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Abstract

We propose a method for comparing protein structures or, more specif-

ically, protein binding sites in terms of histogram-based representations.

These representation are intended to capture important geometrical and

physico-chemical properties. In comparison to hitherto existing approaches

in structural bioinformatics, especially graph-based methods and meth-

ods from computational geometry, our approach is computationally much

more efficient. Moreover, despite its simplicity, first experimental studies

suggest that it is able to produce useful measures of similarity.

1 Introduction

Theory formation in the biological sciences in general and molecular biology
in particular is largely founded on similarity-based and analogical reasoning
principles. Correspondingly, the comparison of two objects, such as proteins,
has become a fundamental problem in bioinformatics. For example, sequence

alignment is nowadays considered as a standard tool for comparing biomolecules
on the sequence level.

Structural bioinformatics has gained increasing attention in the past ten
years, largely due to the advance of structural databases that offer protein struc-
ture information in addition to mere sequence information. With the steady
improvement of structure prediction methods, the inference of protein function
based on structure information becomes more and more important. Owing to
the commonly accepted paradigm stating that similar protein function is mir-
rored by similar structure (but not necessarily similar sequence), the comparison
of protein structures is a central task in this regard.

Obviously, the comparison of (one-dimensional) sequences is less difficult
than the comparison of (three-dimensional) molecular structures being charac-
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terized by different types of properties, such as geometry and physico-chemical
properties. Yet, quite a number of methods for structure comparison have al-
ready been proposed in the literature.

One class of methods focuses on geometrical aspects and, correspondingly,
makes use of tools from computational geometry. As examples of this type of
approach, we mention geometric hashing [14] and the method of labeled point

cloud superposition recently introduced in [4].
Another idea is to use graphs as formal models of molecular structures.

Here, the focus is more on the physical and chemical properties, which are often
modeled as nodes of a graph, while geometrical or topological properties are
captured in a more indirect way via the edges of the graph. Roughly speaking,
the problem of comparing biomolecular structures is thus reduced to the problem
of comparing graphs. Typical examples of this approach include measures based
on sub-graph isomorphism [3, 12], graph edit distance [20, 5, 2], and graph
kernels [8, 11].

Geometrical and graph-based approaches are appealing for several reasons.
In particular, they produce more than a numerical degree of similarity or, equiv-
alently, distance. Usually, they also provide useful extra information explain-
ing this number. The method of multiple graph alignment [20], for example,
is a graph-based counterpart to classical sequence alignment that yields (hy-
pothetical) one-to-one correspondences between basic structural units, such as
amino acids. The price to pay for this extra information, however, is a high
computational complexity. In fact, many of the aforementioned methods lead
to NP-complete optimization problems and scale very poorly with the size of
the structures. This complexity prevents them from being used in large-scale
studies, for example a cluster analysis requiring an all-against-all comparison of
many structures.

A possible alternative to methods of the above kind is offered by feature-based

approaches in which an object is first represented in terms of a fixed number of
features, in the simplest case a vector of fixed dimensionality. The comparison of
objects is thus reduced to the comparison of feature vectors. Since the original
object cannot be recovered from a finite number of features, this transforma-
tion normally comes with a significant loss of information. Consequently, it is
also unclear how well the similarity of the original objects is mirrored by the
similarity of their respective feature vectors. On the other hand, this approach
has an obvious advantage with regard to complexity, as feature vectors can be
compared quite efficiently.

In this paper, we propose a feature-based approach to the comparison of
protein structures, with a special emphasis of protein binding sites. More specif-
ically, our idea is to summarize important information about the geometrical
and physico-chemical properties of protein binding sites in terms of histograms
or, more generally, fuzzy histograms. To a large extent, this idea is motivated by
the successful use of similar approaches in the field of image processing, where
the distribution of the brightness or the colors of a picture are represented
in terms of histograms, too [15, 19]. In this field, surprisingly strong results
(e.g., in terms of classification performance) have been obtained on the basis
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of this simple representation. The main goal of this paper is to elaborate on
the question whether similar results can be achieved in the context of structural
bioinformatics, too.

The remainder of the paper is organized as follows. Subsequent to a brief
introduction to the modeling of protein binding sites in Section 2, we introduce
different types of histogram representation for binding sites in Section III. In
Section IV, several distance measures suitable for comparing histograms will
be discussed. Experimental results are presented in Section V, and Section 6
concludes the paper.

2 Modelling Protein Binding Sites

In this paper, our special interest concerns the modeling of protein binding
sites. More specifically, our work builds upon CavBase [16], a database for
the automated detection, extraction, and storing of protein cavities (hypotheti-
cal binding sites) from experimentally determined protein structures (available
through the PDB). In CavBase, a set of points is used as a first approximation
to describe a binding pocket. The database currently contains 248,686 hypo-
thetical binding sites that have been extracted from 61,516 publicly available
protein structures using the LIGSITE algorithm [9].

The geometrical arrangement of the pocket and its physicochemical proper-
ties are first represented by predefined pseudocenters – spatial points that repre-
sent the center of a particular property. The type and the spatial position of the
centers depend on the amino acids that border the binding pocket and expose
their functional groups. They are derived from the protein structure using a
set of predefined rules [16]. As possible types for pseudocenters, hydrogen-bond
donor, acceptor, mixed donor/acceptor, hydrophobic aliphatic, metal ion, pi
(accounts for the ability to form π–π interactions) and aromatic properties are
considered.

Pseudocenters can be regarded as a compressed representation of areas on
the cavity surface where certain protein-ligand interactions are experienced.
Consequently, a set of pseudocenters is an approximate representation of a spa-
tial distribution of physicochemical properties. Protein binding sites in CavBase
are characterized by around 180 pseudocenters on average (even though much
larger structures do of course exist).

3 Histogram Representations

A histogram h is a partition of a set of observations O ⊂ X into a finite number
of discrete units. Formally, h can be represented as a B −→ R mapping, where
B is a finite set of bins, and h(b) denotes the number (fraction) of observations
falling into bin b. We call a histogram h normalized if

∑

b∈B h(b) = 1. Each bin
b is associated with a subset X[b] of the domain X , so that h(b) = |O ∩ X[b]|
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before normalization and

h(b) =
|O ∩ X[b]|

|O|

in the normalized case. The set of bins is assumed to form a partition of X , i.e.,
X[a] ∩ X[b] = ∅ for a 6= b and

⋃

b∈B X[b] = X . The most common example is a
partitioning of the reals, in which case the bins b are associated with intervals
X[b] ⊂ R.

To obtain histograms from a protein binding site, we will use two important
properties:

• its distribution of pseudocenters, and

• the distribution of distances between pseudocenters,

thereby capturing both, the physico-chemical properties as well as the geometry
of the protein binding site.

3.1 Representation I

The simplest way to derive histograms is to consider both distributions, the dis-
tribution of pseudocenters and the distribution of distances, separately, resulting
in two histograms for each binding site. Thus, in a first step, we represent a
protein binding site by two sets of observations, namely the set

P = {p1, . . . , pn}

of pseudocenters and the set

D = {di,j = |pi − pj | | pi, pj ∈ P}

of all pairwise distances between the pseudocenters in P (thus, |D| = n · (n +
1)/2).

To derive the histogram for pseudocenters, we use the bins B = {1, 2, 3, 4, 5, 6, 7}.
Thus, for each type of pseudocenter, we simply count its (relative) number of
occurrences. For pairwise distances between pseudocenters, we use the set of
bins B = {1, . . . , dmax} ⊂ N, where dmax is an upper bound on the edge length
(measured in the unit Å).1 So, h(b) is the percentage of edges whose length is
in [b − 1, b[.

3.2 Representation II

Considering distances and pseudocenters separately obviously comes with a loss
of information. To avoid this problem, we also try a second, more complex
representation that is based on 28 sets of pairwise distances: Di,j is the set
of all distances between pseudocenters of type i and j, with 1 ≤ i ≤ j ≤ 7.

1We determine this number in a pre-processing step by taking the smallest lower bound

valid for the data set at hand.
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Again, to obtain a corresponding histogram hi,j , we use B = {1, . . . , dmax} and
let X[b] = [b− 1, b[. All histograms are normalized so as to give them the same
weight (except empty histograms that remain empty).

The resulting histograms are still one-dimensional, however, this type of
representation has the advantage of combining information about pseudocenters
and distances. The price to pay is a larger number of histograms along with the
need of 28 instead of only two comparisons.

3.3 Fuzzy Histograms

Fuzzy histograms have been introduced as an extension of conventional his-
tograms, mainly to avoid some problems caused by crisp interval boundaries.
In fact, these boundaries are to some extent arbitrary, and in many cases, a
small change of a boundary may produce a significant change of the shape of
the histogram. Fuzzy histograms are intended to be more robust in this regard,
especially in the presence of noisy data. For our application, this is especially
important, since distances between pseudocenters can vary due to measurement
errors or biological variation. Moreover, fuzzy histograms have a smooth instead
of a discontinuous shape, which is often more convenient. They have already
been used successfully in different application fields, e.g., in image retrieval and
classification [18, 19].

The basic idea of fuzzy histograms is to replace bins by “fuzzy bins” b char-
acterized by fuzzy subsets X[b] of X . Thus, each element x ∈ X belongs to a
bin b to the degree X[b](x) ∈ [0, 1]. In our case, we proceed from a uniform
fuzzy partition

B = {X[b] | b = 1, 2, . . . , dmax },

where each X[b] is a triangular fuzzy set with core {b} and support ]b−w, b+w[,
where w = 3 in this paper.

The fuzzy histogram itself, hf , is then defined as a B −→ R mapping in a
straightforward way, namely by replacing counts with sigma-counts. Thus,

hf (b) =
∑

d∈D

X[b](d) ,

with D the given set of data (observed distances).

4 Distance Measures

Having reduced the representation of a protein structure to a set of histograms,
the problem to compare different structures can be solved by defining proper
distance measures on histograms. More specifically, consider two structures with
type-I histogram representations (g1, g2) and (h1, h2), respectively. Moreover,
suppose that δ1 is a distance measure suitable for comparing (pseudocenter)
histograms g1 and h1, and that δ2 is a distance measure suitable for comparing
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(distance) histograms g2 and h2. The overall distance between the two struc-
tures can then be defined, for example, by

√

δ1(g1, h1)2 + δ2(g2, h2)2,

i.e., by the L2-norm of the tuple of distances. Similarly, for the type-II repre-
sentation, a measure of the form

√

√

√

√

28
∑

i=1

δ(gi, hi)2 (1)

can be used. Here, only a single distance δ(·) is needed, since all histograms are
of the same type.

In the literature, two types of distance measures are distinguished, namely
bin-by-bin and cross-bin measures. The former are rather simple and only com-
pare the values in the same bin. The overall distance between two histograms
is then defined by the sum of distances for all bins. Cross-bin measures, on the
other hand, also compare values in different bins. In order to aggregate these
distances, these measures also require the existence of a ground distance on B.

4.1 Bin-by-Bin Measures

In the following, we recall two important bin-by-bin measures suitable for com-
paring two histograms g and h, both defined on the same set of bins B.

• Minkowski Distance: The well-known Minkowski distance (Lp-norm) is
defined as

dM (g, h) =

(

∑

b∈B

|g(b) − h(b)|p
)

1

p

and requires the specification of the parameter p. In image retrieval, p = 1,
p = 2 or p = ∞ are often used, and we will try the same values for our
problem of measuring the distance between protein binding sites.

• Histogram Intersection: The Minkowski distance gives the same weight
to all bins. This can be a disadvantage, especially if the mass of the two
histograms is centered only on a (small) subset of the bins. In particular,
bins that are empty in both histograms contribute to their similarity.
This is questionable, as it means that, in principle, the similarity can be
increased by adding additional (empty) bins.

A measure avoiding this disadvantage is the (generalized) Jaccard mea-
sure, that is commonly used for measuring the similarity between fuzzy
sets. Its underlying idea is to compare the size of the intersection of the
two sets with the size of their union. In terms of a distance, it can be
defined as follows:

dJ (g, h) = 1 −

∑

b∈B min(g(b), h(b))
∑

b∈B max(g(b), h(b))
.
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Apart from these two, many other measures could of course be used as
well, for example the χ2 statistic, the Kullback-Leibler-divergence, etc. We
did not include these alternatives in our study, mainly since they cause some
computational problems. In particular, their computation becomes numerically
instable for small values h(b) close to 0. In our application, the probability to
encounter such values, or even bins that are completely empty, is rather high.

4.2 Cross-Bin Measures

Bin-by-bin measures essentially treat a histogram as a set of unrelated bins.
Obviously, this comes with a loss of information if, as in the case of distances
between pseudocenters, the underlying domain X , on which the bins are defined,
is endowed with a metric structure. In this case, it makes sense to consider two
bins as neighbored, or to say that bin a is closer to bin b than to c. Cross-bin
measures are able to take such relationships between bins into account, which
is especially advantageous in the presence of noisy data (where an observation
may miss its true bin and instead fall in a neighbored bin). In the following, we
present some measures of this kind.

• Quadratic Form Distance: Given an order b1 < b2 < . . . < bn on B, a
histogram can be written as a vector

~h = (h(b1), h(b2), . . . , h(bn))T . (2)

Using this representation, the quadratic form distance is defined as

dQF (g, h) =

√

(~g − ~h)T A(~g − ~h) ,

where A is a matrix whose entries ai,j specify the similarity between bins
bi and bj . Defining the distance di,j between bin bi and bj by the distance
between the corresponding cores (mid-points of intervals in the non-fuzzy
case), i.e., di,j = |i − j|, we follow [15] and let

ai,j = 1 −
di,j

maxi,j{di,j}
.

As can be seen, (2) performs an all-vs-all comparison of bins, weighting
the comparison between bi and bj by ai,j .

• Cumulative Distributions: Another possibility to exploit an order on B
is to replace the original histogram h by the corresponding cumulative
distribution, defined by

H(b) =
∑

a≤b

h(a) ,

and to measure the distance on these cumulative distributions. Specifi-
cally, the L1-norm

dM (g, h) =
∑

b∈B

|G(b) − H(b)|
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dEMD(g, h) =























min
{
∑

Bn

fi,k |{fi,k : (i, k) ∈ Bn}
}

subject to:
∑

k:(i,k)∈Bn

(fi,k − fk,i) = g(b) − h(b) ∀ b ∈ B

fi,k ≥ 0 ∀ (i, k) ∈ Bn

(3)

is called the match distance [17], and the L∞-norm

dKS(g, h) = max
b∈B

{|G(b) − H(b)|}

the Kolmogorov-Smirnov Distance.

• Earth Mover’s Distance: The so-called “Earth Mover’s Distance” (EMD)
is based on the metaphor of moving masses (of earth) from one bin to
another one, measuring the corresponding amount of work in terms of the
product of mass and distance. The distance between two histograms is
then defined by the minimum amount of work needed to transform the
first histogram into the second one.

It is not difficult to see that the problem of computing such a distance can
be formalized as a min-flow problem (answering the question which part
of the mass g(bi) should be moved to h(bj) and vice versa) and, therefore,
takes the form of a quadratic program (QP).

The original problem formulation has a rather high memory requirement,
due to the need to store a large number of constraints, which is problematic
in our case. Fortunately, [13] proposed an efficient algorithm that makes
our problem amenable to the EMD. Using the L1-norm as ground distance
on B, the problem of calculating the EMD still remains a QP, however,
with a formulation that is much more compact. The corresponding pro-
gram, given in eqn. (3), can again be solved with standard QP-solvers.
The idea behind the simplification is that it suffices to consider the so-
called neighbor-flows between adjacent bins, since all other flows can be
replaced by a cost-equivalent sequence of neighbor-flows. Therefore, the
QP only considers flows fi,k with |i − k| = 1.

5 Experimental Studies

The assessment of a similarity (distance) measure for biomolecular structures,
such as protein binding sites, is clearly a non-trivial problem. In particular,
since the concept of similarity by itself is rather vague, it is difficult to evaluate
corresponding measures in an objective way. To circumvent this problem, we
propose to evaluate similarity measures in an indirect way, namely by means of
their performance in the context of nearest neighbor (NN) classification. The
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underlying idea is that, the better a distance measure is, the better the predictive
performance of an NN classifier (using this measure for determining similar
cases) should be. More specifically, we shall measure performance by means
of a leave-one-out cross validation procedure on a two-class data set, to be
introduced next.

5.1 Data

One important problem in pharmaceutical chemistry is the identification of
protein binding sites that bind a certain ligand. We selected two classes of
binding sites that bind, respectively, to NADH or ATP. This gives rise to a
binary classification problem: Given a protein binding site, predict whether it
binds NADH or ATP.

More concretely, we compiled a set of 355 protein binding pockets repre-
senting two classes of proteins that share, respectively, ATP and NADH as a
cofactor. To this end, we used CavBase to retrieve all known ATP and NADH
binding pockets that were co-crystallized with the respective ligand. Subse-
quently, we reduced the set to one cavity per protein, thus representing the
enzymes by a single binding pocket. As protein ligands adopt different con-
formations due to their structural flexibility, it is likely that the ligands in our
data set are bound in completely different ways, hence the corresponding bind-
ing pocket does not necessarily share much structural similarity. We thus had
to ensure the selection of binding pockets with ligands bound in similar con-
formation. To achieve this, we used the Kabsch algorithm [10] to calculate the
root mean squared deviation (RMSD) between pairs of ligand structures. Sub-
sequently, we combined all proteins whose ligands yielded a RMSD value below
a threshold of 0.4, thereby ensuring a certain degree of similarity. This value
was chosen as a trade-off between data set size and similarity. Eventually, we
thus obtained a two-class data set comprising 214 NADH-binding proteins and
141 ATP-binding proteins.

5.2 Methods

As mentioned above, we use a k-nearest neighbor (k-NN) classifier (with differ-
ent values k) combined with the different types of distance measures introduced
in the previous sections. That is, we tried both types of histogram represen-
tations introduced in Section III and combined them with the bin-by-bin and
cross-bin distance measures discussed in Section IV.

For comparison, we also applied a number of state-of-the art approaches for
protein structure comparison to the same problem, including

• kernel methods: the shortest path (SP) kernel [1], the random walk (RW)
kernel [7] and the fingerprint (FP) kernel [6];

• graph-based methods: the iterative graph alignment (IGA) [20] and the
evolutionary graph alignment (GAVEO) [5];
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• geometric approaches: the labeled point cloud superposition (LPCS) [4].

As performance criteria, we were first of all interested in the accuracy of the
methods in terms of their classification rates but also measured their efficiency
in terms of runtime.

5.3 Results of Comparative Methods

As a point of departure, Table 1 summarizes the results of the approaches
used for comparison. As can be seen, there are clear differences in terms of
performance: The highest classification accuracy is achieved by LPCS, followed
by the fingerprint kernels. The graph-alignment methods (IGA and GAVEO)
perform less strongly, and the worst classification rates are produced by the
graph kernels.

The runtime reported in the table includes the time needed for an all-against-
all comparison of the 355 structures and the time needed to perform a leave-
one-out cross validation. As can be seen, all methods require at least one day.
Upon closer inspection, however, one can recognize significant differences: On
a single-core machine, the fingerprint kernel is the fastest method and needs
around 1.5 days, whereas GAVEO needs more than half a year. Needless to say,
these methods are not practicable for larger data sets.

Table 1: Classification rates and runtime in hours of a k-NN classifier using
different values of k and different distance measures: random walk kernel (RW),
shortest path kernel (SP), labeled point cloud superposition (LPCS), fingerprint
kernel (FP), iterative graph alignment (IGA), and evolutionary graph alignment
(GAVEO).

k RW SP LPCS FP IGA GAVEO
1 0.597 0.606 0.935 0.842 0.766 0.789
3 0.597 0.628 0.916 0.882 0.718 0.766
5 0.597 0.634 0.890 0.873 0.724 0.780
7 0.608 0.625 0.885 0.859 0.718 0.786
9 0.608 0.634 0.862 0.836 0.713 0.766
runtime (h) 1149.88 171.14 361.58 35.98 2136.88 > 5000

5.4 Results for Representation I

Recall that, for the first histogram representation, a protein structure is repre-
sented in terms of two histograms, one for the pseudocenters and one for the
pairwise distances between these centers. In a first test, we tried these two
histograms separately.

Thus, we first reduced the comparison of protein structures to the com-
parison of their respective pseudocenter histograms, using different bin-by-bin
distance measures. The results are shown in Table 2. In light of their simplicity,
all variants perform surprisingly well. Moreover, less than 5 seconds are needed
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Table 2: Classification rates of bin-by-bin measures on the NADH/ATP data
using pseudocenter histograms.

dMF dJk p = 1 p = 2 p = ∞
1 0.7831 0.7239 0.7099 0.7577
3 0.7549 0.7155 0.6986 0.7493
5 0.7268 0.7099 0.6986 0.7211
7 0.7268 0.7070 0.6930 0.7324
9 0.7155 0.7127 0.7099 0.7211

runtime (h) < 0.001 < 0.001 < 0.001 < 0.001

for the whole all-against-all comparison, so this approach is much faster than
the methods used for comparison (due to consistency, the time in again report
in hours).

The results obtained by considering only the distance histogram are sum-
marized in Table 3. As can be seen, the performance is significantly worse,
suggesting that the geometrical structure of a binding site is less informative
than its physico-chemical composition. Moreover, the approach is computa-
tionally more expensive, due to the quadratic number of distances and the use
of cross-bin measures. Still, however, the runtime remains below 10 minutes,
except for the EMD.

Table 3: Classification rates of cross-bin measures on the NADH/ATP data set
using distance histograms of type I.

k dQF dM dKS dEMD

1 0.597 0.594 0.589 0.665
3 0.555 0.623 0.614 0.676
5 0.569 0.611 0.645 0.685
7 0.580 0.639 0.665 0.687
9 0.625 0.654 0.656 0.673

runtime (h) 0.097 0.098 0.084 0.554

Finally, we combined the two best distance measures on pseudocenters and
distances, respectively, in terms of the L2-norm. Thus, we used the Minkowski
distance to compare pseudocenter histograms and the earth-mover distance to
compare distance histograms. Since the time to calculate the L2-norm can be
neglected, the runtime can still be taken from Table 3. Using this approach,
classification rates of more than 80% can be achieved, as can be seen in Table
4.

5.5 Results for Representation II

For the second histogram representation, we used (1) to combine the individual
distances on the 28 histograms. As expected, the cross-bin measures, for which
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Table 4: Classification rates using representation I and the measures dMF and
dEMD, respectively, on the NADH/ATP data set.

k 1 3 5 7 9
accuracy 0.797 0.837 0.806 0.806 0.789

Table 5: Classification rates of bib-by-bin measures on the NADH/ATP data
set. Combination of all 28 distances by calculating the L2-norm.

dMF dJk p = 1 p = 2 p = ∞
1 0.870 0.848 0.806 0.873
3 0.854 0.834 0.817 0.870
5 0.794 0.814 0.792 0.848
7 0.769 0.803 0.786 0.842
9 0.763 0.780 0.780 0.834

runtime (h) 0.471 0.473 0.473 0.472

the results are summarized in Table 6, perform somewhat better than the bin-
by-bin measures whose results are given in Table 5. As can be seen, the more
complex histogram representation leads to a further gain in accuracy, albeit at
the expense of a slightly increased runtime. In comparison to existing (graph-
based and geometric) methods, however, the runtime is still much smaller, by a
factor of about 800. At the same time, this representation achieves even higher
classification rates.

5.6 Results for Fuzzy Histograms

Finally, the results on fuzzy histograms are summarized in Table 7 (bin-by-
bin measures) and Table 8 (cross-bin-measures). Somewhat surprisingly, cross-
bin measures do not produce better results than simple bin-by-bin measures in
the fuzzy case. As a possible explanation, note that the boundary problem is
already solved by the fuzzy extension itself, making fuzzy histograms much more
robust toward noise. Anyway, the combination of fuzzy histograms and bin-by-

Table 6: Classification rates of cross-bin measures on the NADH/ATP data set.
Combination of all 28 distances by calculating the L2-norm.

k dQF dM dKS dEMD

1 0.862 0.865 0.859 0.772
3 0.856 0.882 0.854 0.749
5 0.845 0.865 0.837 0.732
7 0.823 0.851 0.814 0.738
9 0.823 0.837 0.817 0.721

runtime (h) 0.785 0.470 0.472 11.53
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Table 7: Classification rates of bib-by-bin measures on the NADH/ATP data
set using fuzzy histograms.

dMF dJk p = 1 p = 2 p = ∞
1 0.890 0.870 0.868 0.885
3 0.890 0.873 0.851 0.890
5 0.876 0.854 0.814 0.862
7 0.848 0.839 0.811 0.851
9 0.831 0.831 0.797 0.842

runtime (h) 2.21 2.22 2.21 2.22

Table 8: Classification rates of cross-bin measures on the NADH/ATP data set
using fuzzy histograms.

k dQF dM dKS dEMD

1 0.853 0.862 0.856 0.839
3 0.851 0.879 0.865 0.839
5 0.848 0.856 0.851 0.834
7 0.828 0.845 0.825 0.811
9 0.825 0.834 0.828 0.792

runtime (h) 2.52 2.21 2.22 13.15

bin measures seems to be the most promising one, at it achieves the highest
classification rates (about 90%). Besides, it remains extremely efficient from
a computational point of view; of course, the runtime increases in comparison
to the non-fuzzy case since more arithmetical operations must be performed.
However, in comparison to existing (graph-based) methods in this field, fuzzy
histograms are still more efficient by a factor 85.

6 Conclusions

Returning to the question raised in the introduction to this paper, namely the
question concerning the potential usefulness of histogram-based similarity (dis-
tance) measures for protein structure comparison, our empirical results clearly
provide evidence in favor of an affirmative answer. The best combination of his-
togram representation and distance measure is able to outperform, in terms of
classification accuracy, several state-of-the-art methods in this field and comes
close to the best among these methods. The use of fuzzy instead of conventional
histograms turned out to be beneficial in this regard. At the same time, our
approach is computationally much more efficient. Doubtlessly, it thus provides
a viable alternative for large-scale studies in which efficiency is a crucial issue
and important prerequisite.

Admittedly, however, our evidence is not yet as thorough as it should be,
since the experiments were restricted to a single data set. On the one hand, it is
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true that, while sequence data abounds, the collection of data sets in structural
bioinformatics is much more difficult, all the more if specific requirements have
to met (like those resulting from our experimental design). On the other hand,
complementing our experiments by further studies of similar kind is clearly
necessary and therefore on the agenda for future work.
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