorization
because some A[j] may be
overwritten by the first SIMD
instruction before they are
read by the second SIMD
instruction

Obstacles to Vectorization: Pointer Aliasing

15

void vadd(float *a, float *b, float *c, int n)
{
for(int i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

vector add: with potential
aliasing, i.e. arrays a, b, and c
might partially overlap

void vadd(const restrict float *a,
const restrict float *b,
const restrict float *c,
const int n)

{
for(int i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

provide meta information to compiler to enable vectorization
• a, b and c are non-overlapping → use C99 restrict keyword
• a, b, n are read-only → use const modifier

• Most frequent reason: data dependencies

• Further common reasons
– potential pointer/array aliasing
– unsuitable alignment
– function calls in loop block
– loop not countable (loop bound is not a runtime constant)
– mixed data types
– non-unit stride between elements
– loop body too complex (register pressure)
– profitability models deems vectorization as inefficient

• Many additional, but less likely reasons

16

Where Autovectorizers Tend to Fail

OpenMP SIMD Constructs

17

• Conceptually, vectorization is conceptually similar to loop parallelization with
OpenMP work sharing or reductions

• OpenMP 4.0 introduced the simd directive
– explicit vectorization of a loop test
– cuts loop into chunks that fit a SIMD vector register
– by default no parallelization, but multi-threaded worksharing variant (simd for”) is available too

• Clauses are similar to for-directive

18

The OpenMP simd Construct

#pragma omp simd [clauses]
for-loop

• private (var-list)
– expand scalar variables to uninitialized

vectors

• lastprivate(var-list)

• reduction(op : var-list)
– expand scalar variable to vector
– compute reduction of elements of vector

by applying operation op

19

The simd Data Sharing Clauses
double sum_all (double *a, double *b, int n)
{
double tmp, sum;
sum = 0.0;
#pragma omp simd \

private(tmp) reduction(+:sum)
for (int i = 0; i<n; i++) {
tmp = a[i] + b[i];
sum += tmp;

}
return sum;

}

17 ? ? ? ?x[]:x:

example: perform addition
reduction on arrays a and b

• safelen (length)
– maximum number of loop iterations that can be processed concurrently without breaking a

dependence
• simdlen (length)

– preferred number of loop iterations to be executed concurrently
– must be less or equal to safelen with present

• linear (list[:linear-step])
– the value of a variable is a linear function of the iteration number, i.e.

xi = x0 + i * linear-step
• aligned (list[:alignment])

– the memory location of each element in the list is aligned to the number of bytes specified in the
optional alignment argument

– if alignment argument is missing, default alignment is assumed

20

Further Clause for simd Construct

• colapse (n)
– perform loop fusion, i.e. specifies how many loops are

associated with the construct
– if more then one loop is associated with simd clause, all

associated loops are collapsed into one larger iteration
space that is then executed with SIMD instructions

21

Further Clause for simd Construct (2)

void work(float*b, int n, int m){
int i;
#pragma omp simd safelen(16)
for (i = m; i<n; i++) {
b[i] = b[i-m] - 1.0f;

}
}

• Combine work sharing with
vectorization
– distribute iterations of loop across the

threads in a team
– execute each loop chunk with SIMD

instructions

• #pragma omp for simd [clauses]
for-loops

22

Loop simd Construct

float sprod(float *a, float *b, int n)
{
float sum = 0.0;
#pragma omp for simd reduction(+:sum)
for (int i = 0; i<n; i++) {
sum += a[i] * b[i];

}
return sum;

}

example: scalar (dot) product

• Only simple functions are
automatically vectorized
– hence, function calls in OpenMP SIMD

loops frequently prevent vectorization
• OpenMP allows to declare functions

that can be safely called from a
SIMD-parallel loop

• #pragma omp declare simd [clauses]
function-definition-or-declaration

• Additional clause uniform to specify
function arguments that are constant
for all SIMD lanes

23

Function Vectorization

#pragma omp declare simd
float min(float a, float b) {
return a<b ? a : b;

}

#pragma omp declare simd
float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {
#pragma omp parallel for simd
for (i=0; i<N; i++) {
d[i] =min(distsq(a[i], b[i]), c[i]);

}
}

• Exploiting vectorization is key for performance on
modern CPUs

• The cheapest way to vectorization is using
numerical libraries and autovectorization

• OpenMP simd constructs provide a portable way to
add explicit vectorization

• Vectorization is a deep topic, we have only
scratched the surface here

24

Summary Vectorization

Roofline Model

25

• Application performance on CPUs is limited by
– memory bandwidth, or (memory bound)
– arithmetic performance (compute bound)

• Roofline model
– analytical model of fundamental performance limits
– describes an upper bound on the achievable performance based on the operational intensity (also

arithmetic intensity), which is the number of operations performed per data read from DRAM
(FLOPS/byte)

– Wiliams, Waterman and Patterson: “Roofline: An Insightful Visual Performance Model for
Multicore Architectures”, Communications of the ACM, 4(52) 2009,
http://dx.doi.org/10.1145/1498765.1498785

• Basic idea

26

Roofline Model

!"#$% / s = min) %*+, -./012+23.4+5 %*67.6/+48*
9*/.6: ;+4<=3<2ℎ ∗ $0*6+23.4+5 @42*4A32:

http://dx.doi.org/10.1145/1498765.1498785

Roofline Model (2)

27

!"#$% / & = min * %+,- ./0123,34/5,6 %+78/70,59+
:+0/7; <,5=>4=3ℎ ∗ $1+7,34/5,6 A53+5&43;

Computational Peak performance Memory bandwidth

2-socket Oculus Node

Peak FLOP = 2 x 2.6 x 6 x 16 =
499 single precision FLOP/s

• 2 sockets
• 2.6 GHz
• 6 core
• 16 single precision operation per SIMD

instruction (8 MUL + 8 ADD with AVX)

Peak Mem BW = 2 x 1.6 x 8 x 4 = 102.4 GB/s
• 2 sockets
• 1.6 GHz memory frequency
• 8 bytes per channel
• 4 memory channels per CPU

Roofline Model (2)

28

Intel Sandy Bridge Microarchitecture:

Roofline Model (3)

29

operational intensity
[SP FLOPS/byte]

128

64

32

16

8

peak FLOPS (500 GF)
256 mult/add imbalance (250 GF)

multi-threading but
no SIMD (62 GF)

4

2

single-threaded (5 GF)the
or. p

ea
k D

RAM m
em

ory
thr

oug
hp

ut

4.8

512

example: Oculus node

performance
limit [SP GFLOP/s]

L2
 ca

ch
e t

hro
ug

hp
ut

L1
 ca

ch
e t

hro
ug

hp
ut

How to Use Roofline Model for Optimization?

30

operational intensity
[SP FLOPS/byte]

128

64

32

16

8

SIMD with mult/add
256 SIMD

multi-threaded

4

2

single-threaded

512

performance
limit [SP GFLOP/s]

321684211/21/4

code far from roof → high optimization potential
here: try adding multi-threading and SIMD

optimize memory
access

code close to roof → lower optimization potential
here: try optimizing memory access to increase operational intensity

• Current HPC machines require about 5-10 FLOPS / byte to reach peak arithmetic
capabilities
– hence, we need about 40-80 operations per double-precision value read from DRAM to reach

peak compute capability
– very hard to achieve for real codes
– the compute to memory balance is unlikely to improve in future (technological and economical

tradeoffs in computer system design)

• Example: STREAM Triad
– part of STREAM memory system benchmark
– 2 FLOPs per iteration
– transfers 24 bytes per iteration (read x[i], read y[i], write z[i]
– OI = 2 / 24 = 0.083 FLOP/byte → clearly memory bound

31

Example 1: STREAM Triad

#pragma omp parallel for
for(int i=0; i<N, i++) {
z[i] = x[i] + alpha*y[i];

}

• 5-point constant coefficient stencil
– applies same operation to all points in 2D array
– 5 FLOP per evaluation
– 6 memory transfers (5 read, 1 write) per point

• Naïve implementation
– do not consider any caching, read all data from DRAM
– AI = 5 / (6 * 8) = 0.104 FLOP/byte → memory bound

• Consider Caching
– if the cache can store two rows of the array all data access

except for 1 read and 1 write per point can be
– AI = 5 / (2 * 8) = 0.3125 FLOP/byte → still memory bound

32

Example 2: 5-point Stencil

#pragma omp parallel for

for (int t=0; t<tmax; t++) {

for(int y=1; y<ydim+1; y++) {
for(int x=1; x<xdim+1; x++) {

int idx = x + y*ystride;
new[idx] = - 3.0*old[idx]

+ old[idx-1]
+ old[idx+1]
+ old[idx-ystride]
+ old[idx+ystride];

}
}

}

• Determining operational intensities for non-trivial applications is difficult
– performance analysis tools can determine OI from profiling/performance counter data, e.g. Intel

vTune Amplifier

33

Operational Intensities

illustration: http://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Case study:
Performance optimization of n-body
solver

34

35

Performance Optimization: n-body

• Optimize the n-body application used earlier in this course

• Main application loop:

• Compute_force(…):
for (k = 0; k < n; k++) {

if (k != part) {
f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];

}
}

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;
for (part = 0; part < n; part++)

Compute_force(part, forces, curr, n);
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}

36

Performance Optimization: n-body

37

Performance Optimization: n-body

• Intel Advisor: Tool for prototyping and optimization of
– Vectorization
– Memory access patterns
– Multi threading

• Since 2017, Advisor plots a roofline model

• Starting Advisor on our systems:

module load ps_xe_2018
advixe-gui

Demo: Intel Advisor & n-body code

38

39

Performance Optimization: n-body

Baseline: non-optimized code

Performance Optimization: n-body

40

for (k = 0; k < n; k++) {
if (k != part) {

f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];

}
} for (k = part+1; k < n; k++) {

f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

Compute forces only
once for each pair of
particles

In which direction do we
move in the roofline model?

41

Performance Optimization: n-body

Baseline: non-optimized code

42

Performance Optimization: n-body

We moved left and down, but
execution time was reduced

Algorithmicly optimized code

43

Performance Optimization: n-body

• Enable compiler optimizations and auto vectorization:

icc -O3 -xHOST -qopt-report -qopt-report-phase=vec -o nbody nbody.c

• Vectorization report (excerpt):

44

Performance Optimization: n-body

Begin optimization report for: Compute_force(int, vect_t *, struct particle_s *, int)

Report from: Vector optimizations [vec]

LOOP BEGIN at nbody.c(257,4)
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at nbody.c(257,4)
<Remainder loop for vectorization>
LOOP END

45

Performance Optimization: n-body

We moved left and down, but
execution time was reduced

Algorithmicly optimized code

46

Performance Optimization: n-body

Compiler optimizations only

47

Performance Optimization: n-body

Compiler optimizations and auto vectorization

48

Performance Optimization: n-body

Demo: Intel Advisor Recommendations

49

50

Performance Optimization: n-body

• Advisor gives hints on how to improve performance:

51

Performance Optimization: n-body

52

Performance Optimization: n-body

• Unit strides: Elements in memory accessed in consecutive order
• Constant strides: Fixed distance between accessed elements
• Irregular strides: Random access

• Why can non-unit strides be a problem?
– Not all data transferred from memory is used
– Elements need to be gathered into vectors
– Memory prefetching may not provide required data

#define SIZE 1000
int i, j;
double *a = malloc(SIZE * SIZE * sizeof(double))
for (j=0; j < SIZE; j++) {

for (i=0; i < SIZE; i++) {
do_something(a[i*SIZE + j]);

}
}

53

Performance Optimization: n-body

• In our application we use an array of structs

• Distance between X coordinates of two consecutive particles in memory: 40 bytes

• Solution: Use struct of arrays instead

typedef double vect_t[DIM];
struct particle_s {

double m; /* Mass */
vect_t s; /* Position */
vect_t v; /* Velocity */

};
[...]
curr = malloc(n*sizeof(struct particle_s));

typedef double vect_t[DIM];
struct particles {

double *m; /* Masses */
vect_t *s; /* Positions */
vect_t *v; /* Velocities */

};
[...]
curr = malloc(sizeof(struct particles));
curr->m = malloc(n * sizeof(double));
curr->s = malloc(n * sizeof(vect_t));
curr->v = malloc(n * sizeof(vect_t));

54

Performance Optimization: n-body

• Changing underlying data structure requires to change each access

f_part_k[X] = curr[part].s[X] - curr[k].s[X];

f_part_k[X] = curr->s[part][X] - curr->s[k][X];

55

Performance Optimization: n-body

56

Performance Optimization: n-body

Compiler optimizations and auto vectorization

57

Performance Optimization: n-body

Optimized memory access patterns

58

Performance Optimization: n-body

• Enable multi-threading using OpenMP

59

Performance Optimization: n-body

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;
memset(forces, 0, n*sizeof(vect_t));
for (part = 0; part < n-1; part++)

Compute_force(part, forces, curr, n);
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}

pragma omp parallel num_threads(thread_count) default(none) \
shared(curr, forces, thread_count, delta_t, n, n_steps, output_freq) \
private(step, part, t)

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;

pragma omp single
memset(forces, 0, n*sizeof(vect_t));

pragma omp for
for (part = 0; part < n-1; part++)

Compute_force(part, forces, curr, n);
pragma omp for

for (part = 0; part < n; part++)
Update_part(part, forces, curr, n, delta_t);

}

for (k = part+1; k < n; k++) {
[...]
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

for (k = part+1; k < n; k++) {
[...]

pragma omp atomic
forces[part][X] += f_part_k[X];

pragma omp atomic
forces[part][Y] += f_part_k[Y];

pragma omp atomic
forces[k][X] -= f_part_k[X];

pragma omp atomic
forces[k][Y] -= f_part_k[Y];

}

60

Performance Optimization: n-body

Compiler optimizations and auto vectorization

61

Performance Optimization: n-body

Parallelized with OpenMP

62

Performance Optimization: n-body

• Intel VTune: Profiling tool with lots of different analysis types
– Basic / Advanced Hotspot Analysis
– Concurrency / Locks & Waits
– General Exploration: Efficient use of microarchitecture
– Memory bandwidth
– IO access
– …

• Our parallelization did not work out, so do a Concurrency analysis

• Starting VTune on our systems: Requesting a node with VTune support:

63

Performance Optimization: n-body

module load ps_xe_2018
amplxe-gui

ccsalloc --res=rset=1:vtune=1:place=scatter:excl

Demo: Intel VTune Concurrency Analysis

64

65

Performance Optimization: n-body

OpenMP: Basic implementation

• Atomic operations are costly

• Solution:
– Let each thread store its own

(partial) forces
– Aggregate results after all

threads have finished

66

Performance Optimization: n-body
pragma omp parallel num_threads(thread_count) default(none) \
shared(curr,forces,thread_count,delta_t,n,n_steps, \

output_freq,loc_forces) \
private(step, part, t)

{
int my_rank = omp_get_thread_num();
int thread;
for (step = 1; step <= n_steps; step++) {

t = step*delta_t;
pragma omp for

for (part = 0; part < thread_count*n; part++)
loc_forces[part][X] = loc_forces[part][Y] = 0.0;

pragma omp for
for (part = 0; part < n-1; part++)

Compute_force(part, loc_forces + my_rank*n, curr, n);
pragma omp for

for (part = 0; part < n; part++) {
forces[part][X] = forces[part][Y] = 0.0;
for (thread = 0; thread < thread_count; thread++) {

forces[part][X] += loc_forces[thread*n + part][X];
forces[part][Y] += loc_forces[thread*n + part][Y];

}
}

pragma omp for
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}

}

67

Performance Optimization: n-body

Demo: Intel VTune Concurrency Analysis

68

69

Performance Optimization: n-body

OpenMP: Basic implementation

70

Performance Optimization: n-body

OpenMP: Explicit synchronization

71

Performance Optimization: n-body

OpenMP: Explicit synchronization

• Work imbalance between the threads:
– First particle: all forces have to be calculated
– Last particle: no forces have to be calculated
– First thread has the most work, last thread the least

• Solution: Cyclic assignments from particles to threads

72

Performance Optimization: n-body

pragma omp for schedule(static,1)
for (part = 0; part < n-1; part++)

Compute_force(part, loc_forces + my_rank*n, curr, n);

73

Performance Optimization: n-body

OpenMP: Load balancing

74

Performance Optimization: n-body

OpenMP: Load balancing

75

Performance Optimization: n-body

Demo: Back to Intel Advisor

76

77

Performance Optimization: n-body

OpenMP: Load balanced version

78

Performance Optimization: n-body

• Somewhere on our way we lost vectorization

• Advisor can do a memory dependency analysis

79

Performance Optimization: n-body

• Solution: #pragma omp simd reduction(…)

80

Performance Optimization: n-body

double forces_accu_X = 0.0;
double forces_accu_Y = 0.0;

#pragma omp simd reduction(+:forces_accu_X,forces_accu_Y)
for (k = part+1; k < n; k++) {

/* Compute force between part and k */
[...]

/* Add force into total forces */
forces_accu_X += f_part_k[X];
forces_accu_Y += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

forces[part][X] += forces_accu_X;
forces[part][Y] += forces_accu_Y;

81

Performance Optimization: n-body

OpenMP: Load balanced version

82

Performance Optimization: n-body

OpenMP: Load balanced and vectorized version

83

Performance Optimization: n-body

• Still, we only achieve 26 GFLOP/s where 163 GFLOP/s should be possible

• Are we memory or compute limited?

• Do a General Exploration in VTune

84

Performance Optimization: n-body

Demo: Intel VTune General Exploration

85

86

Performance Optimization: n-body

We spend > 60% of the
time in our division!

• We achieved a 110x speedup by
– Optimizing the algorithm
– Using compiler optimizations
– Using OpenMP for parallel execution
– Reducing the synchronization effort
– Balancing the load between threads
– Making use of vectorization

• Tools can help in this process
– We used VTune to find bottlenecks and load imbalance
– We used Advisor to enable vectorization and optimize memory access patterns

• Optimization is an iterative process
– You may have to revisit things you have optimized earlier

87

Performance Optimization: n-body

Profiling of MPI applications

88

• Questions when optimizing an MPI application:
– How much time is spent for communication?
– How much data is transferred between the nodes?
– Is the load balanced between all ranks?

• MPI implementations provide statistics and benchmarks to assist

• We focus on Intel MPI here

89

Profiling of MPI applications

• To collect basic statistics, export environment variable I_MPI_STATS

90

Profiling of MPI applications

module load ps_xe_2018
export I_MPI_STATS=all

local execution
mpirun -n 16 ./mpi_nbody_red 1024 10 0.001 10 g

execution on OCuLUS
ccsalloc -I -c 64 impi -- ./mpi_nbody_red 524288 10 0.001 10 g

• stats.ipm

• IPM: Integrated
Performance Monitoring

91

Profiling of MPI applications

[total] <avg> min max
entries 64 1 1 1
wallclock 21905.1 342.267 341.467 344.917
user 21436.7 334.948 332.975 335.58
system 23.0293 0.359832 0.180638 0.881514
mpi 1231.47 19.2418 7.94775 33.3769
%comm 5.62186 2.31862 9.74161
gflop/sec NA NA NA NA
gbytes 0 0 0 0
#
#
[time] [calls] <%mpi> <%wall>
MPI_Sendrecv_replace 753.383 40960 61.18 3.44
MPI_Init 470.983 64 38.25 2.15
MPI_Scatterv 6.15997 128 0.50 0.03
MPI_Bcast 0.94546 384 0.08 0.00
MPI_Type_commit 0.000687122 128 0.00 0.00
MPI_Finalize 0.000604153 64 0.00 0.00
MPI_Type_free 0.000304937 128 0.00 0.00
MPI_Type_contiguous 0.000223637 64 0.00 0.00
MPI_Comm_size 6.91414e-05 64 0.00 0.00
MPI_Type_vector 6.31809e-05 64 0.00 0.00
MPI_Comm_rank 6.24657e-05 64 0.00 0.00
MPI_Type_create_resized 5.38826e-05 64 0.00 0.00
MPI_Type_get_extent 1.40667e-05 64 0.00 0.00
MPI_Wtime 1.26362e-05 128 0.00 0.00
MPI_TOTAL 1231.47 42368 100.00 5.62

• stats.txt

• detailed per-rank
statistics

92

Profiling of MPI applications

~~~~ Process 0 of 64 on node node01-002 lifetime = 344917304.99

Data Transfers
Src Dst Amount(MB) Transfers
-----------------------------------------
000 -->000 0.000000e+00 0
000 -->001 4.000028e+00 348
000 -->002 0.000000e+00 0
000 -->003 0.000000e+00 0
000 -->004 0.000000e+00 0
[...]
000 -->063 1.600000e+02 640

[...]

Communication Activity
Operation Volume(MB) Calls Min time Avr time Max time Total time
-----------------------------------------
P2P
Csend 4.000028e+00 348 0.95 8.58 366.93 2985.95
CSendRecv 0.000000e+00 0 0.00 0.00 0.00 0.00
Send 0.000000e+00 0 0.00 0.00 0.00 0.00
SendRecv 1.600000e+02 640 445.13 24101.42 74103.12 15424910.31
Bsend 0.000000e+00 0 0.00 0.00 0.00 0.00
Rsend 0.000000e+00 0 0.00 0.00 0.00 0.00

[...]



• Intel Trace Analyzer: Tool to visualize and analyze MPI traces

• Enable collection of traces by adding -trace to mpirun:

93

Profiling of MPI applications

module load ps_xe_2018

# local execution
mpirun -trace -n 16 ./mpi_nbody_red 1024 10 0.001 10 g

# execution on OCuLUS
ccsalloc -I -c 64 impi -trace -- ./mpi_nbody_red 524288 10 0.001 10 g

# start trace analyzer
traceanalyzer mpi_nbody_red.stf



Demo: Intel Trace Analyzer

94



95

Profiling of MPI applications



96

Profiling of MPI applications



Acknowledgements

• This lecture is based materials from these sources
– Tutorial: Performance Tuning of Scientific Codes with the Roofline Model, SuperComputing 2017
– Tutorial: Advanced OpenMP, Supercomputing 2017
– Tutorial: Application Optimization and Vectorization, Intel 2017
– Intel 64 and IA-32 Architectures Optimization Reference Manual
– Intel Developer Zone documentation on vectorization

97



Change Log

• 1.1.0 (2018-02-02)
– added slides about MPI profiling

• 1.0.0 (2018-01-30)
– initial version of slides

98


