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Abstract

We introduce the problem of PAC rank elicitation,
which consists of sorting a given set of options based on
adaptive sampling of stochastic pairwise preferences.
More specifically, we assume the existence of a rank-
ing procedure, such as Copeland’s method, that deter-
mines an underlying target order of the options. The
goal is to predict a ranking that is sufficiently close to
this target order with high probability, where closeness
is measured in terms of a suitable distance measure. We
instantiate this setting with combinations of two dif-
ferent distance measures and ranking procedures. For
these instantiations, we devise efficient strategies for
sampling pairwise preferences and analyze the corre-
sponding sample complexity. We also present first ex-
periments to illustrate the practical performance of our
methods.

Introduction
Exploiting revealed (pairwise) preferences to learn a rank-
ing (total order) over a set of options is a challenging prob-
lem with many practical applications. For example, think of
crowd-sourcing services like the Amazon Mechanical Turk,
where simple questions such as pairwise comparisons be-
tween decision alternatives are asked to a group of annota-
tors. The task is to approximate an underlying target ranking
on the basis of these pairwise comparisons, which are possi-
bly noisy and partially inconsistent (Chen et al. 2013). An-
other application worth mentioning is the ranking of XBox
gamers based on their pairwise online duels; the ranking sys-
tem of XBox is called TrueSkillTM(Guo et al. 2012).

In this paper, we focus on a problem that we call PAC rank
elicitation. In the setting of this problem, we consider a fi-
nite set of options O = {o1, . . . , oK}, on which a weighted
relation Y = (yi,j)1≤i,j≤K is defined. As will be explained
in more detail later on, this relation specifies the probability
of observing preferences oj ≺ oi, suggesting that, in a single
comparison of two options oi and oj , the former was liked
more than the latter. Furthermore, we assume the existence
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of a ranking procedureR that determines an underlying tar-
get (strict) order ≺∗ of the options O based on Y.

In rank elicitation, we assume that R is given whereas Y
is not known. Instead, information about Y can only be ob-
tained through (adaptive) sampling of pairwise preferences.
The goal, then, is to quickly gather enough information so as
to enable the prediction of a ranking that is sufficiently close
to the target order ≺∗ with high probability. We shall de-
scribe this rank elicitation setting more formally and, more-
over, instantiate it with combinations of two different dis-
tance measures and two ranking procedures for determining
the target order. For these instantiations, we devise efficient
sampling strategies and analyze them in terms of expected
sample complexity. Finally, we also present an experimental
study, prior to concluding the paper.

Related work
Ranking based on sampling pairwise relations has a long his-
tory in the literature (Braverman and Mossel 2008; 2009;
Eriksson 2013; Feige et al. 1994). Existing algorithms for
noisy sorting typically solve this problem with sample
complexity O(K logK). However, these algorithms make
strong assumptions: the target relation is a total order, and
the comparisons are representative of that order (if oi pre-
cedes oj , then P(oi ≺ oj) > 1/2).

Pure exploration algorithms for the stochastic multi-
armed bandit problem sample the arms a certain number
of times (not necessarily known in advance), and then out-
put a recommendation, such as the best arm or the m best
arms (Bubeck, Munos, and Stoltz 2009; Even-Dar, Mannor,
and Mansour 2002; Bubeck, Wang, and Viswanathan 2013;
Gabillon et al. 2011; Cappé et al. 2012). While our algo-
rithm can be viewed as a pure exploration strategy, too, we
do not assume that numerical feedback can be generated for
individual options; instead, our feedback is qualitative and
refers to pairs of options.

Seen from this point of view, our approach is closer to
the dueling bandits problem introduced by (Yue et al. 2012),
where feedback is provided in the form of noisy compar-
isons between option. However, apart from making strong
structural assumptions (namely strong stochastic transitivity
and stochastic triangle inequality), their problem of cumu-
lative regret minimization is of an exploration-exploitation
nature.



The kind of feedback assumed in our rank elicitation setup
is in fact the one considered by (Busa-Fekete et al. 2013) and
(Urvoy et al. 2013), who both solve the top-k subset selec-
tion (or EXPLORE-k) problem: Find the k best options with
respect to a target ranking based on sampling pairwise pref-
erences. Interestingly, rank elicitation can be seen as solv-
ing the top-k problem for all k ∈ [K] simultaneously, and
indeed, our approach builds on this connection. Our start-
ing point is the recent paper (Kalyanakrishnan et al. 2012),
which introduces a PAC-bandit algorithm for the top-k prob-
lem in the stochastic multi-armed bandit environment (i.e.,
based on numerical feedback, not pairwise preferences).

In the formulation of (Kalyanakrishnan et al. 2012), an al-
gorithm is an (ε,m, δ)-PAC bandit algorithm if it selects the
m best options (those with the highest expected value) under
the PAC-bandit conditions (Even-Dar, Mannor, and Man-
sour 2002). The concrete algorithm they propose is based
on the widely-known UCB index-based multi-armed bandit
method (Auer, Cesa-Bianchi, and Fischer 2002). Our the-
oretical analysis partly relies on their results, using an ex-
pected sample complexity and a high probability bound for
the worst case sample complexity. In fact, although our setup
is based on preferences, we aim at a similar kind of sample
complexity result.

Problem setting and terminology
PAC rank elicitation setup
Our point of departure are pairwise preferences over the set
of options O = {o1, . . . , oK}. More specifically, we allow
three possible outcomes of a single pairwise comparison be-
tween oi and oj , namely (strict) preference for oi, (strict)
preference for oj , and incomparability/indifference. These
outcomes are denoted by oi � oj , oi ≺ oj , and oi⊥ oj , re-
spectively. In our setting, we consider the outcome of a com-
parison between oi and oj as a random variable Yi,j which
assumes the value 1 if oj ≺ oi, 0 if oi ≺ oj , and 1/2 other-
wise. Thus, the case oi⊥ oj is handled by giving half a point
to both options. Essentially, this means that these outcomes
are treated in a neutral way by the ranking procedures.

The expected values yi,j = E[Yi,j ] can be summarized in
the relation Y = [yi,j ] ∈ [0, 1]K×K . A natural idea to de-
fine a pairwise preference relation ≺ on O is to “binarize”
Y: oi ≺ oj if and only if yi,j < yj,i. This relation, however,
may contain preferential cycles and, therefore, may not de-
fine a proper order relation. In decision making, this prob-
lem is commonly avoided by using a ranking procedure R
(concrete choices ofR will be discussed in the next section)
that turns Y into a strict order relation≺R of the optionsO.
Formally, a ranking procedureR is a map [0, 1]K×K → SO,
where SO denotes the set of strict orders on O. We denote
the strict order produced by the ranking procedure R on the
basis of Y by ≺RY, or simply by ≺R if Y is clear from the
context.

The task in PAC rank elicitation is to approximate ≺R
without knowing the yi,j . Instead, relevant information can
only be obtained through sampling pairwise comparisons
from the underlying distribution. Thus, we assume that op-
tions can be compared in a pairwise manner, and that a sin-

gle sample essentially informs about a pairwise preference
between two options oi and oj . The goal is to devise a sam-
pling strategy that keeps the size of the sample (the sample
complexity) as small as possible while producing an estima-
tion ≺ that is “good” in a PAC sense: ≺ is supposed to be
sufficiently “close” to ≺R with high probability. Actually,
our algorithms even produce a total order as a prediction,
i.e., ≺ is a ranking that can be represented by a permutation
τ of order K, where τi denotes the rank of option oi in the
order (with smaller ranks indicating higher preference, i.e.,
oi ≺ oj if τi > τj).

To formalize the notion of “closeness”, we make use of
appropriate distance measures that compare a (predicted)
permutation τ with a (target) strict order≺. In particular, we
adopt the following two measures: The number of discor-
dant pairs (NDP), which is closely connected to Kendall’s
rank correlation (Kendall 1955), and can be expressed in
terms of the indicator function I {·} as follows:

dK(τ,≺) =

K∑
i=1

∑
j 6=i

I {τj > τi}I {oi ≺ oj}.

The maximum rank difference (MRD) is defined as the max-
imum difference between the rank of an object oi according
to τ and ≺, respectively. More specifically, since ≺ is a par-
tial but not necessarily total order, we compare τ to the set
L≺ of its linear extensions2:

dM(τ,≺) = min
τ ′∈L≺

max
1≤i≤K

|τi − τ ′i |.

Our setup allows for small approximation errors, formalized
by a tolerance parameter ρ ∈ N+.3 We call an algorithm
A a (ρ, δ)-PAC rank elicitation algorithm with respect to
a ranking procedure R and rank distance d, if it returns a
ranking τ for which d(τ,≺R) < ρ with probability at least
1− δ.

Ranking procedures
In the following, we introduce two instantiations of the rank-
ing procedure R, namely Copeland’s ranking (binary vot-
ing) and the sum of expectations (weighted voting). To de-
fine the former, let di = #{k ∈ [K] | 1/2 < yi,k} denote
the number of options that are “beaten” by oi. Copeland’s
ranking (CO) is then defined as follows (Moulin 1988):
oi ≺CO oj if and only if di < dj . The sum of expecta-
tions (SE) ranking is a “soft” version of CO: oi ≺SE oj if
and only if

yi =
1

K − 1

∑
k 6=i

yi,k <
1

K − 1

∑
k 6=j

yj,k = yj . (1)

Since R is mapping the continuous space [0, 1]K×K to
the discrete space SO, ranking is a “non-smooth” operation.

2τ ∈ L≺ iff ∀ i, j ∈ [K] : (oi ≺ oj)⇒ (τj < τi)
3Note that our distance measures assume values in N0 and are

not normalized. Although a normalization to [0, 1] could easily be
done, it would unnecessarily complicate the description of the al-
gorithms and their analysis.



In the case of the Copeland order≺CO, for example, a mini-
mal change of a value yi,j ≈ 1

2 may strongly influence≺CO.
Consequently, the number of samples needed to assure (with
high probability) a certain approximation quality may be-
come arbitrarily large. A similar problem arises for ≺SE as
a target order if some of the individual scores yi are very
close or equal to each other.

As a practical (yet meaningful) solution to this problem,
we propose to make the relations ≺CO and ≺SE a bit more
“partial” by imposing stronger requirements on the strict or-
der. To this end, let d∗i = # {k | 1/2 + ε < yi,k, i 6= k} de-
note the number of options that are beaten by oi with a mar-
gin ε > 0, and let s∗i = # {k : |1/2− yi,k| ≤ ε, i 6= k}.
Then, we define the ε-insensitive Copeland relation as fol-
lows: oi ≺COε oj if and only if d∗i + s∗i < d∗j . Likewise,
in the case of ≺SE, we neglect small differences of the yi
and define the ε-insensitive sum of expectations relation as
follows: oi ≺SEε oj if and only if yi + ε < yj .

These ε-insensitive extensions are interval (and hence
strict) orders, that is, they are obtained by characterizing
each option oi by the interval [d∗i , d

∗
i + s∗i ] and sorting in-

tervals according to [a, b] ≺ [a′, b′] iff b < a′. It is readily
shown that ≺COε ⊆≺COε′ ⊆≺CO for ε > ε′, with equality
≺CO0 ≡≺CO if yi,j 6= 1/2 for all i 6= j ∈ [K] (and sim-
ilarly for SE). Subsequently, ε will be taken as a parameter
that controls the strictness of the order relations, and thereby
the difficulty of the (ρ, δ)-rank elicitation task.

A general rank elicitation algorithm
In this section, we introduce a general rank elicitation frame-
work (RANKEL) that provides the basic statistics needed to
solve the PAC rank elicitation problem, notably estimates
of the pairwise probabilities yi,j and the number of sam-
ples drawn from Yi,j so far. It contains a subroutine that im-
plements sampling strategies for the different distance mea-
sures and ε-insensitive ranking models.

Our general framework is shown in Algorithm 1. The set
A contains all pairs of options that still need to be sampled; it
is initialized with allK2−K pairs of indices (line 3). In each
iteration, the algorithm samples those Yi,j with (i, j) ∈ A
(lines 7) and maintains the estimates Ȳ = [ȳi,j ]K×K , where
ȳi,j = 1

ni,j

∑ni,j
`=1 y

`
i,j is the mean of the ni,j samples drawn

from Yi,j so far. These numbers are maintained by the al-
gorithm, too, and are stored in the matrix N = [ni,j ]K×K .
The sampling strategy subroutine returns the indices of op-
tion pairs to be sampled. If A is empty, then RANKEL stops
and returns a ranking τ overO, which is calculated based on
Ȳ (line 15). The sampling strategy depends on the ranking
procedure and the distance measure used. We shall describe
its concrete implementations in subsequent sections.

We refer to our algorithm as RANKELRd , depending on
which ranking procedure R (ε-insensitive Copeland (COε)
or sum of expectations (SEε)) and which distance measure d
(dK or dM) are used. For example, RANKELCOε

dK
denotes the

instance of our algorithm that seeks to find a ranking close
to the ε-insensitive Copeland order in terms of dK.

Algorithm 1 RANKEL (Y1,1, . . . , YK,K , ρ, δ, ε)

1: for i, j = 1→ K do . Initialization
2: ȳi,j = 0, ni,j = 0

3: A = {(i, j)|i 6= j, 1 ≤ i, j ≤ K}
4: t = 0
5: repeat
6: for (i, j) ∈ A do
7: y ∼ Yi,j . Draw a random sample
8: ni,j = ni,j + 1
9: . Keep track the number of samples drawn for each Yi,j

10: Update ȳi,j with y
11: . Ȳ = [ȳi,j ]K×K ≈ Y = [yi,j ]K×K
12: t = t+ 1
13: A = SAMPLINGSTRATEGY(Ȳ,N, δ, ε, t, ρ)
14: until 0 < |A|
15: τ = GETESTIMATEDRANKING(Ȳ,N, δ, ε, t) .

Calculate a ranking based on Ȳ by usingR
16: return τ

Sampling strategies
The case of ε-insensitive Copeland
In the following, we denote the estimate of yi,j = E(Yi,j)
at time step t by ȳti,j , and the number of samples taken from
Yi,j up to that time step by nti,j (omitting the time index if
not needed). We start the description of our sampling strat-
egy by determining reasonable confidence intervals for the
ȳti,j values.4

Lemma 1. For any sampling strategy in line 13 of
Algorithm 1,

∑K
i=1

∑
j 6=i
∑∞
t=1 P(Ati,j) ≤ δ, where

Ati,j =
{
yi,j /∈

[
ȳti,j − c(nti,j , t, δ), ȳti,j + c(nti,j , t, δ)

]}
with c(n, t, δ) =

√
1

2n ln
(

5K2t4

4δ

)
.

From now on, we will concisely write cti,j for c(nti,j , t, δ)
and Cti,j for the confidence interval

[
ȳti,j − cti,j , ȳti,j + cti,j

]
.

Now, one can calculate a lower bound of d∗i based on Ȳt

and Nt. First, let us define dti = #Dt
i , where

Dt
i =

{
j | 1/2− ε < ȳti,j − cti,j , j 6= i

}
.

Put in words, dti denotes the number of options that are al-
ready known to be beaten by oi. Similarly, we define the
number of “undecided” pairwise preferences for an option
oi as uti = #U ti , where

U ti =
{
j | [1/2− ε, 1/2 + ε] ⊆ Cti,j , j 6= i

}
.

Based on dti and uti, we define a ranking τ t over O by sort-
ing the options oi in increasing order according to dti, and in
case of a tie (dti = dtj) according to the sum dti + uti. The
following corollary upper-bounds the NDP and MRP dis-
tances between τ t and the underlying order ≺COε based on
only empirical estimates.
Corollary 2. Using the notation introduced above, let

Iti,j = I
{

(dti < dtj + utj) ∧ (dtj < dti + uti)
}

4Due to space limitations, all proofs are omitted.



for all 1 ≤ i 6= j ≤ K. Then for any time step t, and for
any sampling strategy, dK(τ t,≺COε) ≤ 1

2

∑K
i=1

∑
j 6=i Iti,j

holds with probability at least 1 − δ, and dM(τ t,≺COε) ≤
max1≤i≤K

∑
j 6=i Iti,j holds again with probability at least

1− δ.

Corollary 2 implies that sampling can be stopped as soon
as

K∑
i=1

∑
j 6=i

Iti,j < ρ and max
1≤i≤K

∑
j 6=i

Iti,j < ρ (2)

in the case of NDP and MRD, respectively. Moreover, it
suggests a simple greedy strategy for sampling, namely to
sample those pairwise preferences that promise a maximal
decrease of the respective upper bound in (2). For NDP,
this comes down to sampling all undecided pairs of objects
(∪iU ti ), although this strategy can still be improved: If the
rank of an object oi can be determined based on the sam-
ples seen so far (Iti,j = 0 for all j ∈ [K]), then there is no
need to sample any more pairwise preference involving oi.
Formally, the set of object pairs to be sampled can thus be
written

ÃtK =
{

(i, j) | (j ∈ U ti ) ∧ ∃ j′ : (Iti,j′ = 1)
}
.

Further considering the stopping rule in (2), the pairwise
preferences to be sampled by RANKELCOε

dK
in iteration t is

given by

AtK =

{
ÃtK if ρ ≤

∑K
i=1

∑
j 6=i Iti,j

∅ otherwise
. (3)

In the case of the MRD distance, the goal is to decrease the
upper bound on dM(τ t,≺CO). Correspondingly, the greedy
strategy samples the set of pairs

ÃtM =
{

(i, j) | (j ∈ U ti ) ∧ ρ ≤
∑
j′ 6=i

Iti,j′
}
.

Thus, again considering the stopping rule in (2), we can for-
mally write the set of pairs to be sampled by RANKELCOε

dM
in iteration t as follows:

AtM =

{
ÃtM if ρ ≤ max1≤i≤K

∑
j 6=i Iti,j

∅ otherwise
(4)

As a last step, the RANKEL algorithm calls a subroutine to
calculate the estimated ranking. According to Corollary 2, τ t
is a suitable choice, because its distance to ≺COε is smaller
than ρ with probability at least 1− δ.

The case of ε-insensitive sum of expectations
The SE ranking procedure assigns a real number yi =

1
K−1

∑
k 6=i yi,k to every option oi. Based on the pairwise

estimates ȳti,1, . . . , ȳ
t
i,K , an estimate for yi can simply be

obtained as ȳti = 1
K−1

∑
k 6=i ȳ

t
i,k. Similarly to Lemma 1,

one can determine a reasonable confidence interval for the
ȳti values.

Lemma 3. Let c(n, t, δ) be the function defined in Lemma 1.
Then, for any sampling strategy in line 13 of Algorithm 1
that ensures nti,1 = nti,2 = · · · = nti,K for any 1 ≤
i ≤ K, it holds that

∑K
i=1

∑∞
t=1 P(Bti ) ≤ δ, where

Bti = {yi /∈ [ȳti − c(nti, t, δ), ȳti + c(nti, t, δ)]} and nti =∑
k 6=i n

t
i,k.

From now on, we will concisely write cti for c(nti, t, δ) and
Cti for the confidence interval [ȳti − cti, ȳti + cti]. Given the
above estimates, the most natural way to define a ranking σt
on O is to sort the options oi in increasing order according
to their scores ȳti (again breaking ties at random). The fol-
lowing corollary upper-bounds the rank distances between
σt thus defined and ≺SEε in terms of the overlapping confi-
dence intervals of ȳt1, . . . , ȳ

t
K .

Corollary 4. Under the condition of Lemma 3, dK(σt,≺SEε

) ≤ 1
2

∑K
i=1

∑
j 6=iOti,j holds with probability at least

1 − δ for any time step t, where Oti,j = I
{
|Cti ∩ Ctj | > ε

}
indicates that the confidence intervals of ȳti and ȳtj are
overlapping by more than ε. Moreover, dM

(
σt,≺SEε

)
≤

max1≤i≤K
∑
j 6=iOti,j is again valid with probability at

least 1− δ.

Based on Corollary 4, one can devise greedy sampling
strategies that gradually decrease the upper bound of the dis-
tances between the current ranking and≺SEε with respect to
dK or dM, similar to the one described in the previous sec-
tion for ε-sensitive Copeland procedure.

The ranking eventually returned by RANKEL (Algorithm
1, line 15) is simply the one introduced above, namely
the permutation that sorts the options oi according to their
scores ȳi.

Complexity analysis
From Propositions 2 and 4, it is immediate that all
instantiations of our RANKEL algorithm (RANKELCOε

dK
,

RANKELCOε
dM

, RANKELSEε
dK

, RANKELSEε
dM

) are correct, and
hence they are all (ρ, δ)-PAC rank elicitation algorithms. In
this section, we analyze RANKELCOε

dM
and calculate an upper

bound for its expected sample complexity. In our preference-
based setup, the sample complexity of an algorithm is the
expected number of pairwise comparisons drawn for a given
instance of the rank elicitation problem.

The technique we shall use for analyzing RANKELCOε
dM

can be applied for RANKELSEε
dM

, too. It cannot be used, how-
ever, to characterize the complexity of the rank elicitation
task in the case of the dK distance (see Lemma 6), whence
we leave the analysis of RANKELCOε

dK
and RANKELSEε

dK
as

an open problem.

Expected sample complexity of RANKELCOε
dM

Step 1: The following lemma upper-bounds the probability
of an estimate ȳti,j being significantly bigger than 1/2 while
yi,j < 1/2 and vice versa. More specifically, it shows that
the error probability decreases with the number of iterations



t as fast as O(1/t3), a fact that will be useful in our sample
complexity analysis later on.

Lemma 5. Let Eti,j denote the event that either ȳti,j − cti,j >
1/2−ε and yi,j < 1/2−ε or ȳti,j+cti,j < 1/2+ε and yi,j >
1/2 + ε. Then RANKELCOε

d satisfies
∑K
i=1

∑
j 6=i P

[
Eti,j
]
<

4δ
5t3 .

Step 2: An interesting property of our problem setting,
which distinguishes it from related ones such as top-k and
best arm identification, is that it does not only incorporate
an ε-tolerance on the level of pairwise probability estimates
(yi,j values), but also relaxes the required accuracy of the
solution along another dimension, namely the proximity of
the predicted ranking and the target order. More precisely,
the algorithm receives a parameter ρ, and has to guarantee
with high confidence that the ranking τ it outputs is at most
of distance ρ from some ranking in L≺

COε
Y .

Unfortunately, one cannot directly determine the smallest
distance between a given τ and L≺

COε
Y without knowing the

entries of Y with high accuracy. Instead, an indirect method
has to be used in order to bound the sample complexity. To
this end, denote by (Y)r the set of matrices that are obtained
from Y as follows

(Y)r = {Ỹ | ỹi,j < 1/2 if yi,j < 1/2− ε and
ỹi,j > 1/2 if yi,j > 1/2 + ε where

(i, j) ∈ A′ ⊂ A, |A \A′| = r}

where A = {(i, j) | i 6= j, 1 ≤ i, j ≤ K} is the set of all off-
diagonal index pairs.

Now, if all but at most r entries in Ȳt are known to be
either bigger than 1/2 + ε or smaller than 1/2 − ε with
sufficiently high confidence (i.e., if all but at most r pairs
(i, j) satisfy j 6∈ U ti ), then Ȳt ∈ (Y)r with high probabil-
ity. Moreover, note that no algorithm can safely terminate
as long as no ranking τ exists that satisfies both that it is
consistent with the current information (i.e., τ ∈ L≺COε

Ȳ ),
and that it is of distance at most ρ from any possible strict
order—that is formally

max
Y′:Ȳt∈(Y′)r

dM(τ,≺COε
Y′ ) ≤ ρ .

Accordingly, one should define the variation of distance dM
around Y at radius r as

vCOε
dM

(r,Y) = max
Ỹ∈(Y)r

min
τ∈L≺

COε
Ỹ

max
Y′:Ỹ∈(Y′)r

dM
(
τ,≺COε

Y′
)

The next result shows that the ranking output by
RANKELCOε

dM
is always within this distance (vCOε

dM
(r,Y))

and thus, it is indeed a reasonable definition.

Lemma 6. Assume that At = ∩Ki=1 ∩j 6=i Ati,j holds, where
Ati,j denotes the event defined in Lemma 1. Let τ denote
some ranking that satisfies τi > τj whenever (dti < dtj)

or (dti = dtj) ∧ (dti + uti < dtj + utj) holds for some t > 0.
Then dM(τ,≺COε) ≤ maxi I

t
i , where Iti =

∑
j 6=i Iti,j =

#{j : (dti < dtj + utj) ∧ (dtj < dti + uti)}. Moreover,

maxi I
t
i ≤ 2vCOε

dM
(rt,Y), where rt =

∑k
i=1 |U ti | is the

number of pairwise preferences which cannot yet be decided
with high probability.

Remark 7. Lemma 6 establishes the existence of a fast and
easy method for computing the largest MRD distance possi-
ble, given some Ȳ and r. Needless to say, having an approx-
imation with similar properties (at least for an approxima-
tion of the largest distance) for the NDP measure would be
quite desirable. However, as it is not clear how such a result
can be obtained (if at all), determining the complexity of this
task is left as an open problem.

Remark 8. Lemma 6 assumes At to hold for a particular
t > 0. This lemma can be restated so that it holds for any
t > 0 with probability at least 1 − δ, since, according to
Lemma 1,

∑K
i=1

∑
j 6=i
∑∞
t=1 P(Ati,j) ≤ δ.

Step 3: We will use ∆i,j = |1/2−yi,j | as a complexity mea-
sure of the rank elicitation task. Furthermore, let ∆(r) denote
the r-th smallest value among ∆i,j for all distinct i, j ∈ [K].
The next lemma upper-bounds (building on Lemma 6) the
probability that RANKELCOε

dM
does not terminate at iteration

t.

Lemma 9. With AtM the set of pairs RANKELCOε
dM

samples
in round t, it holds that

P
{
AtM 6= ∅ ∧ ∀ (i, j) : (∆i,j ≥ ∆(r1))⇒ (nti,j > 2bti,j)

}
≤ 3δ

10K2t4

K2−r1∑
r=1

1

(∆(r)+ε)
2 ,

where bti,j =
⌈

1
2(∆i,j+ε)2 ln

(
5K2t4

4δ

)⌉
and r1 =

2 argmax
{
r ∈ [K2]|vCOε

dM
(r,Y) < ρ

}
.

Step 4: Using Lemmas 5 and 9, one can calculate an upper
bound for the expected sample complexity of RANKELCOε

dM
.

Theorem 10. Using the notation introduced in Lemma 9,
the expected sample complexity for RANKELCOε

dM
is

O
(
R1 log

(
R1

δ

))
, where R1 =

∑K2−r1
r=1

(
∆(r) + ε

)−2
.

Proof sketch: First, it can be shown that RANKELCOε
dM

ter-
minates before iteration T ∈ O

(
R1 log

(
R1

δ

))
if enough

samples are drawn from each Yi,j (nti,j > 2bti,j according to
Lemma 9) and no error occurs for any of the ȳti,j (Lemma 5).
Consequently, after iteration T , the probability of an error
along with the probability of the non-termination of the algo-
rithm (if enough samples are drawn) upper-bounds the num-
ber of iterations taken by RANKELCOε

dM
after T . This prob-

ability can be upper-bounded by 4/3π2δ for iterations > T
based on Lemmas 5 and 9. �

The expected sample complexity bound given in Theo-
rem 10 is similar in spirit to the one given for LUCB1 in the
framework of stochastic multi-armed bandits (Kalyanakrish-
nan et al. 2012), but the complexity measure of the rank elic-
itation task is essentially of different nature.



Expected sample complexity of RANKELSEε
dM

The sample complexity analysis of RANKELSEε
dM

is very
similar to the one we carried out for the ε-insensitive
Copeland ranking, although the complexity measure of
the rank elicitation task in this case can be given as fol-
lows: let λi,j = |yi − yj |, and furthermore, let λ(r)

denote the r-th smallest value among λi,j for all dis-
tinct i, j ∈ [K]. Now, the expected sample complexity
of RANKELSEε

dM
can be upper-bounded in terms of Λ1 =∑K2−`1

r=1

(
λ(r) + ε

)−2
(similarly to Theorem 10) where

`1 = 2 argmax
{
r ∈ [K2]|vSEε

dM
(r,Y) < ρ

}
. We omit the

technical details, since the analysis is straightforward based
on the previous section and (Kalyanakrishnan et al. 2012).

Experiments
To illustrate our PAC rank elicitation method, we applied it
to sports data, namely the soccer matches of the last ten sea-
sons of the German Bundesliga. Our goal was to learn the
corresponding Copeland or SE ranking. We restricted to the
8 teams that participated in each Bundesliga season between
2002 to 2012. Each pair of teams oi and oj met 20 times;
we denote the outcomes of these matches by y1

i,j , . . . , y
20
i,j

and take the corresponding frequency distribution as the
(ground-truth) probability distribution of Yi,j . The matrix Y
thus obtained is shown in Figure 1(a).

As a baseline, we run the RANKEL algorithm with uni-
form sampling, meaning that all pairwise comparisons are
sampled in each iteration. The accuracy of a run is 1
if d(τ,≺R) ≤ ρ for the ranking τ that was produced,
and 0 otherwise. The relative empirical sample complexity
achieved by RANKEL with respect to the uniform sampling
is shown in Table 1(b) for various parameter settings. Our
results confirm that RANKEL has a significantly smaller
empirical sample complexity than uniform sampling (while
providing the same guarantees in terms of approximation
quality).

Conclusion and future work
We introduced a PAC rank elicitation problem and proposed
an algorithm for solving this task, that is, for eliciting a rank-
ing that is close to the underlying target order with high
probability. Our algorithm consistently outperforms the uni-
form sampling strategy that was taken as a baseline. More-
over, it scales gracefully with the parameters ε and ρ that
specify, respectively, the strictness of the target order and
the sought quality of approximation to that order.

There is still a number of theoretical questions to be ad-
dressed in future work, as well as interesting variants of our
setting. First, as mentioned in Remark 7, the sample com-
plexity for RANKELSEε

dK
and RANKELSEε

dK
is still an open

question. Second, noting that the Yi,j are trinomial random
variables for which a Clopper-Pearson-type high probabil-
ity confidence bound exists (Chafaı̈ and Concordet 2009),
there is hope to significantly improve our bound on expected
sample complexity. Third, based on (Kalyanakrishnan et al.
2012), a high probability bound for the sample complexity

(a) Matrix Y for Bundesliga data, and the intervals for the interval
orders ≺CO0.02 , ≺CO0.1 , ≺SE0.02 and ≺SE0.1 , respectively

≺∗ d(., .) ρ ε Improvement (%)

≺CO dK 3 0.02 25.3± 0.4

≺CO dM 3 0.02 24.0± 0.4

≺SE dK 3 0.02 21.9± 0.2

≺SE dM 3 0.02 23.1± 0.2

≺CO dK 3 0.1 43.6± 0.7

≺CO dM 3 0.1 43.9± 0.7

≺SE dK 3 0.1 24.7± 0.1

≺SE dM 3 0.1 23.5± 0.2

≺CO dK 5 0.1 49.1± 0.6

≺CO dM 5 0.1 64.3± 0.8

≺SE dK 5 0.1 25.4± 0.2

≺SE dM 5 0.1 31.8± 0.4

(b) Improvement in empirical sample complexity

Figure 1: The top panel (1(a)) shows the matrix Y for the
Bundesliga data, and the [d∗i , d

∗
i + s∗i ] intervals for ≺CO0.02

and ≺CO0.1 , and the [yi, yi + ε] intervals for ≺SE0.02 and
≺SE0.1 , respectively. The bottom panel (1(b)) shows the re-
duction of the empirical sample complexity achieved by
RANKEL for various parameter settings, taking the com-
plexity of uniform sampling as 100%. Mean and standard
deviation of the improvement were obtained by averaging
over 100 repetitions. The confidence parameter δ was set to
0.1 for each run; accordingly, the average accuracy was sig-
nificantly above 1− δ = 0.9 in each case.

might be devised instead of the expected complexity bound.
Last but not least, there are other interesting ranking proce-
duresR and distance measures that can be used to instantiate
our setting.
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Busa-Fekete, R.; Szörényi, B.; Weng, P.; Cheng, W.; and
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Supplementary material for “PAC Rank Elicitation through Adaptive Sampling of
Stochastic Pairwise Preferences”

Proof of Lemma 1
Proof. Regardless of the sampling strategy used, it obviously holds that 1 ≤ nti,j ≤ t for any t > 0. Then by applying the
Hoeffding bound (Hoeffding 1963), we have

∞∑
t=1

P(Ati,j) ≤
∞∑
t=1

t∑
n=1

2 exp(−2nc(n, t, δ)2) ≤
∞∑
t=1

8δ

5K2t3
<

δ

K2

Summing up
∑∞
t=1 P(Ati,j) for all pairs of objects, we obtain

∑K
i=1

∑
j 6=i
∑∞
t=1 P(Ati,j) ≤ δ.

Pseudo-codes for ε-Copeland’s ranking procedure (RANKELCOε
dK

and RANKELCOε
dM

)
The pseudo-code of the sampling strategy for ε-Copeland’s ranking procedure

Procedure 2 SAMPLINGSTRATEGY(Ȳ,N, δ, ε, t, ρ)

1: B Compute the confidence bounds
2: for i, j = 1→ K do
3: if (i 6= j) then
4: ci,j = c(ni,j , t, δ) =

√
1

2ni,j
ln
(

5K2t4

4δ

)
5: B Compute the di and ui values for determining the order which estimates the target order with high probability
6: for i = 1→ K do
7: di = 0, ui = 0
8: for j = 1→ K do
9: if (i 6= j) then . Ci,j = [ȳi,j − ci,j , ȳi,j + ci,j ]

10: ui,j = I {[1/2− ε, 1/2 + ε] ⊆ Ci,j} . If ui,j = 0 then j /∈ Ui
11: ui = ui + ui,j
12: if 1/2− ε < ȳi,j − ci,j then
13: di = di + 1

14: B Compute upper bounds for the NDP, resp. the MDP distances
15: for i = 1→ K do
16: Ii = 0
17: for j = 1→ K do
18: if (i 6= j) then
19: if (di < dj + uj) ∧ (dj < di + ui) then
20: Ii = Ii + 1

21: B Determine the pairs that need to be sampled in the current round:

22: ρ′ =

{
1
2

∑K
i=1 Ii For NDP distance dK(·, ·)

max1≤i≤K Ii For MRD distance dM(·, ·)
23: A = ∅
24: if ρ ≤ ρ′ then
25: for i = 1→ K do

26: if Ii >
{

0 For NDP distance dK(·, ·)
ρ For MRD distance dM(·, ·) then

27: for j = 1→ K do
28: if (i 6= j) ∧ (ui,j = 1) then
29: A = A ∪ (i, j)

30: return A



Procedure for estimating ε-Copeland’s ranking

Procedure 3 GETESTIMATEDRANKING (Ȳ,N, δ, ε, t)

1: B Compute the confidence bounds
2: for i, j = 1→ K do
3: if (i 6= j) then
4: ci,j = c(ni,j , t, δ) =

√
1

2ni,j
ln
(

5K2t4

4δ

)
5: B Compute the di and ui values for determining the order which estimates the target order with high probability
6: for i = 1→ K do
7: di = 0, ui = 0
8: for j = 1→ K do
9: if (i 6= j) then

10: ui,j = I {[1/2− ε, 1/2 + ε] ⊆ Ci,j} . If ui,j = 0 then j /∈ Ui
11: ui = ui + ui,j
12: if 1/2− ε < ȳi,j − ci,j then
13: di = di + 1

14: B Sort the options based on the following relation:
15: τi > τj ⇔ (di < dj) or (di = dj) ∧ (di + ui < dj + uj)
16: τ = SORT((d1, d1 + u1), · · · , (dK , dK + uK))
17: return τ

Proof of Corollary 2
Proof. First, note that, for any t, d∗i ≤ dti + uti, because dti denotes the number of options for which 1/2− ε < ȳti,j − cti,j , and
uti denotes the number of “undecided” options (not known yet that either 1/2− ε < ȳti,j− cti,j or 1/2+ ε > ȳti,j + cti,j). Second,
it can be seen that dti ≤ d∗i + s∗i , since 1/2− ε < ȳti,j − cti,j implies that 1/2− ε < yi,j . Now, assume that for a pair of options
oi and oj , we have

d∗j ≤ dtj + utj < dti ≤ d∗i + s∗i

which implies that oi ⊀COε oj . Consequently, if I
{

(dtj < dti + uti) ∧ (dti < dtj + utj)
}

= 0, then we can decide whether
oi ⊀COε oj or oj ⊀COε oi. In addition, dtj +utj < dti readily implies that dtj < dti, therefore the ordering τ t defined in the claim
is valid in a sense that if dtj < dti ( which implies that oi ⊀COε oj) then by definition of τ t, τ tj > τ ti . Then simple calculation
yields the bounds given in the corollary. The high probability bound follows from Lemma 1 that upper bounds the probability
of a ȳti,j violates the confidence interval at any time t and for any pairs of objects.

Proof of Lemma 3
Proof. Recall that

Bti =
{
yi /∈

[
ȳti − c

(
nti, t, δ

)
, ȳti − c

(
nti, t, δ

)]}
where nti =

∑
j 6=i n

t
i,j and c(n, t, δ) defined in Lemma 1. First, let us note that if nti,1 = nti,2 = · · · = nti,K for all 1 ≤ i ≤ K

and any t > 0, then the empirical estimate 1∑
j 6=i n

t
i,j

∑
j 6=i
∑nti,j
t′=1 y

t′

i,j is unbiased. Formally, we have

E

 1∑
j 6=i n

t
i,j

∑
j 6=i

nti,j∑
t′=1

yt
′

i,j

 = E

 1

K − 1

∑
j 6=i

1

nti,j

nj∑
t′=1

yt
′

i,j

 =
1

K − 1

∑
j 6=i

yi,j = yi

Second, it obviously holds that 1 ≤ nti,j ≤ t for any t > 0, and thus, ȳti is sum of at most tK terms. More precisely, it can only
consists of t′K terms where 1 ≤ t′ ≤ K. Now, by applying the Hoeffding bound (Hoeffding 1963), we have

∞∑
t=1

P(Bti ) ≤
∞∑
t′=1

t∑
t′=1

K∑
`=1

2 exp(−2t′Kc(t′K, t, δ)2) ≤
K∑
`=1

∞∑
t=1

8δ

5K2t3
<

δ

K

Summing up
∑∞
t=1 P(Bti ) for all objects, we obtain

∑K
i=1

∑∞
t=1 P(Bti ) ≤ δ.



Pseudo-codes for ε-Sum of expectations ranking procedure (RANKELSEε
dK

and RANKELSEε
dM

)
The pseudo-code of the sampling strategy for ε-Sum of expectations ranking procedure
Figure 4 shows the pseudo-code of the sampling strategy for ε-Sum of expectations ranking procedure. First, the estimate for
yi’s and their confidence intervals are calculated in line 1 - 4. Then, the indicator values Oti,j defined in Proposition 4 for each
pair of object oi and oj are calculated that indicates if the confidence intervals of ȳti and ȳtj are overlapping. Next, based on
Proposition 4, we decide to terminate or not (line 5-13), and finally, following the greedy sampling strategy we select the pairs
of objects should be compared next (line 14 - 20). Note that this sampling strategy selects all Yi,1, . . . , Yi,K to be sampled in an
iteration for an option oi or neither of them (see line 18-20), therefore it satisfies the condition of Lemma 3.

Procedure 4 SAMPLINGSTRATEGY(Ȳ,N, δ, ε, t, ρ)

1: B Compute the confidence bounds
2: for i = 1→ K do
3: ȳi = 1

K−1

∑
j 6=i ȳi,j

4: ci = c(ni, t, δ) =
√

1
2
∑
j 6=i nj

ln
(

5K2t4

4δ

)
5: B Compute upper bounds for the NDP, resp. the MDP distances
6: for i = 1→ K do . Calculate Oti,j
7: oi = 0
8: for j = 1→ K do
9: if (i 6= j) then

10: if [ȳi + ε/2− ci, ȳi − ε/2 + ci] ∩ [ȳj + ε/2− cj , ȳj − ε/2 + cj ] 6= ∅ then
11: oi = oi + 1

12: ρ′ =

{
1
2

∑K
i=1 oi For NDP distance dK(·, ·)

max1≤i≤K oi For MRD distance dM(·, ·)
13: B Determine the pairs that need to be sampled in the current round:
14: A = ∅
15: if ρ ≤ ρ′ then
16: for i = 1→ K do

17: if oi >
{

0 For NDP distance dK(·, ·)
ρ For MRD distance dM(·, ·) then

18: for j = 1→ K do
19: if i 6= j then
20: A = A ∪ (i, j)

return A



Procedure for estimating the ε-Sum of expectations ranking

Procedure 5 GETESTIMATEDRANKING (Ȳ,N, δ, ε, t)

1: ȳi =
∑
j 6=i ȳi,j . Initialization

2: τ = SORT(ȳ1, · · · , ȳK) . Sort the options based on ȳi
3: return τ

Proof of Corollary 4
Proof. First, note that if ȳti + cti − ε < ȳtj − ctj , then oi ≺SE

ε oj with high probability, and if |Cti ∩ Ctj | ≤ ε then the order of
oi and oj cannot be determined yet with respect ≺SEε . Then simple calculation yields the bounds given in the proposition. The
high probability bound follows from Lemma 3 that upper bounds the probability of any ȳti violates the confidence interval at
any time t and for any pairs of objects.

Proofs for the expected sample complexity analysis
For the reading convenience we restate all lemmas and theorem.

Proofs of Lemma 5
Lemma 4. Let Eti,j denote the event that either ȳti,j − cti,j > 1/2 − ε and yi,j < 1/2 − ε or ȳti,j + cti,j < 1/2 + ε and
yi,j > 1/2 + ε. Then RANKELCOε

d satisfies
∑K
i=1

∑
j 6=i P

[
Eti,j
]
< 4δ

5t3 .

Proof. Let us fix some i and j first. Assume that yi,j > 1/2 (the other case can be proved similarly).

P
[
Eti,j
]
≤P

[
ȳti,j − cti,j < yi,j

]
≤

t∑
n=1

P
[
(ȳti,j − cti,j < yi,j) ∧ (nti,j = n)

]
=

t∑
n=1

exp
(
−2nc(n, t, δ)2

)
=

4δ

5K2t3
.

The lemma follows by summing up for all distinct i and j.

Example for calculating vCOε
dM

Example 11. Let us consider a rank elicitation task with Y for which d∗i = i for every i ∈ [K]. Thus option oi has rank
K − i + 1 according to ≺CO0

Y . Let us now set r = 2, and thereby allow two entries in Y to alter their order with 1/2. By the
nature of Copeland’s ranking procedure, all but two d∗i can remain the same or one d∗i can be changed by at most 2. Then it
follows easily that vCO0

dM
(2,Y) = 2, since min

τ∈L≺
CO0
Ȳ

maxY′:Ỹ∈(Y′)2
dM(τ,≺CO0

Y′ ) is at most 2 for any Ȳ ∈ (Y)2.

We can obtain a more difficult rank elicitation task using some Y with d∗i = K − 2 for i = 1, . . . ,K − 1, and d∗K = K − 3.

Let us use again r = 2, and note that τK = 1 for any τ ∈ L≺
COε
Y , whereas τ̄K = K for any τ̄ ∈ L≺

CO0
Ȳ where Ȳ is obtained

from Y by changing it so that oK is now beaten by every other option. This immediately implies that vCO0

dM
(2,Y) = K − 1.

Modifying the last example slightly, and using Y with d∗i = K − 1 for i = 2, . . . ,K − 1, d∗1 = K − 2 and d∗K = K, one
even obtains vCO0

dK
(2,Y) = 2(K − 2). Note, however that in this case vCO0

dK
(1,Y) = K − 2.

Proof of Lemma 6
Lemma 5. Assume that At = ∩Ki=1 ∩j 6=i Ati,j holds, where Ati,j denotes the event defined in Lemma 1. Let τ denote some
ranking that satisfies τi > τj whenever (dti < dtj) or (dti = dtj)∧ (dti + uti < dtj + utj) holds for some t > 0. Then dM(τ,≺COε

) ≤ maxi I
t
i , where Iti =

∑
j 6=i Iti,j = #{j : (dti < dtj + utj) ∧ (dtj < dti + uti)}. It also holds that maxi I

t
i ≤ 2vCOε

dM
(rt,Y)

where rt =
∑k
i=1 |U ti | is the number of pairwise preferences which cannot yet be decided with high probability.

Proof. For convenience, we drop the t indices throughout the proof.
First of all note that, because of our assumption, for each i

di ≤ d∗i ≤ di + ui . (5)



Let τ∗ denote the ranking that satisfies τ∗i > τ∗j whenever (d∗i < d∗j ) or (d∗i = d∗j ) ∧ (τi > τj). That is,

K − τ∗i =#{j : d∗j < d∗i }+ #{j : (d∗j = d∗i ) ∧ (τj > τi)}
=#{j : (d∗j < d∗i ) ∧ (τj > τi)}+ #{j : (d∗j < d∗i ) ∧ (τj < τi)}

+ #{j : (d∗j = d∗i ) ∧ (τj > τi)} . (6)

By construction, τ∗ is a possible target ranking, as it is one of the possible linear extensions of ≺COε
Y . Contrasting (6) with

K − τi =#{j : τj > τi}
=#{j : (d∗j < d∗i ) ∧ (τj > τi)}+ #{j : (d∗j = d∗i ) ∧ (τj > τi)}

+ #{j : (d∗j > d∗i ) ∧ (τj > τi)}

it is clear that

|τ∗i − τi| = |#{j : (d∗j < d∗i ) ∧ (τj < τi)} −#{j : (d∗j > d∗i ) ∧ (τj > τi)}|

≤ max
(

#{j : (d∗j < d∗i ) ∧ (τj < τi)} , #{j : (d∗j > d∗i ) ∧ (τj > τi)}
)

for any i = 1, . . . ,K. Consequently,

dM(τ,≺COε
Y ) ≤ dM(τ, τ∗) ≤ max

i=1,...,K
max

(
#{j : (d∗j < d∗i ) ∧ (τj < τi)} , #{j : (d∗j > d∗i ) ∧ (τj > τi)}

)
(7)

To prove the first claim, it thus suffice to show that maxi I
t
i upper bounds (7). In specific, we show below that #{j : (τi <

τj) ∧ (d∗i < d∗j )}+ #{j : (τi > τj) ∧ (d∗i > d∗j )} is upper bounded by Iti for any i = 1, . . . ,K.
Let us fix some (i, j) satisfying (τi < τj)∧ (d∗i < d∗j ) (if no such pair exists, then maxi I

t
i trivially upper bounds (7)). Below

we show that (di < dj +uj)∧ (dj < di+ui) must hold, which, in turn, implies that maxi I
t
i upper bounds (7). To this end note

that, by construction, τi < τj can only hold if either (di > dj) or (di = dj)∧ (di+ui ≥ dj +uj). If di > dj , then dj < di+ui
automatically, and, because of (5), di ≤ d∗i < d∗j ≤ dj + uj . If, on the other hand, (di = dj)∧ (di + ui ≥ dj + uj) holds, then
by (5), di ≤ d∗i < d∗j ≤ dj + uj and dj = di ≤ d∗i < d∗j ≤ dj + uj ≤ di + ui. This completes the proof of the first claim.

To prove the second claim fix some index i satisfying Ii = maxj Ij . Let Y′ (resp. Y′′) be the matrix obtained from Ȳt by
setting all ȳti,j values in it with j ∈ U ti to 1 (resp. to 0), and all ȳtk,j values in Ȳ with j ∈ U tk and k 6= i to 0 (resp. to 1). Note

that Y′,Y′′ ∈ (Ȳt)rt (recall our assumption from the beginning of the proof). Additionally, τ ′′ ∈ L≺
COε
Y′′ it holds that

K − τ ′i = #{j : τ ′i < τ ′j} ≥ #{j : di + ui > dj} for any τ ′ ∈ L≺
COε
Y′

and

K − τ ′′j = #{j : τ ′′i < τ ′′j } ≤ #{j : di ≥ dj + uj} for any τ ′′ ∈ L≺
COε
Y′′ ,

implying that

τ ′i − τ ′′i ≥ #{j : di + ui > dj} −#{j : di ≥ dj + uj} = #{j : (di + ui > dj) ∧ (di ≤ dj + uj)} = Iti ,

and thus also that ifK−τi ≤ (#{j : di+ui > dj}+#{j : di ≥ dj+uj}/2) for some τ ∈ L≺
COε
Ȳ then dM(τ,≺COε

Y′ ) ≥ Iti/2,
otherwise dM(τ,≺COε

Y′′ ) ≥ Iti/2.

Proof of Lemma 9
Lemma 7. Denoting by AtM the set of pairs RANKELCOε

dM
samples in round t it holds that

P
{

(AtM 6= ∅) ∧
(
nti,j > 2bti,j for each (i, j) with ∆i,j ≥ ∆(r1)

)}
≤ 3δ

10K2t4

K2−r1∑
r=1

1

(∆(r)+ε)
2 ,

where bti,j =
⌈

1
2(∆i,j+ε)2 ln

(
5K2t4

4δ

)⌉
and r1 = 2 argmax

{
r ∈ [K2]|vCO

dM
(r) < ρ

}
.

Proof. Recall that (i, j) ∈ AtM iff j ∈ U ti iff [0.5− ε, 0.5 + ε] ⊆ Cti,j . We shall first prove an upper bound on the probabilities
P
{(
nti,j > 2bti,j

)
∧ (j ∈ U ti )

}
for each i 6= j. To this end, fix some arbitrary indices i 6= j. Assume without loss of generality



that yi,j > 1/2. (The other case is handled the same way.) Then

P
{(
nti,j > 2bti,j

)
∧
(
j ∈ U ti

)}
≤P

{(
nti,j > 2bti,j

)
∧
(
0.5− ε > ȳti,j − cti,j

)}
=P

{(
nti,j > 2bti,j

)
∧
(
yi,j − ȳti,j > yi,j − 0.5 + ε− cti,j

)}
≤P

{(
nti,j > 2bti,j

)
∧
(
yi,j − ȳti,j > ∆i,j + ε− cti,j

)}
≤

∞∑
n=2bti,j+1

P
{(
nti,j = n > 2bti,j

)
∧
(
yi,j − ȳti,j > ∆i,j + ε− cti,j

)}
≤

∞∑
n=2bti,j+1

exp
(
−2n

(
∆i,j + ε− cti,j

)2)
(8)

=

∞∑
n=2bti,j+1

exp

−2n

(
∆i,j + ε−

√
1

2n
ln

(
5K2t4

4δ

))2


=

∞∑
n=2bti,j+1

exp

−2(∆i,j + ε)2

(
√
n−

√
1

2(∆i,j + ε)2
ln

(
5K2t4

4δ

))2


≤
∞∑

n=2bti,j+1

exp

(
−2(∆i,j + ε)2

(√
n−

√
bti,j

)2
)

≤ · · · ≤ 3δ

10K2t4(∆i,j + ε)2
(9)

Here (8) follows from the Hoeffding bound, and the derivation of (9) is similar to Appendix B.2 from (Kalyanakrishnan 2011).
(For yi,j < 1/2, one can obtain the same bound.)

According to Lemma 6 and the definition of r1,
∑K
i=1

∑
j 6=i Iti,j ≥ ρ whenever all but at most r1 entries are recovered

correctly. Recalling furthermore that RANKELCO
dM terminates by setting AtM = ∅ whenever

∑K
i=1

∑
j 6=i Iti,j ≤ ρ one obtains,

based on the derivations above, that

P
{

(AtM 6= ∅) ∧
(
nti,j > 2bti,j for each (i, j) with ∆i,j ≥ ∆(r)

)}
≤ P

{
∃(i, j) :

(
(i, j) ∈ AtM

)
∧
(
∆i,j ≥ ∆(r)

)
∧
(
nti,j > 2bti,j

)}
≤ 3δ

10K2t4

K2−r1∑
r=1

1

(∆i,j + ε)
2

where the last inequality follows using the union bound.

Proof of Theorem 10

Theorem 8. Using the notation introduced in Lemma 9, the expected sample complexity for RANKELCOε
dM

is O
(
R1 log

(
R1

δ

))
where R1 =

∑K2−r1
r=1

(
∆(r) + ε

)−2
.

Proof. The proof follows closely the one given for LUCB1(Kalyanakrishnan et al. 2012). Let be T ∗ = d146R1 log
(
R1

δ

)
e. Let

us consider an iteration T which T ∗ < T , and let be T̄ = dT ∗/2e. Consider the following events

E1 := ∃t ∈
[
T̄ , · · · , T − 1

]
and ∃i, j : Eti,j

where Eti,j is defined in Lemma 5, and

E2 := ∃t ∈
[
T̄ , · · · , T − 1

]
and ∃(i, j) :

{(
(i, j) ∈ AtM

)
∧
(
nti,j > 2bti,j where ∆i,j ≥ ∆(r1)

)}



Assuming that neither E1 nor E2 occur, we can upper bound the rounds RANKELCO
dM takes between iterations T̄ and T as

#rounds =

T∑
t=T̄

I
{
∃(i, j) :

(
(i, j) ∈ AtM

)
∧ (nti,j ≤ bti,j) ∧ (∆i,j ≥ ∆(r1))

}
=

T∑
t=T̄

K∑
i=1

∑
j 6=i

I
{(

(i, j) ∈ AtM
)
∧ (nti,j ≤ bti,j) ∧ (∆i,j ≥ ∆(r1))

}
≤

K∑
i=1

∑
j 6=i

T∑
t=T̄

I
{(

(i, j) ∈ AtM
)
∧ (nti,j ≤ bti,j) ∧ (∆i,j ≥ ∆(r1))

}
≤
K2−r1∑
i=1

⌈
1

2(∆(i) + ε)2
ln
(

5K2T 4

4δ

)⌉
(10)

The last equation follows form
∑T
t=T̄ I

{
(nti,j ≤ bti,j)

}
< bTi,j and the definition of r1.

According to p.272 from (Kalyanakrishnan 2011) (with a slight modification), first let us assume that T = CR1 log
(
R1

δ

)
where C ≥ 146 and R1 =

∑K2−r1
r=1

1

(∆(r)+ε)
2 , then

2 + 8

K2−r1∑
i=1

⌈
1

2(∆(i) + ε)2
ln
(

5K2T 4

4δ

)⌉
≤ 2 + 8(K2 − r1) + 4R1 ln

(
5K2T 4

4δ

)
≤ (10 + 4 ln(5))R1 + 4R1 ln

(n
δ

)
+ 16R1 ln(T )

≤ · · · ≤

< CR1 log

(
R1

δ

)
= T .

If neither E1 nor E2 = 0 occur, then RANKELCOε
M terminates after at most iteration T . Consequently P [E1 + E2] upper

bounds the probability that RANKELCOε
M does not terminate after T round. Applying Lemma 5 and 9, we have

P [E1 + E2] =

T∑
t=T̄

(
4δ

5t3
+

3δR1

10K2t4

)
=

4δ

5T 2

(
1 +

3R1

8K2T

)
≤ 8δ

T 2

Summarizing the things above, the expected sample complexity can be then obtained as⌈
146R1 log

(
R1

δ

)⌉
+ 8δ

∞∑
t=T∗

1

t2
≤
⌈

146R1 log

(
R1

δ

)⌉
+ 4/3π2δ

The dependency of empirical sample complexity on parameters ρ and ε
In this experiment, we investigate the dependency of the empirical sample complexity achieved by RANKEL on the parameters
ρ and ε. We used artificial data where the pairwise comparisons obey Bernoulli distribution i.e. for options oi and oj , if the
realisation of Bern(pi,j) with a parameter pi,j is 1, then oi is preferred to oj . The parameters of the Bernoulli distributions
are generated as pi,j = (1 − bi,j)(1 − b′i,j) + bi,jb

′
i,j where bi,j ∼ Bern(1/2) and b′i,j ∼ Beta(2, 6). The probability density

function of the distribution of pi,j values is plotted in Figure 2. For each run, we generated a new set of pi,j values. Note that
pi,j coincides with yi,j for all 1 ≤ i, j ≤ K since here there is no incomparable or indifferent case.

Figure 3 and 4 show the relative empirical sample complexity achieved by RANKEL with respect to the uniform sampling
versus parameters ρ and ε. As we seen from the plots, the RANKEL sampling strategy lessen significantly the pairwise compar-
isons are needed to solve the rank elicitation task given.
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Figure 2: The probability density function of the distribution of the pi,j values.
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Figure 3: The relative empirical sample complexity achieved by RANKELCOε
dK

, RANKELCOε
dM

, RANKELSEε
dK

and RANKELSEε
dM

,
respectively, with respect to uniform sampling are plotted versus parameter ρ and ε. The number of options K is set to 8.
Each result is the average of 100 repetitions. In each run, the number of pairwise comparisons drawn by uniform sampling was
considered 100%. The confidence parameter δ was set to 0.1 for each run accordingly, the average accuracy were significantly
above 1− δ = 0.9 in each case.
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Figure 4: The same experiments as in Figure 3, but with K = 15


