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• Vectorization
• Roofline model
• Case study: Performance optimization for n-body solver

Outline
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Vectorization
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• Recent CPUs architectures have increasingly 
powerful SIMD, e.g. Intel:
– width of SIMD registers

§ SSE (128bit): 2 double precision (DP) or 4 single precision (SP)
§ AVX (256bit): 4 DP / 8 SP
§ AVX512 (512bit): 8 DP / 16 SP

– SIMD operations have become more versatile and efficient 
(see examples on next slides)

• Applications that do not use vectorization can only  
exploit a small fraction of the peak performance of 
modern CPUs

• We use the terms vector and SIMD instructions as 
synonyms; there are differences but they do not 
matter for this discussion
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Vectorization



Examples for SIMD instructions

5Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm
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� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

vaddpd dest, source1, source2 

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit

vector addition



Examples for SIMD instructions (2)
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fused multiply-add (FMA)Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm
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� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3
+

vfmadd213pd source1, source2, source3

Combines two floating-point operations into a single instruction (multiplication and addition). 
This instruction achieves the peak floating-point performance



Examples for SIMD instructions (3)
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vector addition with masks
Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm
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� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vaddpd dest{k1}, source2, source3

Can selectively write results to vector depending on mask-bit. Essential 
for efficient vectorization of codes with conditional execution.



Examples for SIMD instructions (4)
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vector permutation

Advanced OpenMP Tutorial – Performance: Vectorization
Michael Klemm
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� SIMD instructions become more powerful
� One example is the Intel® Xeon Phi™ Processor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

shuffle

move

vpermilpd dest{k1}, source, pattern



• Vectorization is typically applied to loops
– a couple of independent loop iterations are executed concurrently using SIMD instructions

• Challenges
– number of loop iterations may be not evenly divisible by vector length
– data to be processed (typ. arrays) may not be properly aligned for efficient transfer to SIMD 

registers

• Anatomy of a vectorized loop
– peel (optional): used for unaligned iterations of loop, uses scalar instructions or slower SIMD 

instructions
– body: fully vectorized, uses complete vector length
– remainder (optional): process remaining iterations
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Loop Vectorization



Loop Vectorization (2)
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What are peels and remainders?
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// xAVX
// 256 bits wide regs
// holds 4 x 64bit vals

void Func(double *pA)
{
for (int i=0; i<19;i++)

pA[i] = …;
}
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Working on aligned arrays
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// xAVX
// 256 bits wide regs
// holds 4 x 64bit vals

for(i=0; i<lbsy.nq+1; i++)
{
// . . .

}
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Alignment and remainders on AVX512
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vectorized loop with peel 
and remainder (unaligned)

vectorized loop with 
remainder (aligned), 
remainder executed with 
scalar instructions

vectorized loop with 
remainder (aligned), 
remainder executed with 
SIMD instructions and 
masks
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• 1. Use optimized libraries that have vectorization built-in
– examples: Intel Math Kernel Library (MKL), AMD Core Math Library (ACML), IBM Engineering and 

Scientific Subroutine Library (ESSL), etc.

• 2. Auto-vectorizing compiler
– recent compilers support automatic vectorization of code
– compilers must make conservative assumptions to avoid breaking code
– rewrite performance-critical code sections to make them vectorizable or to convince the compiler 

that vectorization is safe

• 3. Code annotations to mark sections that are safe for vectorization
– compiler-specific directives #pragmas (e.g. ICC has #pragma ivdep)
– OpenMP offers a portable directive #pragma omp simd

• 4. Intrinsics or assembly code
11

How to Generate Vectorized Code



• Most recent compilers (Intel ICC, GCC, LLVM) support automatic vectorization of 
regular loops

• Intel ICC
– enable vectorization with option -vec (automatically enabled with -O3)
– -vec-report and -opt-report generate detailed diagnostics explaining what code parts have been 

successfully vectorized and which parts could not be vectorized and what prevented the 
compiler from vectorization

– -xHost instructs compiler to use instructions for local CPU architecture

• GCC
– -O -ftree-vectorize enables autovectorization (automatically enabled with -O3)
– -fopt-info-vec, -fopt-info-vec-missed generates diagnostics about successful and failed 

vectorization of loops
– -march=native instructs compiler to use instructions for local CPU architecture

12

Auto Vectorization



Obstacles to Vectorization: Non-Contiguous Memory Access
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for (i=0; i<=MAX; i++) {
c[i]=a[i]+b[i];

}

code the is ideally suited for 
vectorization

// arrays accessed with stride 2
for (int i=0; i<SIZE; i+=2)
b[i] += a[i] * x[i];

// inner loop accesses a with stride SIZE
for (int j=0; j<SIZE; j++) {
for (int i=0; i<SIZE; i++) {
b[i] += a[i][j] * x[j]; 

}
}

// indirect addressing of x using index array
for (int i=0; i<SIZE; i+=2) {
b[i] += a[i] * x[index[i]];

}

loading data efficiently into SIMD 
registers requires that data is 
stored contiguously in main 
memory

typical problems preventing vectorization due to 
non-contiguous memory access



Obstacles to Vectorization: Data Dependencies
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Read-after-write (flow) 
dependency

A[0]=0;
for (j=1; j<MAX; j++) {
A[j]=A[j-1]+1;

}

// equivalent to
A[1]=A[0]+1; 
A[2]=A[1]+1;
A[3]=A[2]+1; 
A[4]=A[3]+1;

Cannot execute several 
iterations  concurrently, 
because values A[j-1] 
required in iteration j is 
known only after iteration j-1 
has finished

Write-after-read 
dependency

for (j=1; j<MAX; j++) {
A[j-1]=A[j]+1;

}

// equivalent to
A[0]=A[1]+1; 
A[1]=A[2]+1;
A[2]=A[3]+1; 
A[3]=A[4]+1;

Not safe for general 
parallelization but safe for 
vectorization! We know that 
no iteration with a higher 
value of j can be executed 
before iteration with lower 
value of j

Write-after-read 
dependency

for (j=1; j<MAX; j++) {
A[j-1]=A[j]+1;
B[j]=A[j]*2;

}

// equivalent to
A[0]=A[1]+1; 
A[1]=A[2]+1;
A[2]=A[3]+1; 
A[3]=A[4]+1;

Not safe for vectorization 
because some A[j] may be 
overwritten by the first SIMD 
instruction before they are 
read by the second SIMD 
instruction



Obstacles to Vectorization: Pointer Aliasing
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void vadd(float *a, float *b, float *c, int n)
{
for(int i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

vector add: with potential 
aliasing, i.e. arrays a, b, and c 
might partially overlap

void vadd(const restrict float *a,
const restrict float *b,
const restrict float *c,
const int n)

{
for(int i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

provide meta information to compiler to enable vectorization
• a, b and c are non-overlapping → use C99 restrict keyword
• a, b, n are read-only → use const modifier



• Most frequent reason: data dependencies

• Further common reasons
– potential pointer/array aliasing
– unsuitable alignment
– function calls in loop block
– loop not countable (loop bound is not a runtime constant)
– mixed data types
– non-unit stride between elements
– loop body too complex (register pressure)
– profitability models deems vectorization as inefficient

• Many additional, but less likely reasons

16

Where Autovectorizers Tend to Fail



OpenMP SIMD Constructs
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• Conceptually, vectorization is conceptually similar to loop parallelization with 
OpenMP work sharing or reductions

• OpenMP 4.0 introduced the simd directive
– explicit vectorization of a loop test
– cuts loop into chunks that fit a SIMD vector register
– by default no parallelization, but multi-threaded worksharing variant (simd for”) is available too

• Clauses are similar to for-directive

18

The OpenMP simd Construct

#pragma omp simd [clauses]
for-loop



• private (var-list)
– expand scalar variables to uninitialized 

vectors

• lastprivate(var-list)

• reduction(op : var-list)
– expand scalar variable to vector
– compute reduction of elements of vector 

by applying operation op

19

The simd Data Sharing Clauses
double sum_all (double *a, double *b, int n)
{
double tmp, sum;
sum = 0.0;
#pragma omp simd \

private(tmp) reduction(+:sum)
for (int i = 0; i<n; i++) {
tmp = a[i] + b[i];
sum += tmp;

}
return sum;

}

17 ? ? ? ?x[ ]:x:

example: perform addition 
reduction on arrays a and b



• safelen (length)
– maximum number of loop iterations that can be processed concurrently without breaking a 

dependence
• simdlen (length)

– preferred number of loop iterations to be executed concurrently
– must be less or equal to safelen with present

• linear (list[:linear-step])
– the value of a variable is a linear function of the iteration number, i.e.

xi = x0 + i * linear-step
• aligned (list[:alignment])

– the memory location of each element in the list is aligned to the number of bytes specified in the 
optional alignment argument

– if alignment argument is missing, default alignment is assumed

20

Further Clause for simd Construct



• colapse (n)
– perform loop fusion, i.e. specifies how many loops are 

associated with the construct
– if more then one loop is associated with simd clause, all 

associated loops are collapsed into one larger iteration 
space that is then executed with SIMD instructions

21

Further Clause for simd Construct (2)

void work( float*b, int n, int m ){
int i;
#pragma omp simd safelen(16)
for (i = m; i<n; i++) {
b[i] = b[i-m] - 1.0f;

}
}



• Combine work sharing with 
vectorization
– distribute iterations of loop across the 

threads in a team
– execute each loop chunk with SIMD 

instructions

• #pragma omp for simd [clauses]
for-loops

22

Loop simd Construct

float sprod(float *a, float *b, int n)
{
float sum = 0.0;
#pragma omp for simd reduction(+:sum)
for (int i = 0; i<n; i++) {
sum += a[i] * b[i];

}
return sum;

}

example: scalar (dot) product



• Only simple functions are 
automatically vectorized
– hence, function calls in OpenMP SIMD 

loops frequently prevent vectorization
• OpenMP allows to declare functions 

that can be safely called from a 
SIMD-parallel loop

• #pragma omp declare simd [clauses]
function-definition-or-declaration

• Additional clause uniform to specify 
function arguments that are constant 
for all SIMD lanes

23

Function Vectorization

#pragma omp declare simd
float min(float a, float b) {
return a<b ? a : b;

}

#pragma omp declare simd
float distsq(float x, float y) {
return (x - y) * (x - y);

}

void example() {
#pragma omp parallel for simd
for (i=0; i<N; i++) {
d[i] =min(distsq(a[i], b[i]), c[i]);

}
}



• Exploiting vectorization is key for performance on 
modern CPUs

• The cheapest way to vectorization is using 
numerical libraries and autovectorization

• OpenMP simd constructs provide a portable way to 
add explicit vectorization

• Vectorization is a deep topic, we have only 
scratched the surface here

24

Summary Vectorization



Roofline Model
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• Application performance on CPUs is limited by
– memory bandwidth, or (memory bound) 
– arithmetic performance (compute bound)

• Roofline model
– analytical model of fundamental performance limits
– describes an upper bound on the achievable performance based on the operational intensity (also 

arithmetic intensity), which is the number of operations performed per data read from DRAM 
(FLOPS/byte)

– Wiliams, Waterman and Patterson: “Roofline: An Insightful Visual Performance Model for 
Multicore Architectures”, Communications of the ACM, 4(52) 2009, 
http://dx.doi.org/10.1145/1498765.1498785

• Basic idea
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Roofline Model

!"#$% / s = min ) %*+, -./012+23.4+5 %*67.6/+48*
9*/.6: ;+4<=3<2ℎ ∗ $0*6+23.4+5 @42*4A32:

http://dx.doi.org/10.1145/1498765.1498785


Roofline Model (2)
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!"#$% / & = min * %+,- ./0123,34/5,6 %+78/70,59+
:+0/7; <,5=>4=3ℎ ∗ $1+7,34/5,6 A53+5&43;

Computational Peak performance Memory bandwidth

2-socket Oculus Node

Peak FLOP = 2 x 2.6 x 6 x 16 = 
499 single precision FLOP/s

• 2 sockets
• 2.6 GHz
• 6 core
• 16 single precision operation per SIMD 

instruction (8 MUL + 8 ADD with AVX)

Peak Mem BW = 2 x 1.6 x 8 x 4  = 102.4 GB/s
• 2 sockets
• 1.6 GHz memory frequency
• 8 bytes per channel
• 4 memory channels per CPU



Roofline Model (2)
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Intel Sandy Bridge Microarchitecture:



Roofline Model (3)
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How to Use Roofline Model for Optimization?
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operational intensity
[SP FLOPS/byte]

128

64

32

16

8

SIMD with mult/add
256 SIMD

multi-threaded

4

2

single-threaded

512

performance
limit [SP GFLOP/s]

321684211/21/4

code far from roof → high optimization potential
here: try adding multi-threading and SIMD

optimize memory 
access

code close to roof → lower optimization potential
here: try optimizing memory access to increase operational intensity



• Current HPC machines require about 5-10 FLOPS / byte to reach peak arithmetic 
capabilities
– hence, we need about 40-80 operations per double-precision value read from DRAM to reach 

peak compute capability
– very hard to achieve  for real codes
– the compute to memory balance is unlikely to improve in future (technological and economical 

tradeoffs in computer system design)

• Example: STREAM Triad
– part of STREAM memory system benchmark
– 2 FLOPs per iteration
– transfers 24 bytes per iteration (read x[i], read y[i], write z[i]
– OI = 2 / 24 = 0.083 FLOP/byte → clearly memory bound

31

Example 1: STREAM Triad

#pragma omp parallel for
for(int i=0; i<N, i++) {
z[i] = x[i] + alpha*y[i];

}



• 5-point constant coefficient stencil
– applies same operation to all points in 2D array
– 5 FLOP per evaluation
– 6 memory transfers (5 read, 1 write) per point

• Naïve implementation
– do not consider any caching, read all data from DRAM
– AI = 5 / (6 * 8) = 0.104 FLOP/byte → memory bound

• Consider Caching
– if the cache can store two rows of the array all data access 

except for 1 read and 1 write per point can be 
– AI = 5 / (2 * 8) = 0.3125 FLOP/byte → still memory bound
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Example 2: 5-point Stencil

#pragma omp parallel for

for (int t=0; t<tmax; t++) {

for(int y=1; y<ydim+1; y++) {
for(int x=1; x<xdim+1; x++) {

int idx = x + y*ystride;
new[idx] = - 3.0*old[idx]

+ old[idx-1]
+ old[idx+1]
+ old[idx-ystride]
+ old[idx+ystride];

}
}

}



• Determining operational intensities for non-trivial applications is difficult
– performance analysis tools can determine OI from profiling/performance counter data, e.g. Intel 

vTune Amplifier 

33

Operational Intensities

illustration: http://crd.lbl.gov/departments/computer-science/PAR/research/roofline



Case study:
Performance optimization of n-body 
solver
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Performance Optimization: n-body

• Optimize the n-body application used earlier in this course

• Main application loop:

• Compute_force(…):
for (k = 0; k < n; k++) {

if (k != part) {
f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];

}
}

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;
for (part = 0; part < n; part++)

Compute_force(part, forces, curr, n);
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}
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Performance Optimization: n-body
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Performance Optimization: n-body

• Intel Advisor: Tool for prototyping and optimization of
– Vectorization
– Memory access patterns
– Multi threading

• Since 2017, Advisor plots a roofline model

• Starting Advisor on our systems:

module load ps_xe_2018
advixe-gui



Demo: Intel Advisor & n-body code
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Performance Optimization: n-body

Baseline: non-optimized code



Performance Optimization: n-body
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for (k = 0; k < n; k++) {
if (k != part) {

f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];

}
} for (k = part+1; k < n; k++) {

f_part_k[X] = curr[part].s[X] - curr[k].s[X];
f_part_k[Y] = curr[part].s[Y] - curr[k].s[Y];
len = sqrt(f_part_k[X]*f_part_k[X] + f_part_k[Y]*f_part_k[Y]);
len_3 = len*len*len;
mg = -G*curr[part].m*curr[k].m;
fact = mg/len_3;
f_part_k[X] *= fact;
f_part_k[Y] *= fact;
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

Compute forces only 
once for each pair of 
particles

In which direction do we 
move in the roofline model?
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Performance Optimization: n-body

Baseline: non-optimized code
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Performance Optimization: n-body

We moved left and down, but 
execution time was reduced

Algorithmicly optimized code
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Performance Optimization: n-body



• Enable compiler optimizations and auto vectorization:

icc -O3 -xHOST -qopt-report -qopt-report-phase=vec -o nbody nbody.c

• Vectorization report (excerpt):

44

Performance Optimization: n-body

Begin optimization report for: Compute_force(int, vect_t *, struct particle_s *, int)

Report from: Vector optimizations [vec]

LOOP BEGIN at nbody.c(257,4)
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at nbody.c(257,4)
<Remainder loop for vectorization>
LOOP END
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Performance Optimization: n-body

We moved left and down, but 
execution time was reduced

Algorithmicly optimized code
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Performance Optimization: n-body

Compiler optimizations only
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Performance Optimization: n-body

Compiler optimizations and auto vectorization
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Performance Optimization: n-body



Demo: Intel Advisor Recommendations
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Performance Optimization: n-body

• Advisor gives hints on how to improve performance:
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Performance Optimization: n-body
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Performance Optimization: n-body

• Unit strides: Elements in memory accessed in consecutive order
• Constant strides: Fixed distance between accessed elements
• Irregular strides: Random access

• Why can non-unit strides be a problem?
– Not all data transferred from memory is used
– Elements need to be gathered into vectors
– Memory prefetching may not provide required data

#define SIZE 1000
int i, j;
double *a = malloc(SIZE * SIZE * sizeof(double))
for (j=0; j < SIZE; j++) {

for (i=0; i < SIZE; i++) {
do_something(a[i*SIZE + j]);

}
}
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Performance Optimization: n-body

• In our application we use an array of structs

• Distance between X coordinates of two consecutive particles in memory: 40 bytes

• Solution: Use struct of arrays instead

typedef double vect_t[DIM];
struct particle_s {

double m;  /* Mass */
vect_t s;    /* Position */
vect_t v;    /* Velocity */

};
[...]
curr = malloc(n*sizeof(struct particle_s));

typedef double vect_t[DIM];
struct particles {

double *m;  /* Masses */
vect_t *s;    /* Positions */
vect_t *v;    /* Velocities */

};
[...]
curr = malloc(sizeof(struct particles));
curr->m = malloc(n * sizeof(double));
curr->s  = malloc(n * sizeof(vect_t));
curr->v  = malloc(n * sizeof(vect_t));
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Performance Optimization: n-body

• Changing underlying data structure requires to change each access

f_part_k[X] = curr[part].s[X] - curr[k].s[X];

f_part_k[X] = curr->s[part][X] - curr->s[k][X];
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Performance Optimization: n-body
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Performance Optimization: n-body

Compiler optimizations and auto vectorization
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Performance Optimization: n-body

Optimized memory access patterns
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Performance Optimization: n-body



• Enable multi-threading using OpenMP

59

Performance Optimization: n-body

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;
memset(forces, 0, n*sizeof(vect_t));
for (part = 0; part < n-1; part++)

Compute_force(part, forces, curr, n);
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}

# pragma omp parallel num_threads(thread_count) default(none) \
shared(curr, forces, thread_count, delta_t, n, n_steps, output_freq) \
private(step, part, t)

for (step = 1; step <= n_steps; step++) {
t = step*delta_t;

#    pragma omp single
memset(forces, 0, n*sizeof(vect_t));

#    pragma omp for
for (part = 0; part < n-1; part++)

Compute_force(part, forces, curr, n);
#    pragma omp for

for (part = 0; part < n; part++)
Update_part(part, forces, curr, n, delta_t);

}

for (k = part+1; k < n; k++) {
[...]
forces[part][X] += f_part_k[X];
forces[part][Y] += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

for (k = part+1; k < n; k++) {
[...]

#    pragma omp atomic
forces[part][X] += f_part_k[X];

#    pragma omp atomic
forces[part][Y] += f_part_k[Y];

#    pragma omp atomic
forces[k][X] -= f_part_k[X];

#    pragma omp atomic
forces[k][Y] -= f_part_k[Y];

}
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Compiler optimizations and auto vectorization



61

Performance Optimization: n-body

Parallelized with OpenMP
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• Intel VTune: Profiling tool with lots of different analysis types
– Basic / Advanced Hotspot Analysis
– Concurrency / Locks & Waits
– General Exploration: Efficient use of microarchitecture
– Memory bandwidth
– IO access
– …

• Our parallelization did not work out, so do a Concurrency analysis

• Starting VTune on our systems: Requesting a node with VTune support:
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module load ps_xe_2018
amplxe-gui

ccsalloc --res=rset=1:vtune=1:place=scatter:excl



Demo: Intel VTune Concurrency Analysis
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OpenMP: Basic implementation



• Atomic operations are costly

• Solution:
– Let each thread store its own 

(partial) forces
– Aggregate results after all 

threads have finished
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#  pragma omp parallel num_threads(thread_count) default(none) \
shared(curr,forces,thread_count,delta_t,n,n_steps, \

output_freq,loc_forces) \
private(step, part, t)

{
int my_rank = omp_get_thread_num();
int thread;
for (step = 1; step <= n_steps; step++) {

t = step*delta_t;
#       pragma omp for

for (part = 0; part < thread_count*n; part++)
loc_forces[part][X] = loc_forces[part][Y] = 0.0;

#       pragma omp for
for (part = 0; part < n-1; part++)

Compute_force(part, loc_forces + my_rank*n, curr, n);
#        pragma omp for

for (part = 0; part < n; part++) {
forces[part][X] = forces[part][Y] = 0.0;
for (thread = 0; thread < thread_count; thread++) {

forces[part][X] += loc_forces[thread*n + part][X];
forces[part][Y] += loc_forces[thread*n + part][Y];

}
}

#       pragma omp for
for (part = 0; part < n; part++)

Update_part(part, forces, curr, n, delta_t);
}

}
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Demo: Intel VTune Concurrency Analysis
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OpenMP: Basic implementation
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OpenMP: Explicit synchronization
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OpenMP: Explicit synchronization



• Work imbalance between the threads:
– First particle: all forces have to be calculated
– Last particle: no forces have to be calculated
– First thread has the most work, last thread the least

• Solution: Cyclic assignments from particles to threads
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# pragma omp for schedule(static,1)
for (part = 0; part < n-1; part++)

Compute_force(part, loc_forces + my_rank*n, curr, n);
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OpenMP: Load balancing
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OpenMP: Load balancing
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Demo: Back to Intel Advisor
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OpenMP: Load balanced version
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• Somewhere on our way we lost vectorization

• Advisor can do a memory dependency analysis



79

Performance Optimization: n-body



• Solution: #pragma omp simd reduction(…)
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double forces_accu_X = 0.0;
double forces_accu_Y = 0.0;

#pragma omp simd reduction(+:forces_accu_X,forces_accu_Y)
for (k = part+1; k < n; k++) {

/* Compute force between part and k */
[...]

/* Add force into total forces */
forces_accu_X += f_part_k[X];
forces_accu_Y += f_part_k[Y];
forces[k][X] -= f_part_k[X];
forces[k][Y] -= f_part_k[Y];

}

forces[part][X] += forces_accu_X;
forces[part][Y] += forces_accu_Y;
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OpenMP: Load balanced version
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OpenMP: Load balanced and vectorized version
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• Still, we only achieve 26 GFLOP/s where 163 GFLOP/s should be possible

• Are we memory or compute limited?

• Do a General Exploration in VTune
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Demo: Intel VTune General Exploration
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We spend > 60% of the 
time in our division!



• We achieved a 110x speedup by
– Optimizing the algorithm
– Using compiler optimizations
– Using OpenMP for parallel execution
– Reducing the synchronization effort
– Balancing the load between threads
– Making use of vectorization

• Tools can help in this process
– We used VTune to find bottlenecks and load imbalance
– We used Advisor to enable vectorization and optimize memory access patterns

• Optimization is an iterative process
– You may have to revisit things you have optimized earlier
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Profiling of MPI applications
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• Questions when optimizing an MPI application:
– How much time is spent for communication?
– How much data is transferred between the nodes?
– Is the load balanced between all ranks?

• MPI implementations provide statistics and benchmarks to assist

• We focus on Intel MPI here
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Profiling of MPI applications



• To collect basic statistics, export environment variable I_MPI_STATS
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Profiling of MPI applications

module load ps_xe_2018
export I_MPI_STATS=all

# local execution
mpirun -n 16 ./mpi_nbody_red 1024 10 0.001 10 g

# execution on OCuLUS
ccsalloc -I -c 64 impi -- ./mpi_nbody_red 524288 10 0.001 10 g



• stats.ipm

• IPM: Integrated 
Performance Monitoring
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# [total] <avg> min max
# entries 64 1 1 1
# wallclock 21905.1 342.267 341.467 344.917
# user 21436.7 334.948 332.975 335.58
# system 23.0293 0.359832 0.180638 0.881514
# mpi 1231.47 19.2418 7.94775 33.3769
# %comm 5.62186 2.31862 9.74161
# gflop/sec NA NA NA NA
# gbytes 0 0 0 0
#
#
# [time] [calls] <%mpi> <%wall>
# MPI_Sendrecv_replace 753.383 40960 61.18 3.44
# MPI_Init 470.983 64 38.25 2.15
# MPI_Scatterv 6.15997 128 0.50 0.03
# MPI_Bcast 0.94546 384 0.08 0.00
# MPI_Type_commit 0.000687122 128 0.00 0.00
# MPI_Finalize 0.000604153 64 0.00 0.00
# MPI_Type_free 0.000304937 128 0.00 0.00
# MPI_Type_contiguous 0.000223637 64 0.00 0.00
# MPI_Comm_size 6.91414e-05 64 0.00 0.00
# MPI_Type_vector 6.31809e-05 64 0.00 0.00
# MPI_Comm_rank 6.24657e-05 64 0.00 0.00
# MPI_Type_create_resized 5.38826e-05 64 0.00 0.00
# MPI_Type_get_extent 1.40667e-05 64 0.00 0.00
# MPI_Wtime 1.26362e-05 128 0.00 0.00
# MPI_TOTAL 1231.47 42368 100.00 5.62



• stats.txt

• detailed per-rank 
statistics
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~~~~ Process 0 of 64 on node node01-002 lifetime = 344917304.99

Data Transfers
Src Dst Amount(MB) Transfers
-----------------------------------------
000 -->000 0.000000e+00 0
000 -->001 4.000028e+00 348
000 -->002 0.000000e+00 0
000 -->003 0.000000e+00 0
000 -->004 0.000000e+00 0
[...]
000 -->063 1.600000e+02 640

[...]

Communication Activity
Operation Volume(MB) Calls Min time Avr time Max time Total time
-----------------------------------------
P2P
Csend 4.000028e+00 348 0.95 8.58 366.93 2985.95
CSendRecv 0.000000e+00 0 0.00 0.00 0.00 0.00
Send 0.000000e+00 0 0.00 0.00 0.00 0.00
SendRecv 1.600000e+02 640 445.13 24101.42 74103.12 15424910.31
Bsend 0.000000e+00 0 0.00 0.00 0.00 0.00
Rsend 0.000000e+00 0 0.00 0.00 0.00 0.00

[...]



• Intel Trace Analyzer: Tool to visualize and analyze MPI traces

• Enable collection of traces by adding -trace to mpirun:
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module load ps_xe_2018

# local execution
mpirun -trace -n 16 ./mpi_nbody_red 1024 10 0.001 10 g

# execution on OCuLUS
ccsalloc -I -c 64 impi -trace -- ./mpi_nbody_red 524288 10 0.001 10 g

# start trace analyzer
traceanalyzer mpi_nbody_red.stf



Demo: Intel Trace Analyzer
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