
Visualization of Evolving Fuzzy Rule-Based Systems

Abstract

Evolving fuzzy systems are data-driven fuzzy (rule-based) systems supporting an
incremental mode of model adaptation in dynamically changing environments; typi-
cally, such models are learned on a continuous stream of data in an online manner. This
paper advocates the use of visualization techniques in order to help a user gain insight
into the process of model evolution. More specifically, dynamic parallel coordinates,
vertical parallel coordinates and rule chains are introduced as novel visualization tech-
niques for the inspection of evolving Takagi-Sugeno-Kang (TSK) fuzzy systems. These
techniques are realized in the software tool FISVis (Fuzzy Inference System Visualizer),
the architecture and functionality of which are presented in this work. To show the
usefulness of the proposed techniques, we illustrate their application in the context of
learning from data streams with temporal concept drift.

1 Introduction

Visualization has become an important tool in data-driven research fields, such as machine
learning and data mining. Apart from the visualization of data objects, data relationships,
and aggregated information content [13], the visualization of models learned from data has
recently attracted increasing attention in the field of computational intelligence [1, 7, 17, 18].
Going beyond the presentation of static models, this paper suggests the use of visualization
techniques for tracking evolving models, that is, models that are learned and adapted in an
online manner on a continuous stream of data [2, 4, 8].

More specifically, we developed an interactive visualization tool called FISVis, which is short
for Fuzzy Inference System Visualizer, that allows for monitoring evolving Takagi-Sugeno-
Kang (TSK) fuzzy inference systems in real time [3]. Temporal dynamic parallel coordinates
and vertical parallel coordinates arranged in a time line are proposed for visualizing the
evolution of selected rules and the interaction between such rules (in the form of merging
and splitting processes). Moreover, so-called rule chains are proposed for visualizing changes
of a complete rule system between two consecutive time points. Experimentally, we show
that characteristic patterns emerge in a rule chain visualization when applied to evolving
rule systems learned from data streams exhibiting concept drift.

The paper is structured as follows. Prior to introducing our main visualization techniques,
we revisit the underlying TSK fuzzy rule-based systems in Section 2 and discuss some key
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challenges arising in the visualization of such systems in Section 3. By way of background,
some important notations for measuring the similarity of fuzzy rules and rule systems are
recalled in Section 4. A general outline of the architecture and functionality of FISVis is then
given in Section 5. In addition to the visualization techniques already mentioned, FISVis
provides a kind of monitoring system which is introduced in Section 6. The visualization
techniques themselves are then introduced, respectively, in Sections 7, 8 and 9. In Section 10,
an experimental study with synthetic data is presented, showing the usefulness of our vi-
sualization techniques for analyzing the evolution of fuzzy models learned on data streams
with concept drift. The paper ends with a summary and concluding remarks in Section 11.

2 TSK fuzzy rule-based systems

Although the techniques proposed in this paper are more generally applicable, we shall
subsequently focus on the model class of first order TSK fuzzy rule-based systems. TSK
systems of that kind are comprised of a set of rules R = {R1, . . . , RN}. Such a system
implements a mapping of the form

f : Rp → R, x 7→ y(x) with y(x) =
N∑
i=1

li(x) ·Ψi(x) . (1)

Here, the antecedent of each rule Ri is modeled as a conjunction of p fuzzy sets with Gaussian
membership function, each characterized by its center ci,j and width σi,j; for a given input
vector x = (x1, . . . , xp) ∈ Rp, the relevance (“firing strength”) of an antecedent part is
evaluated as follows:

Ψi(x) =
exp

[
−1

2

∑p
j=1

(
(xj − ci,j)2/σ2

i,j

)]
∑N

k=1 exp
[
−1

2

∑p
j=1

(
(xj − ck,j)2/σ2

k,j

)] (2)

The conclusion of Ri is a linear function specified by a (p + 1)-dimensional weight vector
wi = (wi,0, wi,1, . . . , wi,p):

li(x) = wi,0 + wi,1x1 + wi,2x2 + . . .+ wi,pxp (3)

Learning TSK models of that kind on a continuous (and potentially unbounded) stream
of data (z(1), z(2), z(3), . . .) in the form of input/output tuples z(t) = (x(t), y(t)) essentially
means applying a learning algorithm A that adapts the current rule model after each newly
observed example (or, more generally, after a small batch of new examples). Thus, starting
with a model R(0) at time t = 0, a corresponding sequence of models (R(0),R(1),R(2), . . .) is
produced, where R(t) = A(R(t−1), z(t)) is obtained by modifying certain rules in R(t−1), by
merging different rules into a single new rule, or by creating a new rule from scratch.

For a proper handling of rules, it is important that all rules have a unique identifier (rule-ID),
no matter whether freshly generated or originating from a merging process. A rule R in R(t)

which evolved from a rule R′ in R(t−1) with rule-ID id keeps the same rule-ID. A history Hid

is a sequence of rules all sharing the rule-ID id.
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3 Challenges in the visualization of evolving systems

The visualization of an evolving fuzzy system poses a number of challenges, both of concep-
tual and technical nature. Preceding a more elaborate discussion in the following sections,
this section is meant as a brief outline of some key issues to be considered in this regard. To
this end, it is useful to look at the visualization problem on different levels of complexity:

• the visualization of a single rule;

• the visualization of a fuzzy system consisting of a set of rules;

• the visualization of an evolving fuzzy system, i.e., a continuous sequence of sets of
rules.

A single rule is characterized by its antecedent (2) and its conclusion (3). Geometrically,
the former is naturally represented by an ellipsoid, while the latter is a linear function. The
problem in both cases is the possibly high dimensionality p: As soon as p > 3, a direct
representation is not longer possible. Instead, the dimensionality of the objects needs to be
reduced in one way or the other, for example using dimensionality reduction techniques such
as PCA or ICA [12, 10].

As for a set of rules, different visualization techniques highlight different aspects of the rule
systems. Often, one is interested in the relationship between the rules, as represented, for
example, in terms of their spatial positions and distances [1, 7, 18], the overlap of neighboring
rules [7] or the interaction between rules during inference [1]. Gabriel et al. [7] and Rehm et
al. [18] make use of multidimensional scaling in order to project the high-dimensional system
to a two-dimensional plane, trying to maintain the pairwise spatial distances between rules as
much as possible. As an important disadvantage of such techniques, note that they produce
global transformations, which do not necessarily preserve parts of the system (e.g., single
rules) that remain unchanged.

In the case of evolving systems, we have to consider not only a single rule system R but
a growing sequence of systems E = (R(0),R(1),R(2), . . .), possibly with a varying number

of rules. A single rule R
(t)
i can then be considered within two different contexts, a spatial

one (the rule system R(t)) and a temporal one (its history Hi). In both contexts, the rule
has relationships with other rules that can be considered for visualization. Needless to say,
representing both contexts simultaneously is not only challenging from a technical point of
view but also demanding from a user’s perspective. A possible solution is to enhance the
visualization by a dynamic component, namely to enable the user to “navigate” in time
while restricting the visualization itself to the spatial context.

Since our main aim is to visualize the evolution of a fuzzy model over time, the histories Hi

of a rule are more interesting for us than the spatial neighborhoods R(t). Correspondingly,
the visualization techniques to be introduced in Sections 7, 8 and 9 will focus more on Hi

than on R(t).
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Apart from the challenges discussed above, a few technical problems need to be solved. A
learning algorithm A incrementally produces rule systems R(0),R(1),R(2), . . . but does not
necessarily provide explicit information about the history Hi of a rule Ri, i.e., about the
connection between rules at different points of time. The task, then, is to “track” a rule
Ri from its first appearance till its disappearance. One possibility to do so is to build the
history using a functionality offered by the algorithm A, namely a functionality that provides
information about relations between the rules in adjacent sets R(t−1) and R(t). Evidently,
this requires access to the implementation of A and necessitates a separate implementation
of the rule tracking functionality for every new learning algorithm.

Another possibility, which is independent of the algorithm A, is to extract the history from
the sequence of rule systems R(0),R(1),R(2), . . .. Obviously, this approach is more general,
as it allows for considering the algorithm A as a black box. On the other hand, it requires a
technique for solving a non-trivial “assignment problem”, namely for finding the relationships
between rules at different points of time: Which rule at time t corresponds to which other
rule at time t+ 1?

4 Similarity and distance measures for fuzzy rules

As will be seen in subsequent sections, visualization techniques for evolving fuzzy systems
typically require a proper definition of similarity or distance between rules. In fact, such
measures provide a basis for visualizing relations between individual rules and, therefore, the
evolving process of rules and rule systems. Furthermore, they are essential for the monitoring
system introduced in Section 6.

4.1 Antecedence similarity

Recall that the antecedence part Mk of a rule Rk is a conjunction of fuzzy sets µk,i with
normalized Gaussian membership function, one for each input variable xi (cf. Section 2). We
define the similarity between two antecedence parts Mk and Ml of two rules Rk and Rl by

S (Mk,Ml) = min
(
s(µk,1, µl,1), s(µk,2, µl,2), . . . , s(µk,p, µl,p)

)
, (4)

where s(µk,i, µl,i) is a standard similarity between fuzzy sets, namely the size of their inter-
section (pointwise minimum of membership degrees) normalized by the size of the larger of
the two:

s (µk,i, µl,i) =
|µk,i ∩ µl,i|

max(|µk,i|, |µl,i|)
(5)

The size |µ| of a Gaussian fuzzy set µ is defined by the area under the membership function.
Thus, its computation comes down to solving an integration problem for which no closed-form
solution exists. Therefore, we exploit the connection between the cumulative distribution
function of the normal distribution and the error function erf(z) = 2/

√
π
∫ z
0
e−τ

2
dτ , for
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which efficient numerical algorithms are implemented. Thus, the area under a normalized
Gaussian function with mean c and standard deviation σ can be efficiently determined as
follows:

FNc,σ(z) =
σ
√

2π

2

(
1 + erf

(
z − c
σ
√

2

))
(6)

4.2 Distance between the rule centers

Another similarity measure based on rule antecedence parts is the distance between rule
centers, where the center of a rule Rk is defined as

ck = (ck,1, ck,2, . . . , ck,p) , (7)

with ck,i the center of the ith fuzzy set in the antecedence of the kth rule. By using the
Euclidean metric, the distance between two rules is

D (Rk, Rl) = ‖ck − cl‖ . (8)

For the purpose of visualization, it is desirable to have the measure normalized to the range
[0, 1]. In rule chains (see Section 9), the computation of distances is restricted to adjacent

rules R
(t)
i and R

(t+1)
i from the same history Hi (the history of the ith rule). Therefore, the

normalization is done as follows:

DN
(
R

(t)
i , R

(t+1)
i

)
=

D
(
R

(t)
i , R

(t+1)
i

)
max(

R
(τ)
i ,R

(τ+1)
i

)
∈Hi×Hi

D
(
R

(τ)
i , R

(τ+1)
i

) (9)

4.3 Angle similarity

The angle similarity is a measure of similarity between the conclusion parts of two rules.
The conclusion part (3) of a TSK fuzzy rule Ri defines a p-dimensional hyperplane Ui =
{ (x1, . . . , xn, li(x)) |x ∈ Rn } with normal vector vi = (wi,1, . . . , wi,p,−1). Using this normal
vector, we can compute the angle between two conclusions Ui and Uj by

α (Ui, Uj) = arccos

(
vi · vj

‖vi‖ · ‖vj‖

)
, (10)

and finally the corresponding rule angle similarity [16, 15] as

Sα (Ri, Rj) =

{
1− 2

π
α if α ≤ π

2
2
π

(
α− π

2

)
else

. (11)
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Figure 1: Illustration of the rule system visualization pipeline.

4.4 Conclusion intercept difference

In addition to the angle similarity of two conclusions, we also consider the difference in their
y-intercept, which is not captured by this similarity. Although this difference might indeed
be negligible on a global scale, one should keep in mind that the influence of a conclusion
is localized by the rule antecedence; and locally, the constant term may clearly make a
difference. Therefore, we define the conclusion y-intercept difference by

CY
(
R

(t)
i , R

(t+1)
i

)
=

∣∣∣w(t)
i,0 − w(t+1)

i,0

∣∣∣
max(

R
(τ)
i ,R

(τ+1)
i

)
∈Hi×Hi

∣∣∣w(τ)
i,0 − w(τ+1)

i,0

∣∣∣ , (12)

with wi,0 denoting the y-intercept of the conclusion of the rule Ri.

5 System architecture

In this section, the general system architecture of our visualization tool FISVis (Fuzzy Infer-
ence System Visualizer) will be presented. We used FLEXFIS [14] as a learning algorithm
for evolving fuzzy rule-based system, to which we added a functionality for tracking rules Ri

over time.

5.1 Rule system visualization pipeline

The information flow from the data generator to the visualization tool is illustrated in
the rule system visualization pipeline (RV-pipeline) shown in Figure 1. The data stream
(Z(0),Z(1),Z(2), . . .), where Z(t) is a batch of examples, flows into the algorithm A, which
produces a sequence of rule systems (R(0),R(1),R(2), . . .) with R(t) = A(R(t−1),Z(t−1)). In
a preprocessing step, a tracking system attaches a history label to every rule. Furthermore,
minimum and maximum values of the attributes are added, which are used for normalization
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iupdate R(T )

b
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b
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Figure 2: Schematic illustration of the FISVis architecture.

purposes later on. Once the preprocessing step is finished, the rule systems are fed into the
visualization tool, where they are collected and trigger an update of the visualization.

5.2 System architecture

The FISVis tool is made up of four main elements (Figure 2): the visualization modules, a
list of all histories H, a time control component containing a list of all rule systems R, and
a monitoring system. Technically, the history list is just a list of integers, which represents
the histories. Some visualization modules like the temporal dynamic parallel coordinates
(Section 7) and the vertical parallel coordinates (Section 8) can be fed by drag-and-drop
operations from the history list. The user-friendly drag and drop GUI operation carries the
information about which histories in the corresponding module should be displayed, whereby
the user is able to arrange a customized set Hs ∈ N of interesting histories (labels) to be
analyzed with the corresponding visualization.

Depending on the kind of visualization module (i.e., temporally dynamic or not), the concrete
rules are selected from the preprocessed rule systems, which are in turn stored in the rule
system list. Every incoming rule system R(T ) is added to this list. The time control is a
pointer to one of the rule systems stored in the list. The rule system R(t) identified by the
time control represents the current time point and the visualization modules, working with
temporally dynamic views, show Rs ⊆ R(t) ∩

(⋃
i∈Hs Hi

)
, whereas Rs depends on the user

selections for the corresponding module.

Two modes are available for the time control: an online mode and scroll mode. In the online
mode, the time control always points to the most recent rule system. In the scroll mode,
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the time control pointer can be moved forward or backward through the rule system list,
which is equivalent to navigation through time. The fourth element is a monitoring system,
which is a collection of plots from specific quantities to be discussed in Section 6. Every
incoming rule system triggers an update of the plots, thereby delivering a quick overview of
the evolving process.

6 System monitoring

A simple method for visualizing an evolving process is plot the curve of a summary statistic
that quantifies a specific property of a fuzzy system R(t). Simple examples of such statistics
include the total number of rules at a certain point of time t, the number of new rules created
and the number of rules that vanished at time t. Three further quantities will be introduced
in the following.

6.1 Rule coverage

A first measure is the Shannon entropy [19] applied to rule coverage:

H = −
N∑
i=1

pi log2 pi (13)

with

pi =
1

|X|

|X|∑
k=1

Ψi(sk) , (14)

where Ψi(sk) is the firing strength of the ith rule for the kth data point in a sample X (cf.
Section 2); correspondingly, pi is the average firing strength of the ith rule. Thus, according
to the properties of the Shannon entropy, H is large if the data is balanced in the sense of
being uniformly covered by the rules. As opposed to this, H is small if large portions of the
data are represented by only a few rules.

For computing the entropy of a rule system R(t), we make use of the training data X = Z(t)

from which the rule system was generated (i.e., R(t) = A(R(t−1), Z(t))).

6.2 Data coverage

Another useful quantity is obtained by computing the data coverage

M =
1

|X|
∑
x∈X

max
R∈R

fR(x) , (15)

where fR(x) is the non-normalized membership function of rule R. The data coverage
measures how well a set of data is covered by the rule system: The higher the data coverage,
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Figure 3: Visualization of fuzzy points in parallel coordinates proposed in [5].

the more samples are well covered by at least one rule. Like in the case of the entropy, the
data coverage of the rule system R(t) is computed on the basis of the training data X = Z(t).

6.3 System changes

The aim of analyzing the evolution of a rule system is supported by measuring the similarity
between consecutive rule systems R(t−1) and R(t), for example by matching these systems in
a bidirectional way:1

BMS

(
R(t−1),R(t)

)
=

1

n+m

(
n∑
i=1

max(wi,1, . . . , wi,m) +
m∑
j=1

max(w1,j, . . . , wn,j)

)

where wi,j = S
(
R

(t−1)
i , R

(t)
j

)
is the similarity between rules R

(t−1)
i and R

(t)
j , either the

antecedence or angle similarity, n = |R(t−1)| and m = |R(t)|.

7 Dynamic visualization of TSK rules using parallel

coordinates

Parallel coordinate (PC) plots, reintroduced by Alfred Inselberg [11], are well-known displays
for visualizing high-dimensional data. An n-dimensional parallel coordinate system consists
of n axes arranged in parallel. A data point is represented as a polygonal line with n station
points, each one lying on the corresponding axis. The advantage of parallel coordinates is
the ability to represent high-dimensional data in a two-dimensional space.

Berthold and Hall [5] use parallel coordinates to visualize high-dimensional fuzzy points of
the form µ = µ1 ∧ µ2 ∧ . . . ∧ µn. Fuzzy points represented in parallel coordinates do not
appear as a polygonal line but as a kind of polygonal tube (Figure 3), where the position
and width of the tube is determined by the fuzzy sets µi. Using semi-transparent polygons
and oscillating lines, different overlapping rules can be discerned.

1It would arguably be more correct to solve a linear assignment problem [6]. However, since the compu-
tation needs to be repeated at every time step, this is computationally too expensive.
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Since the antecedence of a fuzzy rule can be seen as a fuzzy point, we adopt the visualization
technique of Berthold and Hall for our approach of visualizing evolving fuzzy systems. As
our aim is to visualize the evolutionary process, it is important to highlight changes between
two systems R(t−1) and R(t), or locally between two rules R

(t−1)
i and R

(t)
i . Small differences

between two rules R
(t−1)
i and R

(t)
i are difficult to see when being displayed next to each other.

Therefore, we interpret the visualizations of all rules in Hi as a frame series in a stop motion
animation. Changes from t − 1 to t appear as a movement, which can be easily noticed by
humans. This beneficial property of animation is frequently used when visualizing processes-
related data [20]. The FISVis tool enables the user to spin forward and backward in time,
so that interesting evolution time points can be analyzed by the user.

7.1 Antecedence visualization

Fuzzy points only contain information about their position and spread in the corresponding
dimensions. Thus, there are no formal reasons for drawing any kind of connection between
adjacent axes. Instead, the only motivation for specific connections like a tube with piecewise
linear edges is to improve readability.

In addition to a crisp linear tube (Figure 4 (a)), we propose a Bézier tube, in which edge are
defined by Bézier curves (Figure 4(b)). This representation, which is inspired by the work
of Zhou et al. [21], avoids large overlapping parts between the axes of two or more rules
(Figure 5(b)). Thus, a better distinction of different rules is achieved, and the impression of
overlapping is reduced.

An even more extreme solution is to represent fuzzy rules as completely disconnected bars
(Figure 5(c)). This view is recommended when exploring single dimensions of the rules,
or when visualizing rules and data points at the same time (Figure 6). In order to keep
overlapping rule parts visible, tubes and bars are displayed in a semi-transparent manner.
Bars can also be displayed as so-called splitbars, which will be explained in detail in section
8.

7.2 Conclusion visualization

Parallel coordinates are also appropriate for visualizing the conclusion of a TSK fuzzy rule.
The coefficients of the corresponding linear function l can be interpreted as a point w =
(w0, w1, . . . , wp) in a (p+1)-dimensional space and displayed in parallel coordinates. However,
since this Cartesian representation makes it difficult to infer the hyperplane U defined by
w, it is more appropriate to represent the normal vector v = (w1, w2, . . . , wp,−1) of the
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Figure 4: The left picture shows a fuzzy rules antecedence represented as a linear tube in
parallel coordinates. On the axes, the tube has the width 2σi and is centered over ci. Tube
pieces between two neighbored axes own linear borders. In the Bézier tube representation
(right picture), the edges of a tube piece are inside arched Bézier curves. The control points
of the upper curve are P0 = ci, P1 = ci +σi, P2 = cj +σj and P4 = cj, and the control points
of the lower curve are P0 = ci, P1 = ci − σi, P2 = cj − σj and P4 = cj.

(a) (b) (c)

Figure 5: Comparision of tube, Bézier tube and bar representation of fuzzy rule antecedence.

Figure 6: Illustration of three fuzzy rule antecedences displayed as splitbars. In addition
to the rules, the current data is displayed.
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hyperplane U in spherical coordinates (r, φ1, φ2, . . . , φp):

r =
√
w2

1 + w2
2 + . . .+ w2

p + 1 ,

tanφ1 =
w1

w2

,

tanφ2 =

√
w2

1 + w2
2

w3

,

...

tanφp =

√
w2

1 + w2
2 + . . .+ w2

p

−1
.

This representation has several advantages. The normal vector uniquely defines the orienta-
tion of the hyperplane. Moreover, from spherical coordinates, the observer is directly able to
see how v is rotated against the single axis, and hence can easily imagine the orientation of
the hyperplane. The angles are bounded by intervals: φ1 ∈ [−180◦, 180◦] and φi ∈ [0◦, 180◦]
for i = 2, 3, . . . , p. A representation in terms of spherical coordinates also facilitates the
comparison of two or more conclusions, since the differences between the angles are in pro-
portion to rotations of the hyperplanes (in contrast to the Euclidean distance in Cartesian
space). For the radius r of the spherical coordinates,

r =
√
w2

1 + w2
2 + . . .+ w2

p + 1 =
√
D∇ll + 1 , (16)

with ∇l the gradient of the conclusion l and D∇ll the directional derivative in ∇l. Thus, the
radius offers information about the greatest increase, which is also provided by φp. In fact,
π − φp is the angle between the hyperplane U and the p-dimensional subspace in which the
data is embedded, and

tanφp = −
√
D∇ll . (17)

Therefore, instead of displaying r, we consider the y-intercept w0. The latter provides
information of the hyperplane’s location, whereas the angles are telling something about its
orientation. Eventually, we obtain (w0, φ1, φ2, . . . , φp) as a representation of the conclusion.
Since the y-intercept w0 has a meaning that differs from the angles (φ1, φ2, . . . , φp), we display
w0 on the first axis of the parallel coordinates, separated from the angles, which are displayed
as a polygonal line on the other axes (Figure 7).

As a disadvantage of the conclusion representation (w0, φ1, φ2, . . . , φp), note that it com-
pletely ignores the position and size of the rule, which is determined by the antecedence
(Figure 8). The influence of the conclusion only extends over an area around the center
of the antecedence. It is hence interesting to look at the location of the conclusion in the
antecedence-centered reference system. A simple quantity containing this information is
li(c), which is the intercept of the y-axis displaced from the origin into c. FISVis provides
both, the y-intercept w0 and the centered y-intercept li(c), as both quantities might be of
interest.
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Figure 7: Three conclusions in ‘spherical’ parallel coordinates.

3

0 1 2 3 4 5 6−1−2

x

y

a

b
c

y(c2)

R1 R2

Figure 8: Illustration of two rules with three possible conclusions a, b and c. The y-intercept
as well as the angle similarity between a, b and c are independent of the position for R1 or
R2, but a and c are more similar from the perspective of R1 than from R2. Otherwise, the
conclusions b and c have the same similarity for R2 as a and c for R1, but the y-intercept
difference of a and c is 0, whereas the y-intercept difference of b and c is 1. Using the rule
centered y-intercept eliminates this effect.
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Figure 9: The left picture shows vertical parallel coordinates for two attributes x1 and x2
against time. The right picture illustrates a vertical parallel coordinate time line of five
two-dimensional rules. All rules exhibit overlap in the second feature x2. This causes an
overlap of all painted bars representing the rules in the second dimension. For enabling an
identification of single bars, the overlapping parts of the bars are displayed in a split bar
representation.

8 Vertical parallel coordinates time line

The visualization of fuzzy rules through parallel coordinates provides a local view, both
spatially and temporally. However, for visualizing an evolving process, for which time nat-
urally plays an important role, a temporally global view is compulsory. In this section, we
therefore introduce the vertical parallel coordinate time line as a technique supporting such
a view. Vertical parallel coordinates (VPC) are normal parallel coordinates with stacked
axes. Instead of using the stop motion technique described in Section 7, we produce one
coordinate system for every time point and arrange all VPCs along a horizontal time line
(Figure 9, left).

To tackle the problem of overlapping bars, we developed a technique to divide the overlapping
parts into n horizontal bars with width b/n (Figure 9, right): b is the size of a non-split bar
and n is the number of bars overlapping in the corresponding part. The splitting algorithm
consists of two parts. First, a list of separators is built, which indicate the start and end
of a split bar. Then, the split bars are painted using the separator list (Figure 10). The
pseudocode for the split generation and plotting is given in Algorithms 1 and 2.

8.1 Visualizing merging processes with VPC

Evolving a rule system does not only involve the modification of existing rules and the
creation of new rules from scratch, but also the merging of rules. Apart from being useful
for providing a temporal global overview of the evolution of single rules RS , a VPC time line
can also be used as a tool for analyzing the history of merging processes and the merging
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Figure 10: Illustration of the SplitList algorithm (left) and PaintSplit algorithm (right). The
SplitList algorithm builds a separator list for three partially overlapping bars. The PaintSplit
algorithm takes the separator list and draws the split bar.

Algorithm 1 SplitList builds a separator list for partially overlapping bars.

1: procedure SplitList(RS)
2: empty list splitList;
3: for R ∈ RS do
4: top ← {R.label, null} . A (see Fig. 10)
5: value ← {R.center + R.spread, R.center - R.spread} . B
6: bottom ← {null, R.label} . C
7: for k ← 0 to 1 do
8: separator ← {top[k], value[k], bottom[k]}
9: j ← 0

10: for i← 0 to size(splitList) do
11: if splitList(i)[1] > separator[1] then
12: j ← i
13: break
14: end if
15: end for
16: end for
17: add(splitList,separator,j)
18: end for
19: return splitList
20: end procedure
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Algorithm 2 PaintSplit takes the separator list and draws the split bar.

1: procedure PaintSplit(splitList)
2: labelList
3: for i← 0 to size(splitList)−1 do
4: add(labelList, splitList(i)[0]) . A
5: paintSplitBox (splitList(i)[1], splitList(i+1)[1], labelList) . B
6: remove(labelList, splitList(i+1)[2]) . C
7: end for
8: end procedure

(a) (b)

Figure 11: Both pictures show a merging process. (a) Two rules converge and merge. The
resulting rule is a weighted average of the two parent rules. (b) The orange and purple rule
converge, but the resulting red rule is more or less identical to the purple rule. Thus, the
purple rule is much more relevant than the orange one which has hardly any influence on
the merging process, resulting in the rule shown in red.

itself.

For example, the FLEXFIS algorithm [14] does not only mix two rules by averaging the
centers and widths of the corresponding fuzzy sets, but also captures the relevance of a rule,
which is measured in terms of the number of instances covered by that rule [15]. An example
of two merging processes is shown in Figure 11. In the first case (Figure 11(a)), both rules
seem to have nearly the same relevance, whereas in the second case (Figure 11(b)), the purple
rule seems to have a much higher relevance than the orange one, because the resulting red
rule is very similar to the purple one.

In FLEXFIS, a merging of two rules is initiated when their antecedences overlap to a certain
degree [15]. Although the conclusion is not considered for the initiation of a merging process,
it is taken into consideration for selecting the merging strategy. Apart from a “real” merging
strategy, where in addition to the rules antecedences also the conclusions are mixed, FLEX-
FIS provides another strategy for the case of a certain dissimilarity in the rule conclusion
[15]. Then, the conclusion of the more relevant rule is taken as the conclusion of the new
rule.

Practically, it is not always possible to distinguish between the two types of merging pro-
cesses, i.e., the real merging and the degenerate case in which the conclusion of the resulting
rule is completely determined by a single dominating rule. In this regard, a combination
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Figure 12: The upper left panel shows all five elements of a rule chain. The elements pointed
at by the numbered arrows are: (1) rule pearl, (2) antecedence similarity link, (3) angle line,
(4) angle similarity block, (5) conclusion shift block. The top right panel describes the
meaning of different heights and color intensities of ellipsoid links. The bottom right panel
describes the meaning of different color intensities of rectangular links. Generally, both types
of links can be used for visualizing any given similarity or distance measure. The lower left
panel shows the rotated line segment for visualizing the angle between the conclusions of
two adjacent rules.

of the VPC and the PC visualization techniques is useful. If a merging is observed in the
VPC visualization, the analysis of the rule conclusions in the PC visualization can provide
important additional information.

9 Rule chains

In this section, we describe rule chains which have already been introduced in [9] as an
adequate way for visualizing specific aspects of the evolution of a fuzzy rule-based system.
Essentially, a rule chain seeks to capture the changes of a single rule between two consec-
utive time points. A rule history H is visualized as a horizontal pearl chain, where every
pearl represents a rule at a certain time point. The first time point is located at the left
and the most recent time point at the right end. Pearls along a chain are connected with
different types of links. Focusing on a measure of interest, links between adjacent pearls can
represent the corresponding similarity or distance between consecutive rules. As illustrated
in Figure 12, there are three types of links that correspond to the measures introduced in
Section 4, respectively.

In addition to the horizontal time point position, the vertical position of a pearl determines
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Figure 13: This figure shows a cut-out from a rule chain system. All rules, symbolized by
pearls, belonging to the same rule system are aligned vertically. Rules belonging to the same
rule history are organized in horizontal chains. The pearl links are associated with similarity
measures. Here, only the antecedence similarity links are shown.

the history of the associated rule. The antecedence similarity link corresponds to the an-
tecedence similarity measure or the Euclidean distance of centers. The degree of similarity is
connected to the color intensity and shape of the ellipse. The lower the similarity, the wider
and darker is the ellipse. The angle similarity block visualizes the angle similarity, and the
conclusion shift block displays differences of y-intercepts of the related rule conclusions. The
color saturation of blocks is the stronger, the lower the similarity of linked rules is. Thus, the
three types of links highlight different aspects of change between two rules. The angle line
is mathematically positively rotated by α against the horizon to display the angle between
two temporally adjacent conclusions.

For visualizing the evolving system as a whole, the horizontal rule chains are stacked (Figure
13). A single rule chain gives a quick overview of a rule’s lifetime and development, and
stacking them provides a holistic view on the development of the whole rule chain system.

9.1 Concept drift detection with rule chains

An important requirement for evolving (fuzzy) systems is a quick discovery and adequate
reaction to so-called concept drift [8]. Roughly speaking, a concept drift is a (gradual) change
of the data-generating process in the course of time, that is, a change of the probability
distribution that generates input/output tuples emitted by the data stream.

Rule chains provide an adequate (visual) means for discovering concept drift and monitoring
the fuzzy system’s reaction to this drift. In fact, as a reaction to a change of the data
generating process, the fuzzy system is expected to adapt a possibly large number of rules
(both, antecedence and/or conclusion parts). Likewise, new rules will typically be created
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Figure 14: This figure highlights time-specific vertical patterns across various rules in the
rule chains which indicate significant changes in the model and, therefore, suggest a possible
concept drift in the data. Redundant information of contiguous blocks with high temporal
similarity is suppressed by color thresholding. The bold arrows are marking time points at
which an abrupt change of the conclusion parts of many rules can be observed.

and existing ones will be deleted.

Changes of that kind naturally produce observable patterns in the visualized rule chain
system. More precisely, a simultaneous change of the antecedence or conclusion parts of
many rules will produce noticeable vertical lines in the rule chain system (Figure 14). Such
patterns can be amplified by defining thresholds for the minimal change to be drawn. The
simultaneous appearance or disappearance of many rules produces long vertical edges in
the displayed rule chains. This enables the user to recognize potential concept drifts in the
data. More correctly, since we are visualizing the model and not the data evolution, the
observation of such patterns should only be taken as an indication (and not as a proof) of a
possible concept drift.

10 Experiments

This section is meant to illustrate the three visualization techniques introduced above, using
different types of synthetic data. In contrast to real data, synthetic data allows for conducting
controlled experiments and, since the “ground truth” is known, for judging the plausibility
of the results. Moreover, while our visualization tool is in principle independent of the
learning algorithm, we again used FLEXFIS [14] as a concrete instantiation; we set the
built-in forgetting factor to 0.9 for the first and third experiment and to 0.99 for the second
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experiment. This factor controls the forgetting of the inverse Hessian matrix during the
recursive weighted least squares optimization of the rule consequences (the smaller its value,
the more quickly the influence of previous examples decays).

10.1 The data generation process

To generate a data stream, we concatenate several blocks of synthetic data sets. Every data
set is associated with a time point that specifies its position q in the concatenation. A single
data set is generated by specifying the position q and a set of clusters {C1, C2, . . . , Cm}. The
latter has the same size for all data sets (blocks) belonging to the same data stream. A
cluster Ci is specified by four parameters: (i) the number of instances Ni to be created for
this cluster; (ii) the center ci = (ci,1, ci,2, . . . , ci,n) and (iii) the width σi = (σi,1, σi,2, . . . , σi,n)
of a normal distribution, based on which the instances x = (x1, x2, . . . , xn) belonging to
the cluster are generated; (iv) a coefficient vector (wi,0, wi,1, . . . , wi,n) used to calculate the
output value of the instances through

y = fi(x) = wi,0 + wi,1(x1 − ci,1) + . . .+ wi,n(x2 − ci,n) , (18)

where i is the index of the ith cluster Ci. Thus, a data set can be characterized by
[q, (ci,σi, Ni,wi)

m
i=1], where m is the number of clusters.

For the whole stream, only a few data sets lying on so-called anchor positions are specified
explicitly. The data sets lying between two anchor positions are interpolated by a linear
function (i.e., the parameters c,σ, n,w characterizing a data set are convex combinations
of the corresponding parameters of the left and right anchor data sets). In general the data
sets lying on anchor positions differ in their characterization, which in fact means they are
produced by different concepts. Hence, there are temporal concept drifts within the data
stream from one anchor position to the next anchor position. The position points q have
to be distinguished from the “time” parameter t underlying the model generation process.
The amount of data points used to learn a model depends on the settings of the learning
algorithm (in our case FLEXFIS). Normally, q and t have different frequencies, and the start
is shifted because of the initialization of the model. Furthermore, the position points q are
in general not equidistant (measured in data points), in contrast to the model generation
process t (Figure 15).

10.2 Visualizing conclusion evolution

In this first experiment, we focus on the visualization of rule conclusions with parallel coor-
dinates and compare the “Cartesian” representation with the “spherical” one. The synthetic
data stream used in this experiment is shown in Table 1. The stream consists of two clusters
having the same size and width but different locations. Only the coefficients defining the
output are changing over time. On this data stream, FLEXFIS produces two rules and
adapts their conclusions over time.
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Figure 15: Illustration of different system internal time scales. All three axes are equally
scaled in order to refer to the same number of data points (dashed vertical lines). The tick
distance of the t-axis is 1200 data points and the tick distance of the q-axis varies between
500 and 1000 data points. This constellation is the result of a data stream defined by three
anchor points: [0, (c1,σ1, 500,w1), (c2,σ2, 500,w2)], [2, (c1,σ1, 500,w1), (c2,σ2, 500,w2)],
[7, (c1,σ1, 350,w1), (c2,σ2, 150,w2)] and an algorithm that uses 1000 data points for initial-
ization and 1200 data points for an incremental update.

Table 1: Specification of the data stream of the first experiment. For both clusters at
any time: N = 500, σ1 = 6, σi = 1 with i ∈ {2, 3, 4}. The center of C1 at any time is
c = (20, 20, 20, 50) and the center of C2 is c = (80, 80, 80, 50).

C1 C2

q coefficients coefficients
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0
30 0.0 0.0 10.0 0.0 0.0 0.0 0.0 -10.0 0.0 0.0
45 0.0 10.0 10.0 10.0 0.0 0.0 -10.0 -10.0 -10.0 0.0
60 0.0 10.0 10.0 10.0 10.0 0.0 -10.0 -10.0 -10.0 -10.0
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Figure 16: Display of two conclusions in spherical parallel coordinates at every 6th generation
from 1 to 91.

Figure 16 shows the rule conclusions of every 6th generation from 1 to 91 in “spherical”
parallel coordinates ordered from left to right and top to bottom. At the beginning (q = 0),
the coefficients of both clusters are equal. The first picture in Figure 16 shows the two
conclusions of generation 1. At this time, according to definition point 1, w1,2 is between 0
and 1 and w2,2 between −1 and 0, with wi,j the jth coefficient of the ith cluster, resulting
in angles ψ1,1 = 90◦ and ψ2,1 = −90◦. In order to refer to the angle α between the two
hyperplanes, the last angle ψ4 has to be considered. If ψ1,4 ≈ ψ2,4 ≈ 180◦, then α ≈ 0 is
independent of the other ψ. From generation 1 to 21 (pictures 1 to 4), the angles ψ1,4 and
ψ2,4 change to 135◦ in correspondence to the data concept, where the coefficients w1,2 and
w2,2 change to 1 and −1 respectively. At this point, the hyperplanes over both clusters are
orthogonal and have an angle of 45◦ to the data subspace. From generation 22 to 44 (pictures
5 to 8), the angle ψ4 of both rules changes to nearly 90◦. The coefficients w1,2 and w2,2 change
to 10 and −10, respectively, which means that the angle between the hyperplanes and data
subspace become nearly 90◦, and the angle between both hyperplanes tend to zero. As of
generation 45, the coefficients w1, w3, w4 also change and cause an adaptation of the rule
conclusions. The angles ψ2 and ψ3 of both conclusions change, whereas ψ4 stays at about
90◦. This corresponds to the observation of a small angle (less than 45◦) between the two
conclusions for generations after t = 44. This can be seen by using the visualization concept
of angle lines introduced in figure 12 as a matrix display (Figure 18).

The “Cartesian” parallel coordinate representation of the conclusion is shown in Figure 17,
where the coefficients of the rule conclusions are plotted. While the two conclusions appear
to be quite similar in the first four pictures, the similarity of the hyperplanes is high only
in the first picture (α ≈ 0◦) but close to 0 in the fourth picture (α ≈ 90◦). In this case,
the impression of similarity is only caused by normalization. In fact, the conclusions in the
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Figure 17: Display of two conclusions in Cartesian parallel coordinates at every 6th genera-
tion from 1 to 91.

Figure 18: The red lines illustrate angles between the conclusions of rules 0 and 1. Each
2 × 2 matrix displays one generation. From left to right every 6th generation from 1 to 91
is shown.
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Table 2: Specification of the data stream of the second experiment. For both clusters at any
time: N = 500, σ1 = 6, σ2 = 4.2, w0 = 0, w1 = 1, w2 = 0.

C1 C2

q c1 c2 c1 c2
0 65 75 35 25
10 25 75 35 75
20 65 65 35 35
30 25 65 75 35
40 25 65 75 35
50 50 50 50 50

fourth picture would look dissimilar if the axis had a range from zero to one. Anyway, the
axis should be normalized in all pictures (at all time points) in the same way, so taking the
maximum and minimum values for normalization is clearly advisable. In the last picture,
the two conclusions have the biggest Euclidean distance, however, the similarity of the
hyperplanes is close to one.

For the purpose of comparing two hyperplanes, the spherical representation is preferable. The
angle between hyperplane and data subspace can be efficiently characterized by ψp, and in
conjunction with the other angles ψ, the angle α between two hyperplanes can be estimated.
Using the Cartesian representation, an appraisal of the relative position of two hyperplanes
becomes more difficult and less intuitive. The advantage of the Cartesian representation is
the direct view on the coefficients.

10.3 Visualizing merging processes

The second data stream (Table 2) demonstrates the benefits of VPC time lines with regard to
merging processes in the evolution of a fuzzy rule system. We produced a two-dimensional
data stream consisting of two clusters of the same size and shape and the same output
coefficients. In the beginning, both clusters are well separated, and FLEXFIS creates one
rule for each of them. To enforce a rule merging process, we translate the two clusters in the
two-dimensional space using a heuristic strategy, where the clusters change their direction
four times (change of the drift concept).

In the VPC display in Figure 19 the evolution of the rules and four merging processes marked
with letters A, B, C, D can be clearly observed. In the beginning, we have two rules (yellow,
green) over C1 and two rules (red, light blue) over C2. Between mark 0 and 1, C1 and
C2 move up and down, respectively, along the second dimension. The rules expand in this
dimension and converge. At t = 6 (mark B), the green and yellow rule are merged into the
purple rule, which is merged at t = 13 (mark C) with the newly emerged dotty colored rule
to a blue green rule. This blue green rule on the other hand merges with a newly emerged
red rule into the orange rule (t = 39, mark D). At t = 4 (mark A), the red and light blue
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Figure 19: Visualization of the evolution of 11 rules with a vertical parallel coordinates time
line. The letters A, B, C, D mark the time points where a merging process can be observed.
The numbers mark the time points where the concept drift change.

rules are merged into the blue rule.

The monitoring display in Figure 20 shows that the four merging processes cause distinct
and visible reactions in the BM-angle similarity BMSα and BM-antecedence similarity BMS.
At all four marks (A, B, C, D) are peaks in the course of BMSα and BMS, which indicates
a change from R(t) to R(t+1) caused through the merging of two rules. The changes of the
model structure are confirmed by the plots of the number of rules, number of new rules and
number of disappeared rules. At marks A, C and D, the merging of rules causes a reduction
of the number of rules. Moreover, a peak in the number of new rules and a peak with double
height in the number of disappeared rules can be observed. At mark B, the number of rules
remains constant and the peaks in the number of new and disappeared rules have the same
size. In the VPC visualization it can be seen that, next to the merging of the yellow and
green rule, and new (brown) rule emerges at mark B. This explains the graph courses at
mark B (Figure 20).

10.4 Visualizing reactions to concept drift

The data stream used in this experiment contains three concept drifts with two stable
episodes in-between. These episodes allow the learner to re-stabilize the model. The charac-
teristics of the data stream are summarized in Table 3. At the beginning, all three clusters
are well separated and located next to each other along the first dimension. Moreover, the
three regression functions share the same coefficients. Somewhat surprisingly, this initial
configuration lets FLEXFIS generate more than only the expected three rules and leads to
rich patterns during model formation. It seems that this initial configuration is a difficult
learning problem for FLEXFIS, which explains the changes before mark 1.
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Figure 20: Monitoring of the second experiment. The upper plot shows the graphs of the rule
coverage (light gray) and the data coverage (black). The middle plot contains the graphs
of the BM-antecedence similarity BMS (light gray) and the BM-angle similarity BMSα

(black). The lower plot shows the number of rules (light gray), number of new rules (black),
and number of disappeared rules (gray).

Table 3: Specification of the data stream of the third experiment. Cluster size of each cluster
at any time is n = 1000. The cluster width is σ1 = 2 and σ2 = 2 for all clusters.

C1 C2 C3 C1,C3 C2

q c1 c2 c1 c2 c1 c2 w0 w1 w2 w0 w1 w2

0 10 50 50 50 90 50 0 10 0 0 10 0
3 10 50 50 50 90 50 0 10 0 0 10 0
6 10 50 50 50 90 50 -10 0 0 10 0 0
12 10 50 50 50 90 50 -10 0 0 10 0 0
16 10 -100 50 150 90 -100 -10 0 0 10 0 0
26 10 -100 50 150 90 -100 -10 0 0 10 0 0
30 10 -100 50 150 90 -100 -10 0 10 10 0 10
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The first drift is caused by a change of the regression values (between anchor positions 3
and 6 in Table 3). In Figure 21, this drift phase lies between marks 1 and 2. At mark A, a
reaction of FLEXFIS is clearly seen. In the time before mark A, the rule conclusions strongly
change from one system Rt to the following Rt+1. After mark A, only small changes in the
conclusions can be observed. This behavior is also mirrored in the BM-angle similarity plot
of the monitoring system in figure 22. The graph of BMSα jumps up at mark 2 and keeps
this level till the next concept drift between marks B and C.

The second drift (between anchor positions 12 and 16 in Table 3) is caused by a movement
of the clusters. As seen in Table 3 cluster C1 and C3 are sequentially moving down in the
direction of the second dimension, whereas cluster C2 is moving up. The period of this drift
is delimited by marks 3 and 4 (Figure 21). The visible reaction of FLEXFIS is between
marks B and C. Here, a change in the antecedent parts of the rules can be observed, which
confirms the expectation from the experimental design. Also the course of the rule and data
coverage change substantially during the second drift phase between mark B and C (Figure
22). To explain this change, observe that the clusters are moving away under the rules,
which only follow with a delay and to a certain degree. This causes a reallocation of the
instances to the rules (change of rule coverage) and weaker coverage of the instances through
the rules (change of data coverage).

The last concept drift (between anchor positions 26 and 30 in Table 3) is again caused by
a drift in the regression values. It starts at mark 5 and ends at mark 6. A change in the
rule system caused by this drift can be seen from mark D onwards. After the third drift, the
rule system does not reach a stable stage until the end of the experiment. Again, the rule
chains nicely reflect the changes in the course of BMSα after mark D (Figure 22). All three
concept drifts cause an adaptation of the rule system by the learning algorithm, resulting in
clearly visible patterns in the rule chain visualization.

11 Conclusion

In this work, we introduced the visualization tool FISVis, which, apart from a basic monitor-
ing system, provides several interactive visualization techniques for exploring evolving TSK
fuzzy models: dynamic parallel coordinates, vertical parallel coordinate time lines, and rule
chains. The potential and benefits of these techniques have been shown in three experiments,
each focusing on specific aspects of an evolving process.

In the first experiment, we showed that a representation in “spherical” parallel coordinates
of a rule conclusion is well interpretable. Furthermore, an estimation of the relative posi-
tion of two rule conclusions is improved compared with a “Cartesian” representation of the
conclusion coefficients. The second experiment was focused on visualizing merging processes
through vertical parallel coordinate time lines. It was shown that VPC time lines provide
important insight in the evolution of rules and the interaction between rules, and helps to
understand rule merging processes. In the last experiment, we tried to highlight some ben-
efits of rule chains. We discovered that vertical patterns clearly indicate possible concept
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Figure 21: Visualization of an evolving fuzzy rule-based system using stacked rule chains
introduced in figure 12. There are three concept drifts in the underlying data stream, the
first between 1 and 2, the second between 3 and 4, and the third between 5 and 6. The
letters mark the time points where a change in the rule system, as a reaction to the concept
drift, becomes visible.
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Figure 22: Monitoring of the third experiment. The upper plot shows the graphs of the rule
coverage (light gray) and the data coverage (black). The middle plot contains the graphs
of the BM-antecedence similarity BMS (light gray) and the BM-angle similarity BMSα

(black). The lower plot shows the number of rules (light gray), number of new rules (black)
and number of disappeared rules (gray).
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drifts and corresponding reactions of the evolving model. Moreover, rule chains provide a
quick overview of the size of a rule system (number of rules) at a certain time point as well
as the size of the whole evolving system; thus, the temporal local and global complexity of
the system can be grasped quickly.

The different techniques are complementary in the sense of visualizing different aspects of
model evolution, and the combination of these techniques clearly makes FISVis a powerful
tool. This tool should be of interest for both end-users who receive early feedback about
parameter settings and developers who like to study convergence or adaptation properties
of their models. It would be interesting to assess the practical values of the proposed visu-
alization concepts by a conducting real-world user studies.

The FISVis software can be downloaded at www.uni-marburg.de/fb12/kebi/research.
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