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Abstract

In this paper, we propose a generalization of logis-
tic regression based on the Choquet integral. The
basic idea of our approach, referred to as choquistic
regression, is to replace the linear function of pre-
dictor variables, which is commonly used in logis-
tic regression to model the log odds of the positive
class, by the Choquet integral. Thus, it becomes
possible to capture non-linear dependencies and in-
teractions among predictor variables while preserv-
ing two important properties of logistic regression,
namely the comprehensibility of the model and the
possibility to ensure its monotonicity in individual
predictors. In experimental studies with real and
benchmark data, choquistic regression consistently
improves upon standard logistic regression in terms
of predictive accuracy.

Keywords: logistic regression, Choquet integral,
monotone classification, attribute interaction

1. Introduction

Logistic regression is a well-established statistical
method for (probabilistic) classification [1]. In fact,
this method is not only interesting from a statistical
point of view, but also quite popular in different ap-
plication fields, such as medicine, psychology, eco-
nomics and the social sciences, to name a few. This
popularity is due to a number of appealing prop-
erties of logistic regression, including the following
ones:

• Since the model is essentially linear in the in-
put attributes, it is easily comprehensible. In
particular, the strength of influence of each pre-
dictor is directly reflected by the corresponding
regression coefficient.
• The influence of each attribute is monotone in
the sense that an increase of the value of the
attribute can only increase (decrease) the prob-
ability of the positive class.

Both of the above points, comprehensibility and
monotonicity, are important prerequisites for the
acceptance of a model by a domain expert. Indeed,
in many cases, monotonicity is a very natural re-
quirement. In a medical context, for example, one
will expect that tobacco consumption will increase
the probability of cancer, and each model violating

this constraint will not be considered as faithful and
hence be refused by a medical doctor.

The learning of monotone models from data has
attracted considerable attention in the machine
learning field in recent years [2]. Interestingly,
monotonicity is not easily guaranteed for a number
of well-known classification methods like, for exam-
ple, decision trees. Thus, for a decision tree it may
easily happen that, depending on the values of the
remaining attributes, increasing the value of an at-
tribute (e.g., tobacco consumption) may change the
class prediction from positive to negative in one case
(e.g., one patient) and from negative to positive in
another case (e.g., another patient).

Coming back to logistic regression, the linear-
ity of the model is of course a strong restriction
from a learning point of view. Quite often, the re-
sponse variable (output) depends on the predictor
variables (inputs) in a nonlinear way. In this pa-
per, we therefore propose an extension of logistic
regression that allows for modeling nonlinear rela-
tionships between input and output variables while
preserving the aforementioned advantages of the ap-
proach, namely comprehensibility and monotonic-
ity. Roughly speaking, the basic idea of our ap-
proach is to replace the linear function in the logistic
regression model by the Choquet integral.

The rest of this paper is organized as follows. In
the next section, we give a brief overview of related
work. In Section 3, we recall the basic definition
of the Choquet integral and some related notions.
Logistic regression in its standard form is briefly
covered in Section 4, prior to the introduction of
our generalized approach in Section 5. Finally, ex-
perimental results are presented in Section 6.

2. Related Work

As mentioned earlier, logistic regression is a well-
established method in statistics and machine learn-
ing, and there is a wealth of literature on this
method. Worth mentioning here is that the pos-
sibility of interactions between predictor variables
has of course also been noticed in the statistical
literature [3]. A standard way to handle such in-
teraction effects is to add interaction terms to the
linear function of predictor variables, for example in
the form of products of pairs of predictors. Thus,
however, the aforementioned advantages of logistic



regression are partly lost.
Although the Choquet integral has been widely

applied as an aggregation operator in multiple cri-
teria decision making [4–6], it has been used much
less in the field of machine learning so far. There
are, however, a few notable exceptions. First, the
problem of extracting a Choquet integral (or, more
precisely, the non-additive measure on which it is
defined) in a data-driven way has been addressed
in the literature. Essentially, this is a parameter
identification problem, which is commonly formal-
ized as a constraint optimization problem, for ex-
ample using the sum of squared errors as an objec-
tive function [7,8]. To this end, [9] proposed an ap-
proach based on the use of quadratic forms, while an
alternative heuristic, gradient-based method called
HLMS (Heuristic Least Mean Squares) was intro-
duced in [10].

Moreover, the Choquet integral has been used
for learning classification models. Recently, for ex-
ample, it has been used for ordinal classification
[11, 12]. In [13], the problem of learning an opti-
mal classification function is cast in the setting of
margin-maximization. Besides, the Choquet inte-
gral has been used as an aggregation operator in
the context of ensemble learning, i.e., for combining
the predictions of different classifiers [14].

As already mentioned, the problem of monotone
classification has received increasing attention in the
machine learning community in recent years (de-
spite having been introduced in the literature much
earlier [2]). Meanwhile, several machine learning
algorithms have been modified so as to guarantee
monotonicity in attributes, including nearest neigh-
bor classification [15], decision tree learning [16]
and rule induction [17]. Instead of modifying mod-
els and algorithms, one can also modify the data.
To this end, data pre-processing methods such as
re-labeling techniques have been developed. Such
methods seek to repair inconsistencies in the train-
ing data, so that (standard) classifiers learned on
that data will automatically be monotone [18].

3. The Discrete Choquet Integral

In this section, we recall the basic definition of the
Choquet integral and related notions. The first defi-
nition of the Choquet integral for additive measures
is due to Vitali [19]. For the general case of a capac-
ity (i.e., a non-additive measure or fuzzy measure),
it was later on introduced by Choquet [20]. Yager
proposed a generalized version in [21].

Definition 1 (Fuzzy measure) Let C =
{c1, c2, . . . , cm} be a finite set. A discrete fuzzy
measure (also called capacity) is a set function
µ : 2C → [0, 1] which is monotonic (µ(A) ≤ µ(B)
for A ⊆ B ⊆ C) and normalized (µ(∅) = 0 and
µ(C) = 1). A fuzzy measure µ is called additive if
µ(A∪B) = µ(A) +µ(B) for all A,B ⊂ C such that

A ∩ B = ∅. Obviously, in the case of an additive
measure, µ(A) is simply obtained as follows:

µ(A) =
∑
ci∈A

µ({ci}) . (1)

Definition 2 (Choquet integral) Let µ be a
fuzzy measure on C = {c1, c2, . . . , cm}. The dis-
crete Choquet integral of a function f : C → R+
with respect to µ is defined as follows:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i)) ,

where (·) is a permutation of {1, . . . ,m} such that
0 ≤ f(c(1)) ≤ f(c(2)) ≤ . . . ≤ f(c(m)). Moreover,
A(i) is given by the set {c(i), . . . , c(m)}. Finally,
f(c(0)) = 0 by definition.

Definition 3 (Möbious transform) The
Möbius transform mµ of a fuzzy measure µ is
defined as follows:

mµ(A) =
∑
B⊆A

(−1)|A|−|B|µ(B)

for all A ⊆ C.

As a useful property of the Möbius transform, which
we shall exploit later on for learning Choquet inte-
grals, we mention that it allows for reconstructing
the underlying fuzzy measure:

µ(B) =
∑
A⊆B

m(A)

for all B ⊆ C. More specifically, we shall make
use of the following representation of the Choquet
integral:

Cµ(f) =
m∑
i=1

(
f(c(i))− f(c(i−1))

)
· µ(A(i))

=
m∑
i=1

f(c(i))(µ(A(i))− µ(A(i+1)))

=
m∑
i=1

f(c(i))
∑

R⊆T(i)

m(R)

=
∑
T⊆C

m(T )× min
ci∈T

f(ci) , (2)

where T(i) =
{
S ∪ {c(i)} |S ⊂ {c(i+1), . . . , c(m)}

}
.

Definition 4 (k-Additivity) A fuzzy measure µ
is said to be k-order additive or simply k-additive if
k is the smallest integer such that m(A) = 0 for all
A ⊆ C with |A| > k.

Thus, while a Choquet integral is determined by
2m coefficients in general, the k-additivity of the
underlying measure reduces the number of required
coefficients to at most

k∑
i=1

(
m
i

)
.



3.1. Importance of Criteria and Interaction

The (discrete) Choquet integral is often used as an
aggregation operator, namely to aggregate the as-
sessments f(ci) of an object on different criteria ci
into a single evaluation. If the underlying measure
µ is additive (i.e., k-additive with k = 1), the Cho-
quet integral reduces to a weighted mean

Cµ(f) =
m∑
i=1

wi · f(ci) , (3)

with wi = µ({ci}) the weight or, say, the impor-
tance of the criterion ci. These weights are non-
negative and such that

∑m
i=1 wi = 1. In this case,

there is obviously no interaction between the crite-
ria ci, i.e., the influence of evaluation f(ci) on the
overall assessment is independent of the other values
f(cj), j 6= i.
Measuring the importance of a criterion ci be-

comes obviously more involved if µ is non-additive.
Besides, one may then also be interested in a mea-
sure of interaction between the criteria, either pair-
wise or even of a higher order. In the literature,
measures of that kind have been proposed, both for
the importance of single as well as the interaction
between several criteria [22].
Given a fuzzy measure µ on C, the Shaply value

(or importance index) of ci is defined as follows:

ϕ(ci) =
∑

A⊆C\{ci}

1

m

(
m− 1
|A|

) (µ(A ∪ {ci})− µ(A)) .

The Shaply value of µ is the vector ϕ(µ) =
(ϕ(1), . . . , ϕ(m)). One can show that 0 ≤ ϕ(ci) ≤ 1
and

∑m
i=1 ϕ(ci) = 1. Thus, ϕ(ci) is a measure of

the relative importance of ci. Obviously, ϕ(ci) =
µ({ci}) if µ is additive.
The interaction index between criteria ci and cj ,

as proposed by Murofushi and Soneda [23], is de-
fined as follows:

Ii,j =
∑

A⊆C\{ci,cj}

ϑA ·
(
µ(A ∪ {ci, cj})− µ(A ∪ {ci}))

− µ(A ∪ {cj}) + µ(A)
)

with
ϑA = 1

(m− 1)
(
m− 2
| A |

) .

This index ranges between −1 and 1 and indicates
a positive (negative) interaction between criteria ci
and cj if Ii,j > 0 (Ii,j < 0).
The interaction index can also be expressed in

terms of the Möbius transform:

Ii,j =
∑

K⊆C\{ci,cj},|K|=k

1
k + 1 m ({ci, cj} ∪K) .

Furthermore, as proposed by Grabisch [24], the def-
inition of interaction can be extended to more than
two features, i.e., to feature subsets T ⊆ C:

IT =
m−|T |∑
k=0

1
k + 1

∑
K⊆C\T,|K|=k

m(T ∪K) .

4. Background on Logistic Regression

4.1. Classification

We consider the problem of classification, that is,
predicting the value of an output (response) variable
y ∈ Y given the values of a set of input attributes
(predictors) xi ∈ Xi, i = 1, . . . ,m. The vector

x = (x1, . . . , xm)> ∈ X = X1 ×X2 × . . .×Xm

is called an instance, and X the instance space.
We restrict ourselves to binary classification, which
means that Y = {0, 1} consists of only two classes,
typically called the negative (0) and the positive (1)
class. The goal is to learn a classifier L : X → Y
from a given set of training data

D =
{

(x(i), y(i))
}n
i=1
⊂ (X × Y)n.

The data D is supposed to be an i.i.d. (independent
and identically distributed) sample generated by an
underlying (though unknown) probability measure
PXY on X ×Y. A common goal, then, is to induce
a classifier with minimal risk, where the risk R(L)
of a classifier L is defined as the expected loss:

R(L) =
∫
X×Y

`(L(x), y) dPXY (x, y) ,

where `(·) is a loss function penalizing incorrect pre-
dictions. In binary classification, the most com-
monly used loss is the simple 0/1 loss given by
`(ŷ, y) = 0 if ŷ = y and = 1 if ŷ 6= y.

4.2. Logistic Regression

Logistic regression modifies linear regression for
the purpose of predicting (probabilities of) discrete
classes instead of real-valued responses. To this end,
the probability of the positive class (and hence of
the negative class) is modeled as a linear function of
the input attributes. More specifically, since a linear
function does not necessarily produce values in the
unit interval, the response is defined as a general-
ized linear model, namely in terms of the logarithm
of the probability ratio:

log
(

P(y = 1 |x)
P(y = 0 |x)

)
= w0 + w>x , (4)

where w = (w1, w2, . . . , wm)> ∈ Rm is a vector
of regression coefficients and w0 ∈ R a constant
bias (the intercept). A positive regression coeffi-
cient wi > 0 means that an increase of the predictor



variable xi will increase the probability of a positive
response, while a negative coefficient implies a de-
crease of this probability. Besides, the larger the
absolute value |wi| of the regression coefficient, the
stronger the influence of xi.

Since P(y = 0 |x) = 1 − P(y = 1 |x), a simple
calculation yields the posterior probability

πl
df= P(y = 1 |x) = 1

1 + exp(−w0 −w>x) . (5)

The logistic function z 7→ 1
1+exp(−z) , which has a

sigmoidal shape, is a specific type of link function.

5. Generalized Logistic Regression using
the Choquet Integral

5.1. The Choquistic Model

In order to model non-linear dependencies between
predictor variables and response, and to take inter-
actions between predictors into account, we propose
to extend the logistic regression model by replacing
the linear function x 7→ w0 + w>x in (4) by the
Choquet integral. More specifically, we propose the
following model

πc
df= P(y = 1 |x)

= 1
1 + exp(−γ(Cµ(fx)− β)) ,

(6)

where Cµ(fx) is the Choquet integral (with respect
to the measure µ) of the evaluation function fx :
{c1, . . . , cm} → [0, 1] that maps each attribute ci to
a value xi = fx(ci); β, γ ∈ R are constants.

The value of ci is normalized in order to turn
each predictor variable into a criterion, i.e., a “the
higher the better” attribute, and to assure com-
mensurability between the criteria [25]. A simple
transformation, that we shall also employ in our
experimental studies, is given by the mapping zi =
(xi−mi)/(Mi−mi), wheremi andMi are lower and
upper bounds for xi (perhaps estimated from the
data); if the influence of xi is actually negative (i.e.,
wi < 0), then the mapping zi = (Mi−xi)/(Mi−mi)
is used instead.

In order to see that our model (6) is a proper
generalization of standard logistic regression, recall
that the Choquet integral reduces to a weighted
mean (3) in the special case of an additive mea-
sure µ. Moreover, consider any linear function
x 7→ g(x) = w0 + w>x with w = (w1, . . . , wm)>.
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Figure 1: Probability of a positive decision, P(y =
1 |x), as a function of the estimated degree of utility,
u = U(x), for a threshold β = 0.7 and different
values of γ.

This function can also be written in the form

g(x) = w0 +
m∑
i=1

(wipi + |wi|(Mi −mi)zi)

= w0 +
m∑
i=1

wipi +
m∑
i=1
|wi|(Mi −mi)zi

= w′0 +
(

m∑
i=1

ui

)−1 m∑
i=1

u′izi

= γ

(
m∑
i=1

u′izi − β

)
,

where pi = mi if wi ≥ 0 and pi = Mi if wi < 0,
ui = |wi|(Mi − mi), γ = (

∑m
i=1 ui)

−1, u′i = ui/γ,
w′0 = w0 +

∑m
i=1 wipi, β = −w′0/γ. By definition,

the u′i are non-negative and sum up to 1, which
means that

∑m
i=1 u

′
izi is a weighted mean of the zi

that can be represented by a Choquet integral.
The model (6) can be seen as a two-step process:

The first step consists of an assessment of the input
x in terms of a utility degree

u = U(x) = Cµ(fx) ∈ [0, 1].

Then, in a second step, a discrete choice (yes/no de-
cision) is made on the basis of this utility. Roughly
speaking, this is done through a “probabilistic
thresholding” at the utility threshold β. If U(x) >
β, then the decision tends to be positive, whereas
if U(x) < β, it tends to be negative. The preci-
sion of this decision is determined by the parameter
γ (see Fig. 1): For large γ, the decision function
converges toward the step function u 7→ I(u > β),
jumping from 0 to 1 at β. For small γ, this function
is smooth, and there is a certain probability to vi-
olate the threshold rule u 7→ I(u > β). This might
be due to the fact that, despite being important for
decision making, some properties of the instances
to be classified are not captured by the utility func-
tion. In that case, the utility U(x), estimated on
the basis of the given attributes, is not a perfect
predictor for the decision eventually made. Thus,
the parameter γ can also be seen as an indicator of
the quality of the classification model.



5.2. Parameter Estimation

The model (6) has several degrees of freedom: The
fuzzy measure µ (Möbius transform m = mµ) de-
termines the (latent) utility function, while the util-
ity threshold β and the scaling parameter γ deter-
mine the discrete choice model. The goal of learning
is to identify these degrees of freedom on the basis
of the training data D. Like in the case of standard
logistic regression, it is possible to harness the max-
imum likelihood (ML) principle for this purpose.
The log-likelihood of the parameters can be writ-

ten as

l(m, γ, β) = log P(D |m, β, γ)

= log
(

n∏
i=1

P(y(i) |x(i); m, β, γ)
)

(7)

=
n∑
i=1

y(i) log π(i)
c +

(
1− y(i)) log

(
1− π(i)

c

)
.

One easily verifies that (7) is convex with respect
to m, γ, and β. In principle, maximization of the
log-likelihood can hence be accomplished by means
of standard gradient-based optimization methods.
However, since we have to assure that µ is a proper
fuzzy measure and, hence, that m guarantees the
corresponding monotonicity and boundary condi-
tions, we actually need to solve a constrained opti-
mization problem (let C = {c1, . . . , cm} denote the
set of predictor variables):

max
m,γ,β

{
− γ

n∑
i=1

(1− y(i)) (Cm(x(i))− β)

−
n∑
i=1

log
(

1 + exp(−γ (Cm(x(i))− β))
)}

such that

0 ≤ β ≤ 1

0 < γ∑
T⊆C

m(T ) = 1

∑
B⊆A\{ci}

m(B ∪ {ci}) ≥ 0 ∀A ⊆ C, ∀ci ∈ C.

A solution to this problem can be produced by
standard solvers. Concretely, we used the fmincon
function implemented in the optimization toolbox
of Matlab. This method is based on a sequential
quadratic programming approach.

6. Experimental Results

Experimentally, we compared our generalized vari-
ant (6) to the standard version (4) of logistic re-
gression on several benchmark data sets. As men-
tioned earlier, standard logistic regression (LR) can
be seen as a special case of choquistic regression

(CR), which is obtained by restricting the fuzzy
measure µ to an additive measure. What we expect,
therefore, is an improved predictive accuracy thanks
to the increased flexibility of choquistic regression,
namely its ability to capture nonlinear dependen-
cies between input attributes. It should be noted,
however, that such an improvement, despite being
plausible, is not self-evident. In fact, if the true un-
derlying dependency is indeed a linear one, at least
approximately, then standard logistic regression will
be the model of choice, whereas choquistic regres-
sion may tend to overfit the training data and hence
generalize worse.

6.1. Data

Even though the topic is receiving more and more
interest in the machine learning community, bench-
mark data for monotone classification is not as
abundant as for conventional classification. In our
experiments, we used six benchmark data sets from
the UCI repository1 and the WEKA machine learn-
ing toolbox2 plus real data that has been extracted
from an industrial polyester dyeing process [26]. In
what follows, we give a brief description of each of
these data sets.

Employee Selection (ESL) This data set contains
profiles of applicants for certain industrial jobs. The
values of the four input attributes were determined
by psychologists based upon psychometric test re-
sults and interviews with the candidates. The out-
put is an overall score on an ordinal scale between
1 and 9, corresponding to the degree of suitability
of each candidate to this type of job. We binarized
the output value by distinguishing between suitable
(score 5-9) and unsuitable (score 1-4) candidates.

Employee Rejection/Acceptance (ERA) This data
set originates from an academic decision-making
experiment. The input attributes are features of
a candidate such as past experience, verbal skills,
etc., and the output is the subjective judgment of a
decision-maker, measured on an ordinal scale from
1 to 9, to which degree he or she tends to accept
the applicant for the job. We binarized the output
value by distinguishing between acceptance (score
4-9) and rejection (score 1-3).

Lecturers Evaluation (LEV) This data set con-
tains examples of anonymous lecturer evaluations,
taken at the end of MBA courses. Students were
asked to score their lecturers according to four at-
tributes such as oral skills and contribution to their
professional/general knowledge. The output was
a total evaluation of each lecturer’s performance,

1http://archive.ics.uci.edu/ml/
2http://www.cs.waikato.ac.nz/ml/weka/



data set #inst. #attr.
CYD 1–7 120 3
DBS 120 8
CPU 209 6
ESL 488 4
ERA 1000 4
LEV 1000 4
CEV 1728 6

Table 1: Data sets and their properties.

measured on an ordinal scale from 0 to 4. We bi-
narized the output value by distinguishing between
good (score 3-4) and bad evaluation (score 0-2).

Den Bosch (DBS) This data set contains 8 at-
tributes describing houses in the city of Den Bosch:
area, number of bedrooms, type of house, volume,
storeys, type of garden, garage, and price. The out-
put is a binary variable indicating whether the price
of the house is low or high (depending whether or
not it exceeds a threshold).

CPU This is a standard benchmark data set from
the UCI repository. It contains nine attributes,
three of which were removed since they are obvi-
ously of no predictive value (vendor name, model
name, ERP).

Car Evaluation (CEV) This data set contains 6
attributes describing a car, namely, buying price,
price of the maintenance, number of doors, capac-
ity in terms of persons to carry, the size of luggage
boot, estimated safety of the car. The output is the
overall evaluation of the car: unacceptable, accept-
able, good, very good. We binarized this evaluation
into (un)acceptable versus (very) good.

Color Yield (CYD) Finally, we took data from an
industrial polyester dyeing process that was also an-
alyzed in [26]. Here, the output variable is the color
yield, which has been measured as a function of
three important factors: disperse dyes concentra-
tion, temperature and time of dyeing. Correspond-
ing experiments have been made for seven different
colors, giving rise to seven data sets. Each of these
data sets was binarized by thresholding the color
yield at its median value.
An overview of the data sets together with their

main properties is given in Table 1.

6.2. Results

Classification accuracy was measured in terms of
0/1 loss and determined by randomly splitting the
data into two parts, one half for training and one
half for testing. To prevent over-fitting we restrict
the choquistic model to k-additive measures, where
k is select by 10-fold cross validation on the training

dats set LR CR
ESL 0.0621± 0.0096 0.0547± 0.0105
ERA 0.2849± 0.0140 0.2756± 0.0170
LEV 0.1669± 0.0134 0.1340± 0.0115
DBS 0.1443± 0.0371 0.1560± 0.0405
CPU 0.0400± 0.0093 0.0119± 0.0138
CEV 0.1883± 0.0066 0.0346± 0.0076
CYD-1 0.1254± 0.0074 0.0729± 0.0066
CYD-2 0.2004± 0.0091 0.0717± 0.0078
CYD-3 0.1512± 0.0238 0.0762± 0.0163
CYD-4 0.1289± 0.0253 0.0496± 0.0201
CYD-5 0.1242± 0.0099 0.0204± 0.0057
CYD-6 0.1604± 0.0085 0.0383± 0.0083
CYD-7 0.1958± 0.0207 0.0646± 0.0089

Table 2: Classification performance in terms of the
mean and standard deviation of 0/1 loss.

set. This was repeated 100 times, and the accuracy
degrees were averaged. The results of the experi-
ments are summarized in Table 2. As can be seen,
CR achieves a consistent improvement and outper-
forms LR on all data sets.

As mentioned before, as one of its key features,
the Choquet integral offers interesting information
about the importance of individual attributes as
well as the interaction between them. In fact, in
many practical applications, this type of informa-
tion is at least as important as the predictive accu-
racy of the model. A detailed analysis of this type
of information is beyond the scope of this paper.
Let us mention, however, an interesting albeit plau-
sible observation we made during our experiments,
namely a positive correlation between the degree of
attribute interaction and the improvement achieved
by CR as compared to LR in terms of accuracy.

As an illustration, Fig. 2 provides a visual repre-
sentation of the interaction between the three at-
tributes in the color yield data sets, namely for
CYD-1 and CYD-7. Degrees of interaction are
shown as levels of gray, which means that light and
dark fields strongly silhouetted against the color of
the diagonal indicate a high degree of interaction.
Obviously, the interaction is not very strong in the
case of CYD-1, but more pronounced for CYD-7.
This is in agreement with the improvement in terms
of accuracy, which is much higher in the latter case.

7. Summary and Conclusions

In this paper, we have advocated the use of the
discrete Choquet integral in the context of binary
classification with monotonicity constraints. More
specifically, we have used the Choquet integral for
representing a latent utility function in the logistic
regression model. Thus, it becomes possible to cap-
ture nonlinear dependencies and interactions among
predictor variables in a convenient way.

Admittedly, as mentioned above, the same can in
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Figure 2: Visualization of the interaction index for
data sets CYD-1 (left) and CYD-7 (right). Compar-
ing CR and LR in terms of 0/1 loss, the reduction
of prediction error is about twice as much as for
CYD-7. For the ease of representation, the values
on the diagonal are set to 0.

principle be achieved by any other type of nonlinear
function, such as polynomials. Then, however, some
important properties of logistic regression may get
lost, including the comprehensibility of the model.
The Choquet integral is especially appealing from
this point of view, as it offers measures of the impor-
tance of individual and the interaction among sub-
sets of attributes. Besides, the Choquet integral can
ensure a monotone dependency between the output
and the individual input attributes, which may be-
come difficult for other nonlinear functions.
An interesting question to be addressed in fu-

ture work concerns the restriction of the choquistic
model to k-additive measures. A restriction of that
kind may have two important advantages: First,
it may prevent from over-fitting the data in cases
where the full flexibility of the Choquet integral is
actually not needed. Second, since less parameters
need to be identified, the computational complexity
will be reduced, too. The key problem is how to se-
lect a suitable k in an efficient way (without simply
trying all values).
Apart from that, our current approach could

be generalized in other directions, first from the
dichotomous (binary) case to polytomous (multi-
class) classification, and second to more general
types of monotonicity. In fact, not all variables are
monotone in a strict sense, but instead have ideal
values somewhere in the middle of their domain.
This type of preference can be modeled conveniently
in terms of fuzzy sets, and monotone models can
then be learned on membership degrees as predic-
tor variables.
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