
CustoNN2: Customizing
Neural Networks on

FPGAs

1

16 July 2018

High-Performance IT Systems group

Dr. Tobias Kenter
Prof. Dr. Christian Plessl

Neural Network Success Stories

2

Neural Network Success Stories

3

Neural Network Success Stories

4

Neural Network Success Stories

5

Designing CNNs

6

Structure

Activation Function

Learning

[Sources: ImageNet Database (http://www.image-net.org/), Wikimedia Commons]

http://www.image-net.org/)

CNN’s Hardware Demands

• AlexNet [2012]
– 650,000 neurons
– 60 million parameters (249 MB)
– 1.5 billion floating point operations to classify one image
– Training: 5-6 days on 2 GTX 580 GPUs

• AlphaGo
– Training: > 4 weeks on 50 GPUs

Ø Massive GPU clusters

7

[Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)]

Special hardware for CNNs

• Specialized hardware for CNNs
– Nvidia Tensor Cores

– Google TPUs (3rd generation 2018)

8

FPGAs for CNNs

• Configurable Hardware
– Customize operations, connections, data reuse
– One tensor format does not fit all topologies

– There is active debate on best data formats for CNNs

9

Binarized Neural Networks: Training Neural Networks with Weights and
Activations Constrained to +1 or �1

Matthieu Courbariaux*1 MATTHIEU.COURBARIAUX@GMAIL.COM
Itay Hubara*2 ITAYHUBARA@GMAIL.COM
Daniel Soudry3 DANIEL.SOUDRY@GMAIL.COM
Ran El-Yaniv2 RANI@CS.TECHNION.AC.IL
Yoshua Bengio1,4 YOSHUA.UMONTREAL@GMAIL.COM
1Université de Montréal
2Technion - Israel Institute of Technology
3Columbia University
4CIFAR Senior Fellow
*Indicates equal contribution. Ordering determined by coin flip.

Abstract
We introduce a method to train Binarized Neu-
ral Networks (BNNs) - neural networks with bi-
nary weights and activations at run-time. At
training-time the binary weights and activations
are used for computing the parameters gradi-
ents. During the forward pass, BNNs drastically
reduce memory size and accesses, and replace
most arithmetic operations with bit-wise opera-
tions, which is expected to substantially improve
power-efficiency. To validate the effectiveness of
BNNs we conduct two sets of experiments on the
Torch7 and Theano frameworks. On both, BNNs
achieved nearly state-of-the-art results over the
MNIST, CIFAR-10 and SVHN datasets. Last but
not least, we wrote a binary matrix multiplication
GPU kernel with which it is possible to run our
MNIST BNN 7 times faster than with an unopti-
mized GPU kernel, without suffering any loss in
classification accuracy. The code for training and
running our BNNs is available on-line.

Introduction
Deep Neural Networks (DNNs) have substantially pushed
Artificial Intelligence (AI) limits in a wide range of tasks,
including but not limited to object recognition from im-
ages (Krizhevsky et al., 2012; Szegedy et al., 2014), speech
recognition (Hinton et al., 2012; Sainath et al., 2013), sta-

tistical machine translation (Devlin et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015), Atari and Go games
(Mnih et al., 2015; Silver et al., 2016), and even abstract
art (Mordvintsev et al., 2015).

Today, DNNs are almost exclusively trained on one or
many very fast and power-hungry Graphic Processing
Units (GPUs) (Coates et al., 2013). As a result, it is of-
ten a challenge to run DNNs on target low-power devices,
and substantial research efforts are invested in speeding
up DNNs at run-time on both general-purpose (Vanhoucke
et al., 2011; Gong et al., 2014; Romero et al., 2014; Han
et al., 2015) and specialized computer hardware (Farabet
et al., 2011a;b; Pham et al., 2012; Chen et al., 2014a;b;
Esser et al., 2015).

This paper makes the following contributions:

• We introduce a method to train Binarized-Neural-
Networks (BNNs), neural networks with binary
weights and activations, at run-time, and when com-
puting the parameters gradients at train-time (see Sec-
tion 1).

• We conduct two sets of experiments, each imple-
mented on a different framework, namely Torch7
(Collobert et al., 2011) and Theano (Bergstra et al.,
2010; Bastien et al., 2012), which show that it is pos-
sible to train BNNs on MNIST, CIFAR-10 and SVHN
and achieve nearly state-of-the-art results (see Section
2).

• We show that during the forward pass (both at run-
time and train-time), BNNs drastically reduce mem-
ory consumption (size and number of accesses), and

ar
X

iv
:1

60
2.

02
83

0v
3

 [c
s.L

G
]

17
 M

ar
 2

01
6

Our Infrastructure

• Noctua cluster
– Right now build up by Cray in PC²
– Includes 32 latest generation Intel Stratix 10 FPGAs

§ Direct FPGA-to-FPGA connections
– Plus two smaller experimental clusters

§ Xilinx FPGAs
§ Intel CPU+FPGA prototypes

• Programming FPGAs with OpenCL

10

Results of first PG CustoNN

• OpenCL-based FPGA design for Xilinx and Intel FPGAs
• Custom topology keeping all weights in local FPGA memory

• Trained with Tensorflow for image recognition
• Up to 200 GFLOPs performance (Xilinx FPGA)
• Research paper submitted, in preparation for resubmission
• Functional, but inefficient fixed-point implementation

11

Goals PG CustoNN2

• Codesign of topology and hardware
– Weights in DDR memory – support for more state-of-the-arte CNNs

• Catch up on custom data types
– e.g. bfloat16, libraries for efficient fixed point

• Exploit capabilities of new FPGAs
– 3-4x more resources per FPGA
– Stretch calculations over several FPGAs

12

CustoNN - Summary

• Project Group for CS and CE students

• Goals
– Explore + evaluate NN architectures + learning strategies specifically

adapted to FPGAs

• Fields of interest
– Neural networks / deep learning
– OpenCL or other accelerator languages
– Accelerator architectures

• Supervisors
– Christian Plessl, christian.plessl (at) uni-paderborn.de
– Tobias Kenter, kenter (at) uni-paderborn.de, � 05251/60-4340

13

Ø Codesign of CNN topology and FPGA implementation
Ø Realize custom data types via OpenCL or HLS
Ø Brainwave-like CNN stretching over 32 FPGAs

