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In this paper, we reconsider the problem of deciding whether one probability

distribution is more informative (in the sense of representing a less indeterminate

situation) than another one. Instead of using well-established information mea-

sures such as the Shannon entropy, however, we take up the idea of comparing

probability distributions in a qualitative way. More specifically, we focus on a nat-

ural partial ordering induced by what is called the “peakedness” of a distribution.

Moreover, there is a close connection between this ordering between probability

distributions and the standard specificity ordering on possibility distributions that

can be constructed from them. The main result of the paper is a proof showing

that possibilistic specificity is consistent with probabilistic entropy in the sense

that the (total) ordering defined by the latter refines the (partial) ordering defined

by the former.

1 Introduction

The principle of maximum entropy plays an important role in probability theory, especially in

the case of incomplete probabilistic models (see e.g. Paris [14]). It is instrumental in selecting a

probability distribution in agreement with the available constraints, preserving as much inde-

terminateness as possible and verifying as many independence assumptions as possible. More

precisely, entropy faithfully accounts for existing dependencies and only assumes independence

where no justification to the contrary can be found. There are axiomatic characterizations of
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the Shannon entropy function, and Paris [14] has strongly advocated the selection of the max-

imum entropy probability as being a reasonable default choice under basic principles.

In possibility theory, a similar kind of “least commitment” information principle exists (e.g.

Dubois et al. [8]): When a set of constraints delimits a set of possibility distributions, the least

committed choice is the minimally specific distribution. The underlying idea is to consider any

situation as possible as long it is not explicitly ruled out by the constraints. This principle

obviously suggests maximizing possibility degrees.

There also exists a natural partial information ordering between possibility distributions, called

the specificity relation. This ordering is based on fuzzy set inclusion: If a possibility distribution

π : X → [0, 1] is pointwisely dominated by another distribution π′ : X → [0, 1], i.e. π(x) ≤ π′(x)

for all x ∈ X, the former is said to be more specific than the latter (and strictly more specific

if π(x) < π′(x) for at least one x ∈ X). The natural measure of non-specificity in agreement

with this partial ordering is the sum of the possibility degrees.1

There is a close connection between maximal entropy and minimal specificity principles, es-

pecially in the light of the Laplace indifference principle: In the possibilistic framework, the

case of complete ignorance is adequately represented by the uniform distribution π ≡ 1 (all

x are completely possible). Likewise, if a unique probability distribution must be picked, the

aforementioned indifference principle suggests selecting the uniform distribution p ≡ |X|−1.

For these distributions, the Shannon entropy and the additive possibilistic measure of non-

specificity coincide with the Hartley entropy of a set (Higashi and Klir [10]), that is the loga-

rithm of the number of elements in the set. These authors use an additive index of possibilistic

non-specificity that looks like Shannon entropy.

The temptation to compare specificity and entropy is great. For instance, Klir [11] has tried to

equate numerical entropy and (additive) non-specificity indices for the purpose of transform-

ing possibility distributions into probability distributions and conversely. This is debatable,

however, because the entropy scale and the specificity scale are not commensurate. Maung [12]

has tried to justify the principle of minimal specificity by adapting Paris’ rationality axioms

to the possibilistic setting.

Regarding the information-based comparison of distributions, there is an important difference

between the probability and possibility settings. In the uncertainty literature, the comparison

between probability distributions is always based on a type of entropy index without reference

to an underlying partial ordering, which is directly defined between probability distributions.
1Of course, here we assume the domain X to be finite or at least countable. Otherwise, the sum must be

replaced by an integral.
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There are actually several entropy indices and similar ones (such as the Gini index) but they

never stem from a partial ordering that decides if a probability measure is more informative

than another one.

Interestingly, it turns out that an old paper by Birnbaum [1] suggested such a qualitative

comparison of probabilities on the real line in terms of what is called their peakedness, inde-

pendently of the notion of entropy. It basically consists of checking the nestedness of confidence

intervals of various confidence levels extracted from the probability distribution. Interestingly,

the nestedness property of confidence intervals strongly suggests a similarity between the

relative peakedness of probability distributions and the relative specificity of possibility distri-

butions. On the other hand, the more peaked a probability distribution, the less indeterminate

it is, and the lower its entropy should be.

The aim of this paper is to prove that these intuitions are mathematically valid, thereby

bridging the gap between Birnbaum peakedness adapted to the finite setting, and Shannon

entropy. We show that the former is a partial ordering on probabilities compatible with the

latter index (and other related information measures). The connection uses possibility theory

because checking the peakedness relation between two probability distributions comes down

to comparing, in terms of specificity, possibility distributions whose cuts are the confidence

intervals of the original probability distributions. These possibility distributions are in fact

the most specific transforms from probability to possibility, already proposed by Dubois and

Prade [3], and Delgado and Moral [2] in the eighties.

The paper thus establishes a new link between possibilistic and probabilistic traditions, and

proposes a qualitative comparison test between probability distributions that may arguably

be considered as the natural information ordering between probability functions, something

that, to the best of our knowledge, is apparently missing in the uncertainty literature.

The next section introduces the basic notions of possibilistic specificity and probabilistic

peakedness and discusses a particular type of probability-possibility transformation. Our main

result, establishing the consistency between the possibilistic specificity ordering and the prob-

abilistic entropy measure, is stated and proved in section 3. A discussion of related works

follows in section 4. The paper concludes with a summary and an outlook in section 5.

2 Specificity, Peakedness and Probability-Possibility Transforms

Consider two probability distributions (probability vectors) α = (α1 . . . αn) and β = (β1 . . . βn)

defined over a finite domain X of cardinality n; αi resp. βi denote the probability Pr(xi) of
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the i-th element xi. We denote by a = O(α) the ordered probability vector obtained from the

vector α by rearranging the probability degrees αi in a non-increasing order. That is,

a = (a1 . . . an) = (ασ(1) . . . ασ(n)),

where σ is a permutation of {1 . . . n} such that ασ(i) ≥ ασ(j) for i < j. Likewise, we denote

by b = (b1 . . . bn) = O(β) the ordered probability vector associated with β. Since both a and

b are still probability vectors, they do of course satisfy the characteristic properties a, b ≥ 0,∑n
j=1 aj =

∑n
j=1 bj = 1.

A possibility distribution π is a mapping from X to the unit interval such that π(x) = 1 for

some x ∈ X. A possibility degree π(x) expresses the absence of surprise about x being the

actual state of the world, and can be viewed as an upper bound of a probability degree [6].

Let π = T (a) be the possibility distribution derived from the (ordered) probability vector

a according to the following probability-possibility transformation suggested by Dubois and

Prade [3]:

πi =
n∑

j=i

aj, i = 1 . . . n. (1)

Obviously, 1 = π1 ≥ . . . ≥ πn. We note that this possibility function is also a (de-)cumulative

distribution function with respect to the ordering induced by the probability values. Moreover,

the possibility measure Π associated with π dominates the corresponding probability measure

Pr, that is,

∀A ⊆ X : Π(A) ≥ Pr(A)

with Π(A) = maxxi∈A πi and Pr(A) =
∑

xi∈A ai.

In the following definition, we recall a basic notion from possibility theory (e.g. Dubois et al.

[8]) already mentioned in the introduction.

Definition 1 We say that a possibility distribution π is more specific than a possibility dis-

tribution ρ iff πi ≤ ρi for all 1 ≤ i ≤ n. It is strictly more specific if πi < ρi for at least one

index i ∈ {1 . . . n}.

Clearly, the more specific π, the more informative it is. If π(xi) = 1 for some i and π(xj) = 0

for all j �= i, then π is maximally specific (full knowledge); if π(xi) = 1 for all i, then π is

minimally specific (no information).

It turns out that T (a) is a maximally specific element of the family of possibility measures that

dominate the probability function Pr induced by the distribution a (see Dubois and Prade [3],
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and Delgado and Moral [2]). Moreover, if the ordering induced by a on X is linear (i.e. ai �= aj

for all i �= j) then T (a) is the unique maximally specific dominating possibility distribution and

respecting the ordering induced by the probability assignment. When there are elements of

equal probability, the uniqueness of the maximally specific dominating possibility distribution

can be recovered if the ordering induced by π on X is requested to be the same as the ordering

induced by a (but then the equation defining T (a) must be adjusted accordingly).

Probability-possibility transformations have been extended to the real line by Dubois et al.

[7] (see also Dubois et al. [9]). Let p be a unimodal continuous probability density. It is first

proved that the most narrow prediction interval I such that Pr(I) ≥ λ, where λ is a fixed

confidence level, is of the form Iλ = {x | p(x) ≥ θ } for some threshold θ. Then the most

specific possibility transform (inducing the same ordering as p on the real line) is π = T (p)

such that

∀x ∈ R : π(x) = π(y) = 1 − Pr([x, y]),

where [x, y] = Ip(x).

In 1948, Birnbaum dealt with what he called the quality of a probability distribution, referring

to its peakedness. Considering that the fourth moment of a distribution is not an appropriate

measure of peakedness he proposed a definition of the relative peakedness of distributions as

follows:

Definition 2 Let Y and Z be real random variables and y1 and z1 real constants. Y is said

to be more peaked about y1 than Z about z1 if and only if

Pr(| Y − y1 |≥ t) ≤ Pr(| Z − z1 |≥ t)

holds for all t ≥ 0.

It is clear that the function

πy(y1 − t) = πy(y1 + t) = Pr(| x − y1 |≥ t) = 1 − Pr([y1 − t, y1 + t])

is a possibility distribution, and easy to show that for any choice of y1, its possibility measure

dominates Pr (see Dubois et al. [9]). In this paper, we shall adapt this definition in two ways:

First, the results on the probability-possibility transforms clearly indicate that for unimodal

densities, choosing y1 as the mode of the distribution is reasonable. Moreover, Birnbaum [1]

considers intervals whose common midpoint is y1, yielding a symmetric possibility distribution

even if the density is not symmetric by itself. Instead of intervals of the form [y1 − t, y1 + t],
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Figure 1: The probability distribution on the left is (strictly) less peaked than the one on the

right.

we shall use intervals of the form {x | p(x) ≥ θ}, since they lead to a possibility distribution of

the same shape as the probability density (and peakedness refers to the shape of this density

anyway). This change enables peakedness to be defined for any referential set, not just the

reals. Indeed, the set {x | p(x) ≥ θ} makes sense in general, if measurability is ensured, while

[y1 − t, y1 + t] assumes the real line as an underlying domain. Here, we nevertheless restrict

ourselves to the case of a finite referential set, because entropy indices are usually applied to

such domains.

Now, for π = T (a) it is clear that πi = 1 − Pr({x | Pr({x}) ≥ θ}) if ai−1 ≥ θ > ai, so that the

above considerations motivate the following variant of the original peakedness relation due to

Birnbaum.

Definition 3 Let π = T (a) be the transformation (1) of an ordered probability vector a, i.e.

πi =
∑n

j=i aj. We say that a probability distribution α on a finite set X is more peaked than

a distribution β on X iff πi ≤ ρi for all 1 ≤ i ≤ n, where π = T (O(α)) and ρ = T (O(β)). We

say that α is strictly more peaked than β if it is more peaked and πi < ρi for at least one index

i ∈ {1 . . . n}.

Subsequently, the peakedness relation is understood in the sense of this definition. It is clear

that it compares probability distributions by means of the specificity relation applied to their

optimal possibility transforms. The less peaked relation is obviously invariant under permu-

tations of the involved probability vectors. Therefore, we restrict our attention to ordered

probability or possibility vectors in the next section.

Example 4 For the two probability distributions specified by the probability vectors

α = ( .05 .20 .25 .25 .20 .05 ),

β = ( .30 .15 .05 .05 .15 .30 )
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(see Fig. 1 for a graphical illustration) we obtain

π = (1.0 .75 .50 .30 .10 .05 ),

ρ = (1.0 .70 .40 .25 .10 .05 ).

Since π ≥ ρ (and π2 > ρ2), α is (strictly) less peaked than β.

3 From Peakedness to Entropy

The aim of this section is to prove that the peakedness relation, which is expressed in terms

of possibilistic specificity, is consistent with the ordering of probability distributions induced

by Shannon entropy.

Definition 5 The entropy of a probability distribution a is defined by

E(a) = −
n∑

j=1

aj · log aj . (2)

The main result of this paper claims that the entropy ordering refines the peakedness relation.

Theorem 6 If a probability vector a is less peaked than a vector b, then E(a) ≥ E(b); if a is

strictly less peaked than b, then E(a) > E(b).

Below, we shall prove this theorem in the following way: We construct a sequence of probability

vectors a0, a1, . . . , am such that a0 = a, am = b and ak+1 is more peaked than ak. Moreover,

this sequence will satisfy E(ak) ≥ E(ak+1) (resp. E(ak) > E(ak+1)) for all 1 ≤ k ≤ m − 1.

Remark 7 Simple counterexamples can be constructed showing that an implication in the

other direction, namely that E(a) ≥ E(b) implies a to be less peaked than b, does not hold. In

fact, such an implication cannot be expected since the entropy measure induces a total ordering

on the class of probability measures, whereas the peakedness relation defines only a partial

ordering. In other words, the former ordering is a proper refinement of the latter one.

3.1 Auxiliary Result

Let a and b denote two (ordered) probability vectors such that a is strictly less peaked than b.

Starting with a0 = a, a distribution ak+1 will be obtained from a distribution ak by shifting a

part of the probability mass ak
j to ak

i for appropriately defined indices j > i. More generally,
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a shifting operation S(a, i, j, c) will transform an ordered vector a = (a1 . . . ai . . . aj . . . an) into

the ordered vector

ac = (a1 . . . ai + c . . . aj − c . . . an).

Note that if π = T (a) and πc = T (ac) denote, respectively, the possibilistic transforms of a

and ac, then

πc
k =

⎧⎪⎪⎨
⎪⎪⎩

πk if k ≤ i

πk if j < k

πk − c if i < k ≤ j

(3)

Thus, πc ≤ π does obviously hold true, and ac is strictly more peaked than a in the case where

c > 0.

To guarantee a shifting operation S(a, i, j, c) to be valid in the scope of turning a into b, the

choice of c must satisfy the following conditions:

(i.) Proper ordering : ai−1 ≥ ai + c and aj − c ≥ aj+1

(ii.) Limited increase of specificity: πc ≥ ρ

Recalling (3), the latter item means that

πc
k =

n∑
i=k

ai − c ≥
n∑

i=k

bi = ρk

for all i < k ≤ j. Define dk = ak − bk. Since π = T (a) ≥ T (b) = ρ by assumption, we have∑n
m=k dm ≥ 0 for all 1 ≤ k ≤ n. The condition πc ≥ ρ can thus be written as

∀i < k ≤ j : c ≤
n∑

m=k

dm.

To satisfy both (i.) and (ii.), we hence need

c ≤ min

(
min

i<k≤j

n∑
m=k

dm, ai−1 − ai, aj − aj+1

)
. (4)

Since a �= b, there exists j = max{k | ak �= bk}. Of course, aj > bj since π ≥ ρ. By definition,

we also have dj = aj − bj = πj − ρj. Since a and b are probability distributions, there must be

some i < j such that bi > ai. So, let

i = max {k | 1 < k ≤ n, bk > ak and ak−1 > ak} (5)

if the set on the right-hand side is not empty (as will be assumed for the time being).

In order to simplify the upper bound on the number c, we first derive a lower bound on the

quantity mini<k≤j
∑n

m=k dm that appears as the first argument on the right-hand side of (4).
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Lemma 8 mini<k≤j
∑n

m=k dm ≥ min{aj − bj , bi − ai}

Proof: Define D(k) =
∑n

m=k dm and D = mini<k≤j D(k) . We consider two cases:

(a) D = D(j). In this case, the lemma obviously holds, since dm = am − bm = 0 for m > j

and hence D(j) = aj − bj.

(b) D < D(j). In this case, there must be an index k0 with i < k0 < j and such that

D(k0) < D(k0 + 1). We claim that

D(i + 1) < D(i + 2) < . . . < D(k0). (6)

In fact, since D(k0) < D(k0 + 1) we have ak0 < bk0. Thus, either i = k0 − 1 (in which case

(6) does trivially hold), or ak0−1 = ak0 (since if ak0−1 > ak0 and ak0 < bk0 , the index k0 is

a potential candidate for the choice of i). In the latter case, ak0−1 = ak0 < bk0 ≤ bk0−1 and

therefore

D(k0 − 1) = D(k0) + (ak0−1 − bk0−1) < D(k0).

This argument can be repeated, showing that (6) does indeed hold. This in turn shows that

D = D(i + 1). Moreover, we then have

D = D(i + 1) = D(i) − (ai − bi) = D(i) + (bi − ai) ≥ bi − ai

since D(i) ≥ 0.

Overall, we get D ≥ aj − bj in case (a) and D ≥ bi − ai in case (b). Thus, the lemma does

indeed hold. Q.E.D.

Now, if we let

c = min ( aj − bj , bi − ai, ai−1 − ai) (7)

then the above results and the fact that

aj − aj+1 = (aj − bj) + (bj − aj+1) ≥ (aj − bj) + (bj+1 − aj+1) = (aj − bj)

guarantee that (4) is satisfied. Moreover, the constant c is strictly positive, since ai−1−ai > 0,

aj − bj > 0, bi − ai > 0 by construction.

Let us now turn to the case where the right-hand side of (5) is empty.

Lemma 9 Suppose that a is less peaked than b, and that the right-hand side on (5) is empty.

Then b1 > a1.
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Proof: Suppose that a is less peaked than b. There is some k < j such that bk > ak. Since

the right-hand side on (5) is empty, it holds that bu > au implies au = au−1 for all u < j.

Moreover, since bk > ak, this implies in turn bk−1 ≥ bk > ak−1. The fact that b1 > a1 follows

immediately by repeating this argument. Q.E.D.

Regarding the choice of c in the case of an empty right-hand side in (5), the only difference

concerns the condition ac
i−1 ≥ ac

i which simply becomes unnecessary. Hence, one can define

c = min ( aj − bj , b1 − a1 ) (8)

and apply the shifting operation S(a, 1, j, c) in the same way as before.

3.2 Proof of the Main Result

Obviously, if the quantity c as defined in (7) (resp. (8)) is shifted from position j to position i

(resp. position 1) , then either ac
j = bj or ac

i = bi or ac
i = ai−1. In any case, at least one of the

indices i or j will have a smaller value in the next iteration. Hence, the process of repeating

the shifting operation, with i, j, and c as specified above, is well-defined, admissible and turns

a into b in a finite number of steps.

Given the above results, Theorem 6 follows immediately from the next lemma (recall that in

each step of our iterative procedure, the constant c shifted from index j to index i is strictly

positive):

Lemma 10 Let E(a) = −∑n
j=1 aj · log(aj). Then E(a) > E(ac) for c > 0.

Proof: It is easy to see that E(a) > E(ac) is equivalent to

(ai + c) log(ai + c) − ai log(ai) > aj log(aj) − (aj − c) log(aj − c).

Noting that ai > aj , this inequality can be secured by showing that the function x 	→ x log(x)

is strictly convex on (0, 1). This is indeed the case, since the second derivative of this function

is given by x 	→ 1/x. Q.E.D.

Let us finally note that Theorem 6 can be generalized to informativeness measures other than

the standard entropy. In fact, it is easily verified that the logarithm log(·) in (2) can be

replaced by any monotone increasing function F (·) the second derivative F ′′(·) of which exists

on (0, 1) and satisfies F ′′(x)/F ′(x) > −2/x for all 0 < x < 1 (where F ′(·) denotes the first

derivative).
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As an example, consider the case of the well-known Gini measure

G(a) =
n∑

j=1

(aj)2.

Since G(·) thus defined is an informativeness index rather than a measure of indeterminate-

ness (such as entropy), we actually have to consider its negation −G(a) = −∑n
j=1(aj)2 =

−∑n
j=1 ajF (aj) with F : x 	→ x. Here, we have

a (strictly) less peaked than b ⇒ −G(a) (>) ≥ −G(b)

since F ′′ ≡ 0.

4 Related Work

Even though the proposed notion of relative informativeness, based on possibilistic specificity

and Birnbaum peakedness, seems to be unknown in the uncertainty literature, there is a

subfield of the social sciences where similar notions have apparently been developed for some

twenty years or so:2 The study of social welfare orderings.

We refer to the book by Moulin [13]. In this framework, X is a set of agents, whose welfare

under some life conditions is measured by a utility function over X. The problem is to com-

pare the quality of utility vectors (u1 . . . un) from the standpoint of social welfare. Under an

egalitarian program of redistribution from the rich to the poor, the so-called Pigou-Dalton

principle of transfer states that transferring some utility from one agent to an other one so as

to reduce inequalities of utility values improves the social welfare of the population.3

Formally, the transformation of a vector a into a vector ac as in section 3.1 is known as a Pigou-

Dalton transfer. The sequence of transformations we propose here is also used in this literature.

Moreover, the role of entropy is played by so-called inequality indices. The counterpart to the

possibility transform of a probability vector is called the Lorentz curve of the utility vector,

and the counterpart of the peakedness ordering is called the Lorentz dominance relation.

It seems that counterparts to our main results already exist in this literature, and this point

would be worth studying in more detail. One difference is that utility vectors do not sum to

1. But Lorentz dominance is precisely making sense for the comparison of utility vectors with

equal sum. Note that it would not be the first time that possibility-probability transformations

find counterparts in the social sciences. For instance, a transformation from a belief function to
2The authors are grateful to Jérôme Lang for pointing out this connection.
3This principle does not seem to be popular nowadays.
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a probability measure (obtained by generalizing the Laplace indifference principle) introduced

in [3] and called pignistic transformation by Smets [16] is known in social science as the Shapley

value of cooperative games (see again Moulin [13]).

5 Conclusions and Perspectives

The contribution of this paper is mainly to lay bare a notion of relative information content that

can decide if a probability distribution represents more or less uncertainty than another one

(or whether the two distributions are not directly comparable). The test we offer appears to be

natural in the sense that it exactly captures the notion of relative peakedness of distributions,

thus meeting our intuition. The fact that Shannon entropy as well as the Gini index (and

many other ones, potentially) refine the peakedness relation corroborates this intuition. It

sheds light on the meaning of these indices, that were sometimes dogmatically proposed as

natural ones, even if axioms or properties that justify the entropy index were proposed in order

to its use for uncertain reasoning more transparent. The peakedness ordering offers a minimal

robust foundation for probabilistic information indices. The surprise is that it comes down to

comparing two possibility distributions in the sense of their relative specificity (using fuzzy

set inclusion!). Finding an extension of these results to continuous probability distributions,

using differential entropy for instance, is an obvious next task.

Our discussion also shows that there is a range of arbitrariness in the choice of these indices,

namely in the case of two distributions that cannot be compared by the peakedness relation

but are ranked in opposite orders by, say, the entropy and the Gini index. This point needs

further study. We note, however, that the situation is the same with the specificity relation in

possibility theory where several non-specificity indices have been proposed (Higashi and Klir

[10], Dubois and Prade [4], Yager [17], Ramer [15]) that disagree with each other. The same

difficulty can be observed in the case of belief functions (Dubois and Prade [5]). Besides, the

close relationship between peakedness and Lorentz dominance also comforts the legitimacy of

the proposed relative probabilistic informativenes notion.

In his book [14], Jeff Paris advocates the use of conditional probability statements as a nat-

ural means for expressing knowledge and the maximal entropy principle as a natural tool for

selecting a reasonable default probabilistic model of this knowledge. The above results sug-

gest that the maximal entropy principle can be replaced by a minimal peakedness principle

in problems with incompletely specified probability distributions. Of course, the minimally

peaked distribution in agreement with the constraints may fail to be unique, and the issue of

choosing between them is an intriguing one. Anyway, the peakedness relation can be used in
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all reasoning problems where the information content of a distribution is relevant, for example

in machine learning techniques à la decision tree induction where measures of that kind are

used for selecting (hopefully) optimal attributes according to which the data is partitioned in

a recursive manner. The notion of peakedness is easy to understand, but, compared to en-

tropy and other numerical indices, quite weak and its efficiency in probabilistic reasoning and

decision making is still unclear. These issues constitute interesting topics of future research.

Acknowledgements: The authors are grateful to Jürgen Beringer and Jérôme Lang for

helpful comments.
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