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Abstract

This paper introduces a new approach to classification which combines

pairwise decomposition techniques with ideas and tools from fuzzy preference

modeling. More specifically, our approach first decomposes a polychotomous

classification problem involving m classes into an ensemble of binary prob-

lems, one for each ordered pair of classes. The corresponding classifiers are

trained on the relevant subsets of the (transformed) original training data.

In the classification phase, a new query is submitted to every binary learner.

The output of each classifier is interpreted as a fuzzy degree of preference for

the first in comparison with the second class. By combining the outputs of

all classifiers, one thus obtains a fuzzy preference relation which is taken as a

point of departure for the final classification decision. This way, the problem

of classification is effectively reduced to a problem of decision making based

on a fuzzy preference relation. Corresponding techniques, which have been

investigated quite intensively in the field of fuzzy set theory, hence become

amenable to the task of classification. In particular, by decomposing a prefer-

ence relation into a strict preference, an indifference, and an incomparability
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relation, this approach allows one to quantify different types of uncertainty in

classification and thereby supports sophisticated classification and postpro-

cessing strategies.

1 Introduction

As one of the standard problems of supervised learning, the performance task of

classification has been studied intensively in the field of machine learning. In clas-

sification, the prediction to be made consists of a discrete class label. Thus, the

problem is to learn a model that establishes an X −→ L mapping from an instance

space X to a finite set L of class labels. For the representation of such a mapping,

various model classes have been proposed in machine learning and related fields,

such as neural networks, kernel machines, or classification trees [13].

The arguably simplest type of classification problems are dichotomous (binary, two-

class) problems for which |L| = 2. For such problems, a multitude of efficient and

theoretically well-founded classification methods exists. In fact, the representation

of models is often geared toward the binary case, and sometimes even restricted to

this problem class. For example, several popular machine learning techniques, such

as support vector machines [24], learn a decision boundary that can only divide the

instance space into two parts, one for each class. Similarly, concept learning, i.e.,

the task of learning a description of a target concept from examples and counter-

examples of the concept, may be considered as a two-class classification task.

Needless to say, practically relevant problems are not always restricted to the binary

case. One approach for tackling polychotomous (multi-class) problems is to use

model classes that are able to represent an X −→ L mapping for |L| > 2 directly,

such as classification trees. An alternative strategy is to transform the original
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Figure 1: Basic structure of the learning by pairwise comparison approach.

problem into several binary problems via a class binarization technique. One very

general approach to binarization is based on the idea of representing the original

classes in terms of binary codes with error-correcting properties [4, 1]. Two special

cases of this approach, the one-vs-rest and the all-pairs technique, have received

special attention in the literature.

The unordered or one-vs-rest binarization is perhaps the most popular class bina-

rization technique. It takes each class in turn and learns a binary concept that

discriminates this class from all other classes. At prediction time, each binary clas-

sifier decides whether the query input belongs to its concept or not. Tie breaking

techniques (typically based on confidence estimates for the individual predictions)

are used in case of conflicts, which may arise when more than one concept is pre-

dicted or all classifiers abstain.

The key idea of the alternative learning by pairwise comparison (LPC) approach

(aka pairwise classification, round robin learning, all-pairs) is to transform an m-

class problem into m(m−1)/2 binary problems, one for each pair of classes (Fig. 1).1

At classification time, a query instance is submitted to all binary models, and the

predictions of these models (the sij in Fig. 1) are combined into an overall classifi-

cation. In [9, 10], it was shown that pairwise classification is not only more accurate

than the one-vs-rest technique but that, despite the fact that the number of models

1Alternatively, one can consider a binary problem for every ordered pair of classes, in which
case the total number of such problems is doubled. We shall come back to this point later on.



that have to be learned is quadratic in the number of classes, pairwise classification

is also more efficient (at least in the training phase) than one-vs-rest classification.

The reason is that the binary decision problems not only contain fewer training ex-

amples (because all examples that do not belong to either of the classes are ignored),

but that the decision boundaries of each binary problem may also be considerably

simpler than for the problems generated by the one-vs-rest transformation (which

in turn can further increase computational efficiency in the evaluation phase).

This paper elaborates on another interesting aspect of the LPC approach: Assuming

that every binary learner outputs a score in the unit interval (or, more generally,

an ordered scale), and that this score can reasonably be interpreted as a “fuzzy

preference” for the first in comparison with the second class, the complete ensemble

of pairwise learners produces a valued or fuzzy preference relation. The final clas-

sification decision is then made on the basis of this relation. In other words, the

problem of classification has been reduced, in a first step, to a problem of decision

making based on a valued preference relation.

Of course, the problem of deriving a final classification decision from the predictions

of the whole ensemble of pairwise learners is an integral part of the LPC approach

and might therefore not be regarded as a novel aspect by itself. What is new,

however, is to look at the ensemble of predictions as a fuzzy preference relation.

This perspective establishes a close connection between (pairwise) learning and fuzzy

preference modeling, and therefore allows for applying techniques from the former

field in the context of machine learning. For example, since the binary learners are

trained independently of each other and, moreover, predictions can be incorrect,

the preference relation produced by an ensemble of such learners is not guaranteed

to have any “reasonable” properties, such as transitivity. Thus, a first step could

consist of post-processing this relation, using techniques from fuzzy preferences, so

as to resolve inconsistencies between the pairwise predictions.



In this paper, we are especially interested in exploiting techniques for decomposing

a fuzzy (weak) preference relation into a preference structure consisting of a strict

preference, an indifference, and an incomparability relation. As will be argued in

more detail later on, the latter two relations have a quite interesting interpretation

and important meaning in the context of classification, where they represent two

types of uncertainty/ambiguity, namely conflict and ignorance. Consequently, these

relations can support sophisticated classification strategies, including those that

allow for partial reject options.

The remainder of the paper is organized as follows. Section 2 details the LPC ap-

proach to classification, and Section 3 recalls the basics of valued preference struc-

tures. Section 4 is devoted to the idea of classification based on valued preference

relations, including the important element of learning weak preferences between

class labels. Potential applications of the approach are discussed in Section 5, and

first empirical results are presented in Section 6. Finally, Section 7 provides a brief

discussion of related work and Section 8 concludes the paper.

2 Learning by Pairwise Comparison

As mentioned earlier, learning by pairwise comparison (LPC) transforms a multi-

class classification problem, i.e., a problem involving m > 2 classes (labels) L =

{λ1 . . . λm}, into a number of binary problems. To this end, a separate model (base

learner) Mi,j is trained for each pair of labels (λi, λj) ∈ L. Mi,j is intended to

separate the objects with label λi from those having label λj. If (x, λa) ∈ X × L

is an original training example (revealing that instance x has label λa), then x is

considered as a positive example for all learners Ma,j and as a negative example

for the learners Mj,a (j 6= a); those models Mi,j with a 6∈ {i, j} simply ignore this

example.



At classification time, a query x is submitted to all learners, and each prediction

Mi,j(x) is interpreted as a vote for a label. In particular, if Mi,j is a {0, 1}-valued

classifier, Mi,j(x) = 1 is counted as a vote for λi, while Mi,j(x) = 0 would be

considered as a vote for λj. Given these outputs, the simplest classification strategy

is to predict the class label with the highest number of votes. A straightforward

extension of the above voting scheme to the case of [0, 1]-valued (scoring) classifiers

yields a weighted voting procedure: The score for label λi is computed by

si
df
=

∑

1≤j 6=i≤m

si,j, (1)

where si,j = Mi,j(x), and again the label with the highest score is predicted.

The votes si,j in (1) and, hence, the learners Mi,j are usually assumed to be (addi-

tively) reciprocal, that is,

sj,i ≡ 1 − si,j (2)

and correspondingly Mi,j(x) ≡ 1 −Mj,i(x). Practically, this means that only one

half of the m(m − 1) classifiers Mi,j needs to be trained, for example those for

i < j. As will be seen later on, this restriction is not very useful in our approach.

Therefore, we will train the whole set of classifiers Mi,j, 1 ≤ i 6= j ≤ m, which

means that no particular relation between si,j and sj,i will be assumed.

3 Fuzzy Preference Structures

Considering the classification problem as a decision problem, namely a problem of

deciding on a class label for a query input x, an output ri,j = Mi,j(x) can be

interpreted as a preference for label λi in comparison with label λj: The higher ri,j ,

the more preferred is λi as a classification for x, i.e., the more likely λi appears in



comparison with label λj. Correspondingly, the matrix

R =




1 r1,2 . . . r1,m

r2,1 1 . . . r2,m

...
...

rm,1 rm,2 . . . 1




(3)

obtained by collecting the outputs of the whole classifier ensemble can be interpreted

as a fuzzy or valued preference relation. More specifically, suppose that R can

be considered as a weak preference relation, which means that ri,j = R(λi, λj) is

interpreted as λi � λj, that is, “label λi is at least as likely as label λj”. In this

case, R is reflexive, which is the reason for setting the diagonal elements in (3) to 1.

It is important to note that, from a learning point of view, equating classifier scores

si,j with weak preferences ri,j raises the crucial question of how to train models that

are able to deliver predictions having this special semantics; we shall come back to

this issue in Section 4.4.

A classification decision can then be made on the basis of the relation (3). To

this end, one can resort to corresponding techniques that have been developed and

investigated quite thoroughly in fuzzy preference modeling and decision making [7].

In principle, the simple voting scheme (1) outlined in Section 2 can be seen as a

special case of such a decision making technique.

In this paper, our interest concerns the application of techniques for decomposing

the relation R into three associated relations with different meaning. Recall that R

is considered as a weak preference relation. In the non-fuzzy case where ri,j ∈ {0, 1},

a weak preference relation induces a strict preference relation P , an indifference

relation I, and an incomparability relation J in a straightforward way. Denoting



strict preference by �, indifference by ∼, and incomparability by ⊥, we get:

λi � λj
df
⇔ (λi � λj) ∧ (λi 6� λj)

λi ∼ λj
df
⇔ (λi � λj) ∧ (λi � λj) (4)

λi ⊥ λj
df
⇔ (λi 6� λj) ∧ (λi 6� λj)

The other way round, a triplet (P , I,J ) of binary relations in L is called a (Boolean)

preference structure on L if is has the following properties:

• P and J are irreflexive, I is reflexive;

• P is asymmetrical, I and J are symmetrical;

• P ∩ I = ∅, P ∩ J = ∅, I ∩ J = ∅;

• P ∪ P t ∪ I ∪ J = L × L.

In the fuzzy case, preference degrees can be expressed on the continuous scale [0, 1],

and a binary relation becomes an L × L −→ [0, 1] mapping [27]. Referring to

the class of t-norms [17] to operate on fuzzy preference degrees, a fuzzy preference

structure can be defined as follows: Let (T, S,N) be a continuous De Morgan triplet

consisting of a strong negation N , a t-norm T , and its N-dual t-conorm S; moreover,

denote the T -intersection of two sets A and B by A∩T B and the S-union by A∪S B.

A fuzzy preference structure on L is a triplet (P , I,J ) of fuzzy relations satisfying

• P and J are irreflexive, I is reflexive;

• P is T -asymmetrical (P ∩T P t = ∅), I and J are symmetrical;

• P ∩T I = ∅, P ∩T J = ∅, I ∩T J = ∅;

• P ∪S P t ∪S I ∪S J = L × L.



Fuzzy preference structures, especially their axiomatic construction, have been stud-

ied extensively in the literature (e.g. [7, 2, 8, 20, 21, 22]). The same is true for the

question of how to decompose a weak (valued) preference relation R ∈ [0, 1]m×m into

a strict preference relation P , and indifference relation I, and an incomparability

relation J such that (P , I,J ) is a fuzzy preference structure. Without going into

technical detail, we only give an example of a commonly employed decomposition

scheme which is simply obtained by replacing, respectively, the conjunction and

negation in (4) by the product t-norm and the 1 − (·) mapping (again, we denote

ri,j = R(λi, λj)):

P(λi, λj) = ri,j × (1 − rj,i)

I(λi, λj) = ri,j × rj,i (5)

J (λi, λj) = (1 − ri,j) × (1 − rj,i)

A related decomposition scheme will also be used in the experimental part below.

More generally, one could of course ask for an “optimal” choice of the decomposition,

i.e., for the decomposition that performs best in our context of classification learning.

This question, however, is beyond the scope of this paper and will be left for future

work. Besides, as will be seen later on, it cannot be addressed in separation, since the

suitability of a decomposition also depends on the way in which the weak preference

degrees R(λi, λj) are learned.

4 Fuzzy Modeling of Classification Knowledge

Regardless of the particular decomposition scheme employed, the crucial point is

that the relations I and J do have a very interesting meaning in the context of

classification: Indifference corresponds to the conflict involved in a classification

situation, while incomparability reflects the corresponding degree of ignorance.



Figure 2: Classification scenario: Observations from two classes (points) and new
query instances (crosses).

Figure 3: Regions of conflict (gray area) and ignorance (area not covered by any
rule) in case of a rule-based model (rules indicated as rectangles).

4.1 Conflict and Ignorance in Classification

To illustrate what we mean, respectively, by conflict and ignorance, consider the

simple classification scenario shown in Fig. 2: Given observations from two classes,

black and white, three new instances marked by a cross need to be classified.

Obviously, given the current observations, the upper left instance can quite safely

be classified as white. The case of the lower left instance, however, involves a high

level of conflict, since both classes, black and white, appear plausible. The third

situation is an example of ignorance: The upper right instance is located in a region

of the instance space in which no observations have been made so far. Consequently,

there is neither evidence in favor of class black nor in favor of class white.



More generally, one may speak of a conflict if there is evidence in favor of two or more

classes simultaneously, while a situation of ignorance occurs if none of the classes

is supported. For instance, when characterizing each class in the above example in

terms of (exception-tolerant) interval-based rules, that is, axis-parallel rectangles,

we may obtain the model shown in Fig. 3. Here, a conflict occurs for the points in

the intersection, where both rules apply, while the region of ignorance is given by

the points that are not covered by any rule.

4.2 Model Assumptions

In the above example, the meaning of and difference between conflict and ignorance

is intuitively quite obvious. Upon closer examination, however, these concepts turn

out to be more intricate. In particular, one should realize that ignorance is not

immediately linked with sparseness of the input space. This is due to the fact

that generalization in machine learning is not only based on the observed data but

also involves a model class with associated model assumptions.2 In fact, a direct

connection between ignorance and sparely populated regions of the input space

can only be established for instance-based (prototype-based) classifiers, since these

classifiers are explicitly based on the assumption that closely neighbored instances

belong to the same class.

The situation is different, however, for other types of models. For example, Fig. 4

shows a scenario in which a query point in a sparse input region can be classified quite

safely, given the observed data in conjunction with the assumption of a linear model.

In other words, given the correctness of the inductive bias of the learner (linearity

assumption), the current observations allow for quite confident conclusions about

the label of the query, even though the latter does not have any close neighbors.

2It is well-known that learning from data is impossible without an (appropriate) inductive bias
[19].



Figure 4: Given the assumption of linear separability, the query instance can be
classified quite safely, even though it is spatially isolated from all other examples.

Figure 5: Depending on the model assumptions (linear decision boundary vs. axis-
parallel boundary) the classification of the query (cross) is ambiguous (left) or not
(right).

As suggested by this example, the ambiguity of a classification scenario “lies in the

eye of the beholder”, that is, it depends on the “biased” view of the underlying

model class: The same classification scenario may appear ambiguous for one model

class but unambiguous for another one. To illustrate, consider the example in Fig. 5.

Given the assumption of a linear model (left picture), the situation appears to be

ambiguous, as there are consistent models that classify the query point as white

but also others that will predict black. Given the more restrictive model class

of decision stumps (decision trees with only one inner node or, stated differently, a

decision boundary which is parallel to one of the axes), the situation is unambiguous

(right picture).



The type of model also plays an important role when it comes to formalizing the

concepts of conflict and ignorance in a rigorous way. For example, it makes a great

difference whether or not an individual model by itself is already able to represent

conflict and/or ignorance. For example, a rule-based classifier is in principle able to

express ignorance, while this is impossible for standard discriminative learners such

as support vector machines (that are forced to make a decision). Likewise, proba-

bilistic classifiers are unable to represent ignorance, even though they can express

a conflict, namely in terms of a distribution that assigns a positive probability to

more than one class. In the following, we develop a formal conception of conflict

and ignorance that assumes this kind of probabilistic or, more generally, scoring

classifier as a base learner.

4.3 A Formal Conception of Conflict and Ignorance

Let M denote the model class underlying the classification problem, where each

model is a scoring classifier in the form of an X −→ [0, 1] mapping. As mentioned

before, we assume that each individual model is able to represent a conflict: The

stronger a prediction deviates from the two extremes 1 (evidence in favor of the

first class) and 0 (support of the second class) or, in other words, the closer it is

to 1/2, the stronger the conflict. Moreover, let V = V(D) be the set of models

which are compatible with the examples given, i.e., the set of models which can

still be regarded as possible candidates given the data D; in the machine learning

literature, V is called the version space.3 Then, given a query x0 ∈ X , the set of

possible predictions is

Y0 = {M(x) |M ∈ V(D) ⊆ M} (6)

3The concept of a version space essentially assumes noise-free data. We come back to this
problem in Section 4.4.



It seems reasonable to define the degree of ignorance of a prediction in terms of the

diversity of Y0: The more predictions appear possible, i.e., the higher the diversity

of predictions, the higher is the degree of ignorance.

According to this view, ignorance corresponds to that part of the (total) uncertainty

about a prediction that can potentially be reduced by gathering more examples. In

fact, the more examples have been observed, the smaller becomes the version space

V , and therefore the more precise the set of possible predictions Y0. To illustrate,

consider two extreme scenarios: Firstly, imagine that no example has been observed

so far. This is a situation of complete ignorance, since every model and therefore

every output for a new query x0 appears to be possible. Secondly, suppose a large

amount of data to be given, so that a single correct model M∗ can be identified (at

least approximately and with high probability). In this case, there is no ignorance

left, since only one prediction M∗(x0) remains. Note, however, that the prediction

could still be uncertain or, say, conflicting, as M∗ may support more than one class.

To summarize on this score,

• the degree of ignorance (incomparability) corresponds to that part of the un-

certainty of a prediction which is due to limited empirical data and which can

in principle be reduced by gathering additional examples;

• the degree of conflict (indifference) corresponds to that part of the uncertainty

which is due to a known conflict and which cannot be reduced any further.

4.4 Learning Valued Preferences for Classification

The general idea of our method, subsequently referred to as LVPC (Learning Valued

Preferences for Classification), is the following: First, the weak preference relation

(3) is learned using an LPC approach. Then, this relation is decomposed into a

preference structure (P , I,J ), that is, into three corresponding relations
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such that J characterizes the ignorance involved in a prediction, in the sense as

outlined above, and I the degree of conflict. In this context, two crucial problems

have to be solved: Firstly, how to learn a suitable weak preference relation R, and

secondly, how to decompose R into a structure (P , I,J ). As the decomposition

problem has already been studied thoroughly in the literature and, moreover, the

suitability of a particular scheme will strongly depend on the way in which R has

been induced, we shall subsequently focus on the first problem.

Learning a weak preference relation R means that, for every pair of labels (λi, λj), we

have to induce models Mi,j and Mj,i such that, for a given query input x, Mi,j(x)

corresponds to the degree of weak preference λi � λj and, vice versa, Mj,i(x) to

the degree of weak preference λj � λi. The models Mi,j are of special importance

as they directly determine the degrees of conflict and ignorance associated with a

comparison between λi and λj. This fact is also crucial for the properties that the

models Mi,j should obey.

According to the idea outlined above, a weak preference in favor of a class label

should be derived from the set (6) of possible predictions. As this set in turn de-

pends on the version space V , the problem comes down to computing or at least

approximating this space. In this connection, it deserves mentioning that an exact

representation of the version space will usually not be possible for reasons of com-

plexity. Apart from that, however, a representation of that kind would not be very

useful either. In fact, despite the theoretical appeal of the version space concept, a



Figure 6: Illustration of the version space (class of hyperplanes that classify the
training data correctly) and the “region of ignorance” (shaded in light color).

considerable practical drawback concerns its extreme sensitivity toward noise and

inconsistencies in the data.

To overcome these problems, our idea is to approximate a version space in terms of

a finite number of representative models; to some extent, these models should also

be robust toward noise. More specifically, consider the problem of learning a binary

model Mi,j from an underlying model class M. To approximate the version space

associated with Mi,j , we induce a finite set of models

Mi,j =
{
M

(1)
i,j ,M

(2)
i,j . . .M

(K)
i,j

}
⊆ M (7)

The set of possible predictions (6) is approximated correspondingly by

Ŷ0 = Mi,j(x) =
⋃

k=1...K

M
(k)
i,j (x).

An illustration is given in Fig. 6. Assuming that the two classes black and white can

be separated in terms of a linear hyperplane, the version space consists of all those

hyperplanes that classify the training data correctly. Given a new query instance, a

unique class label can be assigned only if that instance lies on the same side of all

hyperplanes (this situation is sometimes called “unanimous voting” [26]). Otherwise,



both predictions are possible; the corresponding set of instances constitutes the

“region of ignorance” which is shaded in light color.

In the above example, {0, 1}-valued classifiers were used to ease exposition. In the

context of fuzzy classification, however, scoring classifiers with outputs in the unit

interval are more reasonable. Suppose that each ensemble member M
(k)
i,j in (7)

outputs a score s
(k)
i,j ∈ [0, 1]. The minimum of these scores would in principle be

suitable as a degree of (weak) preference for λi in comparison with λj:

ri,j = min
k=1...K

s
(k)
i,j .

As this order statistic is quite sensitive toward noise and outliers, however, we

propose to replace it by the empirical α-quantile of the distribution of the s
(k)
i,j (a

reasonable choice is α = 0.1).

Note that, in case the models in M are reciprocal, only Mi,j or Mj,i needs to be

trained, but not both. We then have s
(k)
i,j = 1 − s

(k)
j,i , and the α-quantile for Mi,j

is given by 1 minus the (1 − α)-quantile for Mj,i. In other words, the degree of

ignorance is directly reflected by the distribution of the scores s
(k)
i,j = 1 − s

(k)
j,i and

corresponds to the length of the interval between the α-quantile and the (1 − α)-

quantile of this distribution. Thus, the more precise this distribution, the smaller

the degree of ignorance. In particular, if all models M
(k)
i,j output the same score s,

the ignorance component shrinks to 0. An illustration is given in Fig. 7.

Regarding the practical implementation of the approach outlined above, there are

of course different ways to approximate the version space. In fact, the way in

which the models in (7) are obtained strongly depends on the model class M. The

basic idea is to apply randomization techniques as they are typically employed in

ensemble learning methods. In the experiments below, we shall use ensembles of

linear perceptrons, each of which is trained on a random permutation of the whole

data.
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Figure 7: Distribution of the scores output by an ensemble Mi,j . The degree of
ignorance corresponds to the imprecision (width) of the distribution (here measured
in a robust way in terms of the distance between the α- and (1 − α)-quantile), see
upper left figure. Special cases include high conflict by no ignorance (upper right),
complete certainty (lower left), and complete ignorance (lower right).



We conclude this section with a remark on complexity issues. Of course, the more

detailed information that LVPC provides in comparison with simple multi-class clas-

sifiers is not obtained for free. Instead, it comes along with an increased compu-

tational complexity for training, mainly for two reasons: First, due to the decom-

position, a quadratic number of binary models is trained instead of only a single

m-class model. Note, however, that this does not imply an increase in complexity

that is quadratic in m. In fact, since each binary problem involves only a fraction

of the whole training data, the total number of examples used in the training phase

increases only linearly, that is, by the factor m [10]. The second increase in com-

plexity is due to the training of an ensemble (7) consisting of K models; obviously,

the total complexity thus increases also linearly with K.

5 Potential Applications

LVPC as outlined above can be seen as a technique for deriving a condensed repre-

sentation of the classification-relevant information as reflected by the version space.

In fact, a simple visualization of the relations P , I, and J as shown, e.g., in Fig. 8,

where preference degrees are indicated as levels of gray, may already be useful in

order to get a rough idea of the current state of affairs. For example, to quality as

a top-class, the associated row in the strict preference relation P should be rather

dark (except the diagonal element), suggesting that the class label is (more or less)

strictly preferred to all other ones. Likewise, by inspecting the matrices I and J ,

one gets a first idea about the uncertainty of the pairwise comparisons.

However, once a preference structure (P , I,J ) has been induced, it can also be

taken as a point of departure for sophisticated decision strategies which go beyond

simple voting procedures. This approach becomes especially interesting in extended

classification scenarios, that is, generalizations of the conventional setting in which
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a single decision in favor of a unique class label is requested; more generally,

• it might be allowed to predict several class labels instead of only a single one

in cases of conflict, or

• to defer an immediate decision in cases of ignorance (or conflict).

The second scenario is known as classification with reject option in the literature,

where one often distinguishes between ambiguity rejection [3, 12] and distance rejec-

tion [6]. Interestingly, this corresponds roughly to our distinction between conflict

and ignorance. As we explained above, however, our conception of ignorance is more

general and arguably more faithful, as it takes the underlying model assumptions

into account: equating distance (between the query and observed examples) with

ignorance does make sense for instance-based classifiers but not necessarily for other

approaches with different model assumptions.

It is true that uncertainty of a classification can also be represented by a standard

probabilistic classifier, or even by a more general type of scoring classifier: A classifi-

cation appears uncertain as soon as at least one other class has a probability (score)

which is almost as high as the probability (score) of the predicted class. One should

recall, however, the well-known problem that probability cannot distinguish between

conflict and ignorance, mainly due to the normalization constraint requiring that



probability degrees must add to 1. In probability theory, for example, complete

ignorance is usually modeled by the uniform probability distribution, as suggested

by the principle of insufficient reason. In the third case of our example in Fig. 2,

this means giving a probability of 1/2 to both classes. Now, the adequacy of the

uniform distribution as a representation of ignorance has been called into question

by several scholars [5]. In particular, the uniform distribution does not distinguish

between complete ignorance and the situation where one can be quite sure that

the class labels are indeed equi-probable, since the uniform distribution is strongly

suggested by the examples given (case 2 in our example).

From a knowledge representational point of view, a distinction between conflict (e.g.,

exactly knowing that outcomes are equally likely) and ignorance (e.g., not know-

ing anything) clearly seems worthwhile. For example, telling a patient that your

experience does not allow any statement concerning his prospect of survival is very

different from telling him that his chance is fifty-fifty! Moreover, separating conflict

from ignorance can also be useful from a decision making (classification) perspec-

tive, at least if there is a possibility to abstain from a decision as in classification

with reject option. In fact, in a situation of high ignorance, it might be reason-

able to refuse an immediate decision, and instead to gather additional information.

For example, consider a physician who is looking for a diagnosis. If the current

knowledge about the patient at hand is not sufficient for a reliable diagnosis, he

will gather additional information, e.g., by making complementary medical tests or

by searching the literature for similar cases. In machine learning terms, the first

type of information procurement corresponds to adding features (attributes) to the

instance representation, while the second one corresponds to gathering additional

observations.

While abstaining from an immediate decision may be reasonable in a situation of

ignorance, the same is not necessarily true in cases of conflict. In the second case
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of our example in Fig. 2, for instance, the usefulness of additional observations will

be quite limited, i.e., corresponding examples will hardly resolve the conflict. As

opposed to this, additional examples could be very helpful in the third case, where

they may indeed reduce the level of conflict.

In this connection, another advantage of our pairwise learning scheme deserves men-

tioning: In order to characterize the current decision situation, the relation J does

not only provide a single degree of ignorance but instead offers such degrees for

every pair of classes separately. Thus, it becomes possible to focus the acquisition

of additional information on particular classes or pairwise classifiers, thereby saving

resources and reducing costs (see again Fig. 8).

Another interesting field of application is the prediction of structured outputs. The

latter refers to an extension of standard classification learning in which, instead of

predicting a single class label (the top-label), the problem is to predict a certain type

of preference relation on the complete label set L. As a special case, the problem

of label ranking has recently attracted attention in the literature [11, 16]. Here, the

sought preference structure is a total order (ranking): Given an input x ∈ X , predict

the ranking of the class labels L associated with this instance. To illustrate, imagine

that an instance is a person, and that the ranking expresses his or her preferences



with respect to a fixed set of movies (the class labels). An obvious extension of

label ranking is the prediction of less restricted types of preference relations, such

as weak or partial orders (see Fig. 9). For the time being, it is completely unclear

how such types of prediction problems can be approached in a theoretically sound

way, especially due to the problem of handling the incomparability relation. Our

approach of LVPC may therefore provide an interesting basis for solving prediction

problems of that kind.

6 Experimental Results

As pointed out in the previous section, our method LVPC is potentially useful in the

context of various types of extended classification scenarios. Basically, it can be seen

as a first step of the overall classification process: The preference structure (P , I,J )

derived by LVPC serves as an input for a subsequent decision policy which is re-

sponsible for the final decision. As mentioned earlier, the design of suitable policies

is highly application-specific and beyond the scope of this paper. In this section, we

therefore restrict ourselves to a simple experimental setup which is suitable for test-

ing a key feature of LVPC, namely its ability to represent the amount of uncertainty

involved in a classification.

More specifically, we used LVPC as a means for implementing a reject option in the

context of binary classification. To this end, we conducted an experimental study on

10 binary classification data sets from the Statlog and UCI repositories (cf. Fig. 10).4

Each of the data sets was randomly split into a training and test set of (roughly)

equal size. As model classes Mi,j , we used ensembles of 100 perceptrons with linear

kernels and the default additive diagonal constant 1 (to account for non-separable

problems), which were induced on the training data. Each perceptron was provided

with a random permutation of the training set in order to obtain a diverse ensemble

4These are preprocessed versions from the LIBSVM-website.



name # features # classes # examples
1 australian scale 14 2 690
2 breast-cancer scale 10 2 683
3 diabetes scale 8 2 768
4 fourclass scale 2 2 862
5 german 24 2 1000
6 heart scale 13 2 270
7 ionosphere scale 34 2 351
8 splice scale 60 2 1000
9 sonar scale 60 2 208

10 w1a 300 2 2477
11 vehicle 18 4 846
12 vovel 10 10 528

Figure 10: Data sets used in the experiments.

[14]. This process was repeated 10 times to reduce the bias induced by the random

splitting procedure, and the results were averaged.

On the test sets, the real-valued classification outputs of the perceptrons were con-

verted into normalized scores using a common logistic regression approach by Platt

[23]. For a given test instance, the weak preference component ri,j = R(λi, λj) was

derived by the 0.1-quantile of the distribution of the scores from the ensemble Mi,j

(see Section 4.4). Moreover, as a decomposition scheme we used a slight modification

of (5):

P(λi, λj) = ri,j (1 − rj,i)

I(λi, λj) = 2 ri,j rj,i (8)

J (λi, λj) = 1 − (ri,j + rj,i)

The reason for the modification is that in (8), the ignorance component nicely agrees

with our derivation of weak preference degrees: It just corresponds to the width of

the distribution of the scores generated by Mi,j (or, more precisely, the length of the

interval between the quantiles of this distribution); therefore, it reflects the diversity

of the predictions and becomes 0 if all ensemble members M
(k)
i,j agree on exactly the



same score.

Finally, all test instances were ordered with respect to the associated degrees of

conflict (ignorance), and corresponding accuracy-rejection diagrams were derived.

These diagrams provide a visual representation of the accuracy levels α as a function

of the rejection rate ρ: If the ρ% test instances with the highest degrees of conflict

(ignorance) are refused, then the classification rate on the remaining test instances

is α. In practice, an accuracy-rejection curve could be used, for example, in order to

derive a reject rule that guarantees a certain reliability: Fixing a desired classification

rate α∗, one finds a level of uncertainty γ (expressed, e.g., in terms of conflict and/or

ignorance) such that, by rejecting instances for which the uncertainty is > γ, those

instances that are not rejected are classified correctly with probability at least α.

Obviously, the effectiveness of LVPC in representing uncertainty is in direct corre-

spondence with the shape of the accuracy-rejection curve: If the degree of conflict

(ignorance) produced by LVPC is a good indicator of the reliability of a classifica-

tion, then the ordering of instances according to conflict (ignorance) is in agreement

with their respective degree of reliability (chance of misclassification), which in turn

means that the accuracy-rejection curve is monotone increasing. The presumption

that LVPC is indeed effective in this sense is perfectly confirmed by the experimental

results, as can be seen in Fig. 11–12.

Experiments of this kind can of course also be made for multi-class data sets, even

though the rejection rule needs to be generalized in this case. One possibility, for

example, is to base the reject decision on the degree of conflict (ignorance) of the

best class (in terms of the sum of strict pairwise preference) in comparison with

the second-best class. To illustrate, Fig. 13 shows corresponding results that we

obtained, respectively, for a 10-class and a 4-class data set.
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Figure 11: Accuracy-rejection curves for the data sets 1–6.
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Figure 12: Accuracy-rejection curves for the data sets 7–10.
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Figure 13: Accuracy-rejection curves for the data sets 11–12.



7 Related Work

The idea of learning valued preference relation for classification as introduced in this

paper is, to the best of our knowledge, novel and has not been presented in this form

before. Needless to say, however, there are several methods that are related to LVPC

in one way or the other. In particular, regarding the methodological framework, the

close connection of LVPC to pairwise learning in the field of machine learning and

to preference modeling in fuzzy set theory has already been mentioned repeatedly.

Moreover, regarding potential applications to classification, we already indicated the

usefulness of LVPC for classification with reject option and reliable classification (e.g.

[18]). Especially interesting in this connection is the approach proposed in [26], as

it also makes use of the version space concept.

There is also an interesting relation to Bayesian model averaging [15]. Instead of

picking a single model M∗ ∈ H from the hypothesis space, thereby ignoring uncer-

tainty in model selection, the key idea of Bayesian model averaging is to combine

the outputs of all models, weighing each model M by its posterior probability given

the data D. This way, Bayesian model averaging principally offers an alternative

to characterizing uncertainty in prediction problems, even though the delicate ques-

tion of whether or not ignorance can adequately be captured within a probabilistic

framework remains an issue. Roughly speaking, the Bayesian approach, or at least

an approximation thereof, would correspond to deriving the average of the classifier

scores s
(k)
i,j , k = 1 . . . K, thereby losing information about the (im)precision of the

distribution.

Finally, let us note that a classifier using fuzzy relations was also developed in [25].

However, this approach is completely different from ours. In a first, explanatory step,

it employs clustering techniques in order to structure the input data (disregarding

class labels). In a second step, a fuzzy relation is created which associates the classes

(rows) with the clusters (columns). Using a suitable fuzzy inference mechanism, new



queries are then classified on the basis of this relation and its distance to the cluster

centers.

8 Conclusions

In this paper, we have introduced a new approach to classification learning which

refers to the concept of fuzzy preference structures. This approach is intimately

related with learning by pairwise comparison (LPC), a well-known machine learning

technique for reducing multi-class to binary problems. The key idea of our approach,

called LVPC, is to use LPC in order to learn a fuzzy (weak) preference relation

among the potential class labels. The original classification problem thus becomes a

problem of decision making, namely of taking a course of action on the basis of this

fuzzy preference relation. This way, our approach makes machine learning amenable

to techniques and decision making strategies that have been studied intensively in

the literature on fuzzy preferences.

An interesting example of corresponding techniques has been considered in more de-

tail in this paper, namely the decomposition of a weak preference relation into a strict

preference, an indifference, and an incomparability relation. We have argued that,

in a classification context, indifference can be interpreted as the conflict involved in

a prediction while indifference represents the level of ignorance. These concepts can

be extremely useful, especially in extended classification scenarios which go beyond

the prediction of a single label or do offer the option to abstain from an immediate

classification decision.

First empirical studies have shown that LVPC is indeed able to represent the un-

certainty related to a classification decision: The implementation of a reject option

turned out to be highly effective, regardless of whether the decision to abstain is

made on the basis of the degree of conflict or the degree of ignorance.



The main contribution of this paper is a basic conceptual framework of classification

based on learning valued preference relations, including first empirical evidence in

favor of its usefulness. Nevertheless, as we mentioned repeatedly, this framework is

far from being fully elaborated and still leaves much scope for further developments.

This concerns almost all steps of the approach and includes both aspects of learning

and decision making. Just to give an example, our approach outlined in Section 4.4

is of course not the only way to induce a valued preference structure from given

data. In particular, rule-based models may provide an interesting alternative. A

distinguishing feature of such classifiers, that we already illustrated in Fig. 3, is

their ability to represent conflict and ignorance in a direct way. In principle, this

model class hence offers the possibility to learn the relations P , I, J directly instead

of inducing them indirectly via the weak preference R. We are currently exploring

this alternative as part of ongoing work.
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