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Abstract. Instance-based learning (IBL) algorithms have proved to
be successful in many applications. However, as opposed to standard
statistical methods, a prediction in IBL is usually given without char-
acterizing its confidence. In this paper, we propose an IBL method
that allows for deriving set-valued predictions that cover the correct
answer (label) with high probability. Our method makes use of a for-
mal model of the heuristic inference principle suggesting that similar
instances do have similar labels. The focus of this paper is on the
prediction of numeric values (regression), even though the method
is also useful for classification problems if a reasonable similarity
measure can be defined on the set of classes.

1 INTRODUCTION

As opposed to inductive, model-based machine learning methods,
instance-based learning (IBL) [3, 1] provides a simple means for re-
alizing transductive inference [14], that is inference “from specific
to specific”: Rather than inducing a general model (theory) from the
data, the data itself is simply stored [13]. The processing of the data
is deferred until a prediction is actually requested (or some other type
of query must be answered), a property that qualifies IBL as a lazy
learning method [2]. Predictions are then derived by combining the
information provided by the stored examples in one way or other.

Typically, IBL is applied to classification problems, where predic-
tions are derived from the query’s k nearest neighbors through ma-
jority voting. Still, by combining the neighbors’ predictions using a
weighted sum rather than majority voting, IBL can also be employed
for the estimation of numeric values [4]. In [9], the predictive per-
formance of (numeric) IBL was found to be quite able to compete
against linear regression (LR). More importantly, the authors cor-
rectly emphasized a key advantage of IBL, namely the fact that it
does not assume strong (structural) properties of the data-generating
process, such as linearity in LR.

This advantage, however, does not come for free. For methods that
dispose of an underlying (statistical) model it is usually much sim-
pler to quantify the credibility of a prediction. In LR, for example, an
estimated model can be used for deriving a confidence interval cover-
ing a predicted output with a certain probability. Roughly speaking,
this becomes possible by transferring the credibility of the model it-
self, estimated on the basis of the data in conjunction with the model
assumptions, to predictions thereof.

In this paper, we propose an extension of IBL that allows for deriv-
ing “credible” predictions, thereby combining advantages from both
instance-based and model-based learning. This extension draws its
inspiration from statistical methods: The basic idea is to derive a
credible set of predictions, which is likely to contain the correct an-
swer, rather than making a single prediction (point-estimation). Note
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that this approach to credible estimation is different from character-
izing the reliability of a single (point) estimation [10, 11].

The remainder of the paper is organized as follows: After some
preliminaries, we introduce two concepts called similarity profile and
similarity hypothesis (Section 3). On the basis of these concepts, an
instance-based learning method for deriving credible sets of predic-
tions is developed. Section 4 presents a probabilistic extension of
the method, which improves its performance and robustness in real-
world applications. Finally, some experimental results are discussed
in Section 5. The work presented here is an extension and continua-
tion of [7, 8].

2 PRELIMINARIES

Let X denote an instance space, where an instance corresponds to
the description x of an object (usually in attribute–value form). We
assume X to be endowed with a reflexive and symmetric similarity
measure σX . L is a set of labels, also endowed with a reflexive and
symmetric similarity measure, σL. Both measures shall be normal-
ized such that 0 ≤ σX , σL ≤ 1. D denotes a sample (memory, case
base) that consists of n labeled instances (cases) 〈xı, λxı〉 ∈ X ×L,
1 ≤ ı ≤ n. Finally, a novel instance x0 ∈ X (a query) is given,
whose label λx0 is to be predicted.

We do not make any assumptions on the cardinality of the label set
L. In fact, we do not even distinguish between the performance tasks
of classification (estimating one among a finite set of class labels)
and regression (estimating a real-valued output), which means that L
might even be infinite. Subsequently, we therefore employ the term
label as a generic term not only for the name of a class in classifica-
tion but also for numeric values in regression.

3 CREDIBLE INSTANCE-BASED LEARNING

3.1 Similarity Profiles

A key idea of our approach is to proceed from a formal model of
the heuristic IBL assumption, suggesting that similar instances do
have similar labels. This formalization will provide the basis of a
sound inference procedure including assertions about the confidence
of predictions. To begin, suppose that the IBL assumption has the
following concrete meaning:

∀x, y ∈ X : ζ
(
σX (x, y)

) ≤ σL (λx, λy) , (1)

where ζ is a function [0, 1] → [0, 1]. This function assigns to each
similarity degree between two instances, α, the largest similarity de-
gree β = ζ(α) such that the following property holds: The labels of
two α-similar instances are guaranteed to be at least β-similar. We
call ζ the similarity profile of the application at hand. More formally,



ζ is defined as follows: For all α ∈ [0, 1],

ζ(α) =def inf
x,y∈X ,σX (x,y)=α

σL
(
λx, λy

)
. (2)

Note that the similarity profile conveys a precise idea of the extent
to which an application actually meets the IBL assumption. Roughly
speaking, the “larger” ζ is, the better this assumption is satisfied.

The constraint (1) suggests the following inference scheme for
predicting the label λx0 :

λx0 ∈ C(x0) =def

n⋂

ı=1

Nζ(σX (xı,x0))(λxı), (3)

where the β-neighborhood Nβ(λ) of a label λ is given by the set
{λ′ ∈ L |σL(λ, λ′) ≥ β}. This inference scheme is obviously cor-
rect in the sense that C(x0) is guaranteed to cover λx0 , a property
that follows immediately from the definition of the similarity pro-
file ζ. We call C(x0) a credible label set and refer to the inference
scheme itself as CIBL (Credible IBL).

A similarity profile can also be attached to single cases: The lo-
cal similarity profile ζı of the ı−th case 〈xı, λxı〉 is defined as
in (2), except that the infimum is taken only over those pairs of
cases that involve the ı−th case itself. Thus, a local profile indi-
cates the validity of the IBL assumption for individual cases (and
might hence serve as a criterion for selecting “competent” cases to
be stored in the memory D [12]). In the inference scheme (3), the
neighborhoods Nζ(σX (xı,x0))(λxı) are replaced by the neighbor-
hoods Nζı(σX (xı,x0))(λxı). We refer to this type of local inference
as CIBL-L.

Mathematically speaking, a profile ζ is the lower envelope of all
individual profiles ζı. Consequently, CIBL-L will usually yield pre-
dictions that are more precise than those of CIBL. The price to pay
is a higher computational complexity, since a profile must be main-
tained for every case in the memory D.

3.2 Similarity Hypotheses

The application of the inference scheme (3) requires the similarity
profile ζ (resp. the local profiles ζı) to be known, a requirement that
will usually not be fulfilled. This motivates the related concept of a
(local) similarity hypothesis, a function h : [0, 1] → [0, 1], which is
thought of as an approximation of a similarity profile. A hypothesis
h is called stronger than a hypothesis h′ if h′ ≤ h and h �≤ h′. We
say that h is admissible if h(α) ≤ ζ(α) for all α ∈ [0, 1].

It is obvious that using an admissible hypothesis h in place of
the true similarity profile ζ within the inference scheme (3) leads
to correct predictions Cest(x0) ⊇ C(x0). Indeed, h ≤ ζ implies
Nζ(σX (xı,x0))(λxı) ⊆ Nh(σX (xı,x0))(λxı) for all cases 〈xı, λxı〉.

Yet, assuming the profile ζ to be unknown, one cannot guaran-
tee the admissibility of a hypothesis h and, hence, the correctness
of Cest(x0). In other words, it might happen that λx0 �∈ Cest(x0).
Fortunately, our results below will show that, using suitable hypothe-
ses, the probability of incorrect predictions is bounded and becomes
(arbitrarily) small for large memories.

As will become clear below, a convenient representation of a hy-
pothesis is a step function

h : x �→
m∑

k=1

βk · IAk(x), (4)

where Ak = [αk−1, αk) for 1 ≤ k ≤ m − 1, Am = [αm−1, αm],
and 0 = α0 < α1 < . . . < αm = 1 defines a partition of [0, 1]. The

strongest hypothesis hD consistent with the data D is characterized
by the coefficients

βk =def min
xı,x:σX (xı,x)∈Ak

σL(λxı , λx) (5)

for 1 ≤ k ≤ m, where min ∅ = 1 by definition. We call hD the em-
pirical similarity profile and, for obvious reasons, the step function
h∗ defined by the values

β∗
k =def inf { ζ(x) |x ∈ Ak } , (6)

1 ≤ k ≤ m, the optimal admissible hypothesis. Since admissibility
implies consistency, we have h∗ ≤ hD . This inequality suggests that
the empirical similarity profile hD will usually overestimate the true
profile ζ and, hence, that hD might not be admissible. Of course, the
fact that admissibility of hD is not guaranteed seems to conflict with
the objective of providing correct predictions and, hence, gives rise
to questions concerning the actual quality of the empirical profile as
well as the quality of predictions derived from that hypothesis. The
following theorem gives an important answer to this question.

Theorem 1 Suppose that observed instances are independent and
identically distributed (iid) random variables, generated according
to a fixed (not necessarily known) probability distribution µ over X .
Let Cest(x0) be the prediction of the label λx0 derived from the
hypothesis hD . The following estimation holds true:

Pr
(
λx0 �∈ Cest(x0)

) ≤ 2m/ (1 + |D|) , (7)

where m is the size of the partition underlying the step function
hD . �

According to this result, the probability of an incorrect prediction
becomes small for large memories, even if the related hypotheses are
not admissible. In fact, Pr(λx0 �∈ Cest(x0)) → 0 as |D| → ∞.
In a statistical sense, the predictions Cest(x0) can indeed be seen as
credible sets, a justification for using this term not only for C(x0)
but also for Cest(x0). Note that the level of confidence guaranteed
by Cest(x0) depends on the number of observed cases and can hence
be controlled.

It is furthermore interesting to note that the level of confidence
does not depend on σX and σL, i.e. credible predictions can be made
for any pair of similarity measures. Needless to say, however, the
more suitably these measures are chosen, the more precise predic-
tions will be.

Let us finally mention that a result similar to the above theorem can
also be obtained for the case of local similarity profiles [7]. In this
case, predictions are usually more precise but less confident (cf. Sec-
tion 5).

3.3 Practical Issues

The above results provide a sound theoretical basis for an instance-
based prediction of credible label sets. In the remainder of this sec-
tion, we shall discuss some modifications the purpose of which is to
improve the practical usefulness of the method.

A rather obvious idea in connection with the inference scheme (3)
is to take the intersection not over all cases in D but only over the
k � n nearest neighbors of the query x0. Obviously, this will in-
crease efficiency while preserving the correctness of the prediction.
On the other hand, some precision will also be lost, but this effect
is usually limited due to the fact that less similar instances often



hardly contribute to the precision of predictions. More specifically,
we have implemented the following strategy: The k nearest neigh-
bors are rank ordered according to their similarity to the query, and
the intersection (3) is derived in this order successively. Moreover,
the prediction of the ı-th nearest neighbor is ignored if its intersec-
tion with the current result would produce an empty set (note that
this does again preserve correctness).

In many applications one is interested in both, a point-estimation
(of a numeric attribute) and a credible set. In this case, the former
can of course be derived from the latter, for example as a kind of
“center of gravity”. In particular, if the credible set takes the form of
an interval (as in our experiments in Section 5), an obvious candidate
is the mid-point of the interval.

Let us finally make a note on the specification of the similarity
measures σX and σL. Usually, the definition of the latter is uncritical,
especially since only the ordinal structure of this measure is impor-
tant: A (strictly) monotone transformation of σL will not change the
inference results (it changes the similarity bounds β = h(α) but not
the neighborhoods Nβ(λ)). Particularly, this means that σL can sim-
ply be defined by e.g. a linear function (λ, λ′) �→ 1−|λ−λ′|/(u−l)
for numeric attributes with a bounded range [l, u]. As concerns the
definition of σX , the cardinal structure is important in so far as it has
an influence on the assignment of similarity pairs to the bins of the
(fixed) partition underlying the specification of the similarity profile.
Still, our experiments have shown the profile to be rather robust to-
ward variations of σX . This can be explained by the fact that moving
a similarity pair from one bin to another does only have an effect if
this pair is a “critical” one that determines the similarity bound in one
of the bins. In practice, we have achieved good results with measures
of the form

σX (x, y) =def exp(−γ ‖x − y‖2). (8)

The constant γ is a degree of freedom that must be adapted to the
application at hand, e.g. by means of a cross validation. To guarantee
that each attribute does approximately have the same influence – a
point of critical importance in IBL [9] – the data is first re-scaled
linearly to the unit (hyper)cube.

4 PROBABILISTIC PROFILES

A similarity profile ζ defined according to (2) is obviously quite sen-
sitive toward outliers, i.e., similarity pairs

(α, β) =
(
σX (xı, x), σL(λxı , λx)

)
(9)

with small β. In fact, ζ(α) is a lower bound to the similarity of labels
that belong to α-similar instances. Thus, even the existence of a sin-
gle pair of α-similar instances having rather dissimilar labels entails
a small lower bound ζ(α). Small bounds in turn will obviously have
a negative effect on the precision of predictions (3). This problem
is diminished to some extent by the use of local profiles, since such
profiles are derived from a much smaller number of similarity pairs
(9). Nevertheless, local profiles are still lower bounds and, hence, not
robust toward outliers.

A reasonable idea in this connection is to replace deterministic
similarity bounds ζ(α) by probabilistic bounds, that is by (cumu-
lative) probability distribution functions Fα, with Fα(β) being the
probability that σL(λx, λy) ≤ β for α-similar instances x, y ∈ X .
In practice it will usually be sufficient to characterize a distribution
function by a finite set of quantiles.

The representation of hypotheses in the form of step functions can
easily be extended to the above probabilistic setting. Let Ak be an

interval in the representation (4) of hypotheses. Moreover, let Sk be
the set of similarity degrees σL(λxı , λx) such that σX (xı, x) ∈
Ak. Rather than assigning to βk the minimum of Sk , as in (5), we
now define this bound by the (1 − p)-quantile of Sk, where p is
a usually small value such as 0.05. As an empirical quantile, βk is
hence an estimation of the corresponding true quantile of Fα. We
call the step function hp defined by hp(α) = βk for α ∈ Ak the
empirical p-profile.

Now, suppose that we employ hp in order to derive a prediction

C(x0) =

k⋂

ı=1

Nhp(σX (xı,x0))(λxı),

where x1 . . . xk are the query’s k nearest neighbors. What is the
level of confidence of this prediction? Unfortunately, we do not have
enough information to compute the probability of an incorrect pre-
diction exactly. Still, by making a simplifying independence assump-
tion à la naive Bayes, the confidence level (1 − p)k can be justified.
Our practical experience has shown that this level still underestimates
the true confidence level in almost any application (cf. Section 5).

Of course, probabilistic estimations of the above type can be de-
rived for different values p1 < p2 < . . . < p�. Thus, one obtains a
nested sequence

Cp� (x0) ⊆ Cp�−1(x0) ⊆ . . . ⊆ Cp1(x0)

of credible label sets with associated confidence levels. As an ad-
vantage of this kind of “stratified” prediction note that it differen-
tiates between predicted labels better than a single credible label
set does: The labels in Cp�(x0) are the most likely ones, those in
Cp�−1(x0) \ Cp�(x0) are somewhat less likely, and so on.

5 EXPERIMENTAL RESULTS

This section is meant to convey a first idea of the practical perfor-
mance of CIBL, without laying claim to providing an exhaustive
experimental evaluation. In the experiments presented here, we com-
pared our approach to standard IBL (nearest neighbor estimation [5])
and linear regression. We refrained from “tuning” the different meth-
ods. Particularly, for IBL we neither included feature selection nor
feature weighting. (It is well-known that irrelevant features can badly
deteriorate IBL and, on the other hand, that feature weighting can
greatly improve performance [15].)
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Figure 1. Approximation of x �→ x2 (solid line) in the form of a
confidence band, using CIBL (shaded region) and linear regression

(region between dashed lines). The sample is indicated by black points.
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Figure 2. Instance-based approximation using local similarity
profiles.

5.1 Artificial Data

The first example is a simple regression problem and mainly serves
as an illustration purpose. The function to be learned is given by the
polynomial x �→ x2. Moreover, n training examples 〈xı, λxı〉 are
given, where the xı are uniformly distributed in X = [0, 1] and the
λxı are normally distributed with mean (xı)

2 and standard deviation
1/10. As a similarity measure for instances, we employed (8) with
γ = 2. Given a random sample D, we first induce a similarity hy-
pothesis for an underlying equi-width partition of size m = 5. Using
this hypothesis and the sample D, we derive a prediction λx for all in-
stances x ∈ [0, 1] (resp. for the discretization {0, 0.01, 0.02 . . . 1}).
Note that such a prediction is simply an interval. The union of these
intervals yields a confidence band for the true mapping x �→ x2.
Fig. 1 shows a typical inference result for n = 25. Moreover, Fig. 2
shows a result for n = 75, using local similarity profiles (CIBL-L).

According to our estimation (7), the degree of confidence for
n = 25 is 16/26. This, however, is only a lower bound, and empir-
ically (namely by averaging over 1,000 experiments) we found that
the level of confidence is almost 0.9. To draw a comparison with stan-
dard statistical techniques, the figures also show the 0.9-confidence
band obtained for the regression estimation (and the same samples).
As can be seen, CIBL yields predictions of roughly the same pre-
cision, CIBL-L is even slightly more precise. This finding was also
confirmed for estimation problems with a higher dimensional input
space, which are not presented here due to reasons of space.

In this connection it deserves mentioning that linear resp. poly-
nomial regression makes much more assumptions than CIBL. Es-
pecially, the type of function to be estimated must be specified in
advance: Knowing that this function is a polynomial of degree 2 in
our example, we took the model x �→ β0 + β1x + β2x

2 as a point
of departure and estimated the coefficients βı, however usually such
knowledge will not be available. For instance, typical overfitting ef-
fects can be observed when adapting a polynomial of degree k > 3
to the data. Moreover, the confidence band is only valid if the error
terms follow a normal distribution (as they do in our case but not in
general).

5.2 Real-World Data

We also applied our method to several real-world data sets from the
UCI repository. Due to reasons of space, we restrict our discussion to
results for the auto-mpg data. This data set contains the city-cycle
fuel consumption in miles per gallon for 392 cars (with values be-
tween 9 and 46.6), to be predicted in terms of 3 multivalued discrete

and 4 continuous attributes. In order to facilitate the comparison with
linear regression, we only used the 4 continuous attributes (displace-
ment, horsepower, weight, acceleration).
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Figure 3. Similarity profile for the auto-mpg data (step function).
Each point corresponds to a pair (α, β) with α = σX (x, y) (abscissa)

and β = σL(λx, λy) (ordinate).

Fig. 3 shows the similarity profile for the data, using a partition of
size 10. The picture clearly reveals the aforementioned outlier effect:
The similarity profile is “pressed down” by a relatively small number
of similarity pairs (α, β) = (σX (x, y), σL(λx, λy)). The similarity
between instances was measured by (8) with γ = 3.

In order to test the effectiveness of the probabilistic strategy for
CIBL, we have applied this approach to the data with different values
for p. The following performance measures were derived by means
of a leave-one-out cross-validation: (1) The precision of predictions
(PREC) measured in terms of the average length of a predicted in-
terval. (2) The mean absolute error (MAE) measured in terms of
the average distance between the true value and the point estimation
(center of the interval). (3) The correctness or empirical confidence
(CONF) measured in terms of the relative frequency of correct pre-
dictions (predicted interval covers true value). The following table
shows results for different sizes k of the neighborhood:

k p CONF PREC MAE
3 .00 1.00 37.52 2.90
3 .02 0.96 23.21 2.92
3 .04 0.93 19.65 2.93
7 .00 1.00 34.84 2.92
7 .02 0.92 19.85 2.93
7 .04 0.88 16.11 2.94

15 .00 1.00 33.00 3.04
15 .02 0.86 17.21 3.13
15 .04 0.77 13.34 3.13

As can be seen, the use of probabilistic bounds yields an extreme
gain of precision at the cost of a rather slight deterioration of the
MAE. For example, for k = 15, the precision is almost doubled
when passing from the (deterministic) profile (p = 0) to the empiri-
cal p-profile with p = .02.

It is also interesting to compare the theoretical confidence level
(1−p)k, justified by an assumption of independence, to the empirical
confidence level (CONF). Fig. 4 shows the ratio between the latter
and the former as a function of p, and for different values k. As can be
seen, the ratio is always ≥ 1, i.e. the empirical confidence is always
underestimated by the theoretical one, and this underestimation does
even increase with p and k.
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Figure 4. Ratio between theoretical and empirical level of
confidence for α = 0, 0.02 . . . 0.2 and k = 3, 5 . . . 13.

We have made the same experiment using the local variant CIBL-
L. Since there are less cases involved in deriving the individual pro-
files, the size of the partition was reduced from 10 to 5. The results,
summarized in the table below, confirm our theoretically founded
expectations: Predictions become more precise but less confident.
Apart from that, it is interesting to note that CIBL-L also yields better
point estimations.

k p CONF PREC MAE
3 .00 0.94 11.81 2.79
3 .02 0.77 8.57 2.72
3 .04 0.77 7.98 2.69
7 .00 0.92 9.98 2.67
7 .02 0.68 7.00 2.61
7 .04 0.66 6.47 2.58

15 .00 0.88 8.99 2.60
15 .02 0.62 6.06 2.55
15 .04 0.60 5.57 2.54

For comparison purposes, we have also repeated the experiment
using standard IBL (k-nearest neighbor estimation) and linear re-
gression as prediction methods. IBL predictions were derived as a
linear combination of the values from the k nearest neighbors, with
the weight of a neighbor being proportional to its similarity. The re-
sults are summarized in the following table:

k 3 7 11 15 19
MAE 2.87 2.76 2.81 2.80 2.81

As can be seen, the estimations of CIBL are only slightly worse than
those of IBL, and the estimations of CIBL-L are even better. Recall-
ing that CIBL is actually not intended to produce point estimations,
this is a surprisingly good result. Apart from that, standard IBL does
of course not provide confidence estimations, which is the primary
concern and key advantage of CIBL.

For LR, the model fit is acceptable,2 but the results are not com-
petitive: The mean absolute error is 3.23 and the precision is 19.71
for p = 0.02, 16.59 for p = 0.05 and 13.91 for p = 0.1. Poly-
nomial regression (of orders 2 and 3) yields slightly more accurate
point estimations but even less precise confidence intervals.

2 The R2-statistic is around 0.71 and the F -statistic is extremely large.

6 CONCLUDING REMARKS

We have proposed an instance-based learning method called CIBL
that allows for deriving estimations in the form of credible label sets,
which are provably correct with high probability (under standard as-
sumptions on the data generating process). Thus, CIBL combines
advantages from both, instance-based and model-based (statistical)
learning: As an instance-based approach it requires less structural
assumptions than (parametric) statistical methods, and yet it allows
for specifying the uncertainty related to predictions.

As a further advantage of CIBL let us mention that it hardly as-
sumes more than the specification of similarity measures over in-
stances and labels and, hence, is quite general and universally ap-
plicable. Especially, no distinction is actually made between classi-
fication and regression. Indeed, CIBL can easily be applied to other
types of problems as well, such as e.g. the prediction of rankings [6].
In fact, note that no kind of transitivity is assumed for the similar-
ity measures, which means that the structure of X and L might be
weaker than that of a metric space. Consequently, CIBL is applica-
ble in many situations where standard methods from statistics cannot
be used.

A main concern in this paper was the correctness of predictions.
Let us finally mention that one can also obtain estimations related
to the precision of predictions. For instance, a result similar to a
theorem in [9] can be shown provided that the mapping x �→ λx

satisfies certain continuity assumptions (this of course also requires
that X and L are metric spaces). Namely, this mapping can be ap-
proximated to any degree of accuracy, that is, for ε > 0 there is
a finite memory D such that λx ∈ Cest(x) for all x ∈ X and
supx∈X diameter(Cest(x)) < ε.
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[7] E. Hüllermeier, ‘Focusing search by using problem solving experience’,
in Proc. ECAI–2000, pp. 55–59, Berlin, Germany, (2000).
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