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Abstract

The label ranking problem consists of learn-
ing a model that maps instances to total or-
ders over a finite set of predefined labels.
This paper introduces new methods for la-
bel ranking that complement and improve
upon existing approaches. More specifically,
we propose extensions of two methods that
have been used extensively for classification
and regression so far, namely instance-based
learning and decision tree induction. The
unifying element of the two methods is a pro-
cedure for locally estimating predictive prob-
ability models for label rankings.

1. Introduction

The problem to learn a mapping from instances to
rankings over a finite set of predefined labels, called
label ranking, is a natural extension of conventional
classification where, instead of a ranking of all labels,
only a single label is requested as a prediction. As a
ranking is a special type of preference relation, label
ranking is of particular interest for the emerging field
of preference learning (Hüllermeier et al., 2008).

Existing methods for label ranking are typically exten-
sions of algorithms for binary classification. Ranking
by pairwise comparison is a natural extension of pair-
wise classification, in which binary preference models
are learned for each pair of labels, and the predictions
of these models are combined into a ranking of all la-
bels (Hüllermeier et al., 2008). Two other approaches,
constraint classification and log-linear models for la-
bel ranking, seek to learn a (linear) utility function
for each individual label (Har-Peled et al., 2003; Dekel
et al., 2004).
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Even though these approaches have shown good per-
formance in first experimental studies, the reduction
of the complex label ranking problem to the simple
problem of binary classification does not come for free.
First, the representation of a “ranking-valued” map-
ping in terms of an aggregation (e.g. argsort) of an
ensemble of simple mappings (e.g., real-valued utility
functions) typically comes along with a strong bias.
This is especially true for methods such as constraint
classification, for which the transformation from rank-
ing to classification problems strongly exploits linear-
ity properties of the underlying utility functions, while
being less critical for pairwise ranking, where more
flexible base learners can in principle be used.

Second, a representation in terms of an ensemble of
models is not always desired, mainly since single mod-
els are considered more comprehensible. This point
is especially relevant for the pairwise approach, where
the size of the model ensemble is quadratic in the num-
ber of class labels.

To overcome these problems, we propose extensions of
two quite popular machine learning methods, namely
decision tree induction (Breiman et al., 1984) and
instance-based learning (Aha et al., 1991), to the label
ranking setting. Both methods are based on local esti-
mation principles and are known to have a rather weak
bias. Besides, decision trees are often praised for their
good interpretability. Instance-based learning (nearest
neighbor estimation) is maybe not as much attractive
from this point of view, though by revealing informa-
tion about a query’s nearest neighbors, it does still
offer a natural explanation for its predictions.

The paper is organized as follows. Section 2 recalls
the problem of label ranking in a more formal setting.
In Section 3, we introduce a probability model that
will be used for estimating (local) predictive models for
rankings. Sections 4 and 5 are devoted, respectively, to
the instance-based and decision tree method for label
ranking. An experimental evaluation is presented in
Section 6, and Section 7 concludes the paper.
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2. Label Ranking

Label ranking can be seen as an extension of the con-
ventional classification setting. Instead of associating
every instance x from an instance space X with one
among a finite set of class labels Y = {y1 . . . yn}, we
associate x with a total order of all class labels, that
is, a complete, transitive, and asymmetric relation �x

on Y, where yi �x yj indicates that yi precedes yj .
Since a ranking can be considered as a special type of
preference relation, we shall also say that yi �x yj in-
dicates that yi is preferred to yj given the instance x.
As an illustration, suppose that instances are students
(characterized by attributes such as sex, age, and ma-
jor subjects in secondary school) and � is a preference
relation on a fixed set of study fields such as Math,
CS, and Physics.

Formally, a total order �x can be identified with a
permutation πx of the set {1 . . . n}. It is convenient to
define πx such that πx(i) = πx(yi) is the position of yi

in the order. This permutation encodes the (ground
truth) order relation

yπ
−1

x
(1) �x yπ

−1

x
(2) �x . . . �x yπ

−1

x
(n) ,

where π−1
x

(j) is the index of the label put at position
j. The class of permutations of {1 . . . n} (the sym-
metric group of order n) is denoted by Ω. By abuse
of terminology, though justified in light of the above
one-to-one correspondence, we refer to elements π ∈ Ω
as both permutations and rankings.

In analogy with the classification setting, we do not
assume the existence of a deterministic X → Ω map-
ping. Instead, every instance is associated with a prob-
ability distribution over Ω. This means that, for each
x ∈ X, there exists a probability distribution P(· |x)
such that, for every π ∈ Ω, P(π |x) is the probability
that πx = π.

The goal in label ranking is to learn a “label ranker”
in the form of an X → Ω mapping. As training data, a
label ranker uses a set of instances xk, k = 1 . . . m, to-
gether with information about the associated rankings
πxk

. Ideally, complete rankings are given as training
information. From a practical point of view, however,
it is important to allow for incomplete information in
the form of a ranking

yπ
−1

x
(i1)

�x yπ
−1

x
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�x . . . �x yπ
−1

x
(ik) ,

where {i1, i2 . . . ik} ⊂ {1 . . . n} such that 1 ≤ i1 < i2 <
. . . < ik ≤ n. For example, for an instance x, it might
be known that y2 �x y1 �x y5, while no preference
information is given about the labels y3 or y4. We
denote by Y(π) ⊆ Y the set of labels that are present
in a possibly incomplete ranking π.

To evaluate the predictive performance of a label
ranker, a suitable loss function on Ω is needed. In
the statistical literature, several distance measures for
rankings have been proposed. One commonly used
measure is the number of discordant label pairs,

D(π, σ) = #{(i, j) |π(i) > π(j) ∧ σ(i) < σ(j)} , (1)

which is closely related to Kendall’s tau coefficient. In
fact, the latter is a normalization of (1) to the interval
[−1,+1] that can be interpreted as a correlation mea-
sure (it assumes the value 1 if σ = π and the value −1
if σ is the reversal of π). We shall focus on Kendall’s
tau as a natural, intuitive, and easily interpretable
measure (Mallows, 1957) throughout the paper, even
though other distance measures could of course be
used. A desirable property of any distance D(·) is its
invariance toward a renumbering of the elements (re-
naming of labels). This property is equivalent to the
right invariance of D(·), namely D(σν, πν) = D(σ, π)
for all σ, π, ν ∈ Ω, where σν = σ◦ν denotes the permu-
tation i 7→ σ(ν(i)). The distance (1) is right-invariant,
and so are most other commonly used metrics on Ω.

In a sense, the label ranking problem is in-between
the standard problems of classification and regression.
Like in classification, the output space is discrete.
However, like in regression, it is endowed with a non-
trivial topological structure and, therefore, suggests
using loss functions other than the simple 0/1 loss.

3. The Mallows Model

So far, no assumptions about the conditional proba-
bility measure P(· |x) on Ω were made, despite its ex-
istence. To become more concrete, we resort to a pop-
ular and commonly used distance-based probability
model introduced by Mallows (Mallows, 1957). It will
provide the basis for estimating local models which,
as will be seen, is a key problem in both the instance-
based and decision tree method for label ranking.

The standard Mallows model is a two-parameter model
that belongs to the exponential family:

P(σ | θ, π) =
exp(−θD(π, σ))

φ(θ, π)
(2)

The ranking π ∈ Ω is the location parameter (mode,
center ranking) and θ ≥ 0 is a spread parameter.
For right-invariant metrics, the normalization constant
does not depend on π and, therefore, can be written
as a function φ(θ) of θ alone. This is due to

φ(θ, π)=
∑

σ∈Ω

exp(−θD(σ, π))=
∑

σ∈Ω

exp(−θD(σπ−1, id))

=
∑

σ′∈Ω

exp(−θD(σ′, id)) = φ(θ) ,
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where id is the identity ranking i 7→ i. More specifi-
cally, it can be shown that the normalization constant
is given by (Fligner & Verducci, 1986)

φ(θ) =

n
∏

j=1

1 − exp(−jθ)

1 − exp(−θ)
,

and that the expected distance from the center is

E [D(σ, π) | θ, π] =
n exp(−θ)

1 − exp(−θ)
−

n
∑

j=1

j exp(−jθ)

1 − exp(−jθ)
.

Obviously, the Mallows model assigns the maximum
probability to the center ranking π. The larger the
distance D(σ, π), the smaller the probability of σ
becomes. The spread parameter θ determines how
quickly the probability decreases, i.e., how peaked the
distribution is around π. For θ = 0, the uniform distri-
bution is obtained, while for θ → ∞, the distribution
converges to the one-point distribution that assigns
probability 1 to π and 0 to all other rankings.

4. Instance-Based Label Ranking

Coming back to the label ranking problem and the idea
of instance-based learning, i.e., local prediction based
on the nearest neighbor estimation principle, consider
a query instance x ∈ X and let x1 . . . xk denote the
nearest neighbors of x (according to an underlying dis-
tance measure on X) in the training set, where k ∈ N

is a fixed integer.

4.1. Learning from Complete Observations

First, we consider the case where the observed label
rankings are complete. Thus, each neighbor xi, i =
1 . . . k, is associated with a ranking σi ∈ Ω. In anal-
ogy to the conventional settings of classification and
regression, in which the nearest neighbor estimation
principle has been applied for a long time, we assume
that the probability distribution P(· |x) on Ω is (at
least approximately) locally constant around the query
x. By furthermore assuming independence of the ob-
servations, the probability to observe σ = {σ1 . . . σk}
given the parameters (θ, π) becomes

P(σ | θ, π) =

k
∏

i=1

P(σi | θ, π) =

k
∏

i=1

exp (−θD(σi, π))

φ(θ)

=
exp

(

−θ
∑k

i=1 D(σi, π)
)

(

∏n

j=1
1−exp(−jθ)
1−exp(−θ)

)k
. (3)

The maximum likelihood estimation (MLE) of (θ, π)
is then given by those parameters that maximize this

probability. It is easily verified that the MLE of π is

π̂ = arg min
π

k
∑

i=1

D(σi, π) , (4)

i.e., the (generalized) median of the rankings σ1 . . . σk.
Moreover, the MLE of θ is derived from the mean ob-
served distance from π̂, which is an estimation of the
expected distance E [D(σ, π)|θ, π]:

1

k

k
∑

i=1

D(σi, π̂) =
n exp(−θ)

1 − exp(−θ)
−

n
∑

j=1

j exp(−jθ)

1 − exp(−jθ)
.

Since the right-hand side of this equation is monotone
decreasing in θ, a standard line search quickly con-
verges to the MLE (Fligner & Verducci, 1986).

4.2. Learning from Incomplete Observations

Now, consider the more general case of incomplete
preference information, which means that a ranking
σi does not necessarily contain all labels. The proba-
bility of σi is then given by

P(E(σi)) =
∑

σ∈E(σi)

P(σ | θ, π) ,

where E(σi) denotes the set of all consistent extensions
of σi: A permutation σ ∈ Ω is a consistent extension
of σ if it ranks all labels in Y(σi) in the same order.

The probability of observing the neighbor rankings
σ = (σ1 . . . σk) then becomes

P(σ | θ, π) =
k

∏

i=1

P(E(σi) | θ, π)

=
k

∏

i=1

∑

σ∈E(σi)

P(σ | θ, π) (5)

=

∏k

i=1

∑

σ∈E(σi)
exp (−θD(σ, π))

(

∏n

j=1
1−exp(−jθ)
1−exp(−θ)

)k
.

Computing the MLE of (θ, π) by maximizing this prob-
ability now becomes more difficult. To solve this prob-
lem, we resort to the idea of the EM (Expectation-
Maximization) algorithm (Dempster et al., 1977),
viewing the missing labels in the neighbor rankings
σi as hidden variables. More specifically, like other
methods such as learning hidden Markov models or K-
means clustering, we use an MM training procedure,
which replaces the E-step by another maximization
step and can be seen as an approximation of EM.

Our algorithm works as follows (see Alg. 1). Starting
from an initial center ranking π ∈ Ω, each incomplete
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neighbor ranking σi is replaced by the most probable
consistent extension, i.e., by the ranking σ∗

i ∈ E(σi)
whose probability is maximal given π̂ as a center (first
M-step). Having replaced all neighbor rankings by

their most probable extensions, an MLE (θ̂, π̂) can be
derived as described for the case of complete infor-
mation above (second M-step). The center ranking π
is then replaced by π̂, and the whole procedure is it-
erated until the center does not change any more; π̂
is then output as a prediction. In the following, we
discuss three sub-problems of the algorithm in more
detail, namely (i) the problem to find most probable
extensions in the first M-step, (ii) the solution of the
median problem (4) in the second M-step, and (iii) the
choice of an initial center ranking.

(i) Regardless of the spread θ, a most probable exten-
sion σ∗

i ∈ E(σi) of an incomplete ranking σi, given
π, is obviously a minimizer of D(π, ·). Such a rank-
ing can be found efficiently, as shown in the following
proposition (proof omitted due to space restrictions).

Proposition 1: Let π be a ranking of Y = {1, 2 . . . n},
and let σ be a ranking of a subset C ⊆ Y with
|C| = m ≤ n. The ranking σ∗ of Y that mini-
mizes D(π, ·) can be found as follows. First, each
i ∈ Y \ C is optimally inserted in σ, i.e., it is in-
serted between the labels on position j and j + 1 in
σ, where j ∈ {0, 1 . . . m} (j = 0 means before the first
and j = m after the last label), if j is a minimizer of

#{1 ≤k ≤ m |σ(k) ≤ j ∧ π(k) > π(i)}

+ #{1 ≤ k ≤ m |σ(k) > j ∧ π(k) < π(i)} .

In the case of a tie, the position with the smallest index
is chosen. Then, those i ∈ Y \ C that are inserted at
the same position are put in the same order as in π.

Algorithm 1 IBLR

Require: query x ∈ X, training data T , integer k
Ensure: label ranking estimation for x

1: find the k nearest neighbors of x in T
2: get neighbor rankings σ = {σ1 . . . σk}
3: use generalized Borda count to get π̂ from σ

4: for every ranking σi ∈ σ do
5: if σi is incomplete then
6: σ∗

i ← most probable extension of σi given π̂
7: end if
8: end for
9: use Borda count to get π from σ

∗ = {σ∗

1 . . . σ∗

k}
10: if π 6= π̂ then
11: π̂ ← π
12: go to step 4
13: else
14: estimate θ̂ given π̂ and σ

∗

15: return (π̂, θ̂)
16: end if

(ii) Solving the (generalized) median problem (4) is
known to be NP-hard for Kendall’s tau, i.e., if the dis-
tance D(·) is given by the number of rank inversions
(Alon, 2006). To solve this problem approximately, we
make use of the fact that Kendall’s tau is well approx-
imated by Spearman’s rank correlation (Coppersmith
et al., 2006), and that the median can be computed for
this measure (i.e., for D(·) given by the sum of squared
rank differences) by an efficient procedure called Borda
count (Hüllermeier et al., 2008): Given a (complete)
ranking σi of n labels, the top-label receives n votes,
the second-ranked n − 1 votes, and so on. Given k
rankings σ1 . . . σk, the sum of the k votes are com-
puted for each label, and the labels are then ranked
according to their total votes.

(iii) The choice of the initial center ranking in the
above algorithm is of course critical. To find a good
initialization, we again resort to the idea of solving
the problem (4) approximately using the Borda count
principle. At the beginning, however, the neighbor
rankings σk are still incomplete (and, since there is
no π either, cannot be completed by an M-step). To
handle this situation, we make the assumption that
the completions are uniformly distributed in E(σi). In
other words, we start with the initial guess θ = 0 (uni-
form distribution). Based on this assumption, we can
show the following result (proof again omitted) that
suggests an optimal initial center π∗.

Proposition 2: Let a set of incomplete rankings
σ1 . . . σk be given, and suppose the associated com-
plete rankings σ∗

1 . . . σ∗

k to be distributed, respectively,
uniformly in E(σ1) . . . E(σk). The expected sum of
distances D(π, σ∗

1)+ . . .+D(π, σ∗

k), with D the sum of
squared rank distances, becomes minimal for the rank-
ing π∗ which is obtained by a generalized Borda count,
namely a Borda count with a generalized distribution
of votes from incomplete rankings: If σi is an incom-
plete ranking of m ≤ n labels, then the label on rank
i ∈ {1 . . . m} receives (m− i+1)(n+1)/(m+1) votes,
while each missing label receives a vote of (n + 1)/2.

As a nice feature of our approach, not shared by exist-
ing methods for label ranking, we note that it comes
with a natural measure of the reliability of a predic-
tion π̂, namely the estimation of the spread θ. In fact,
the larger the parameter θ, the more peaked the distri-
bution around the center ranking and, therefore, the
more reliable this ranking becomes as a prediction.

Practically, we found that a distance weighing of in-
stances, a common procedure in nearest neighbor esti-
mation, improves performance. Here, we used a simple
weighing scheme in which the weight of the i-th near-
est neighbor is given by (d(k)−d(i))/(d(k)−d(1)), where
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d(i) is the distance of the i-th nearest neighbor from
the query (Dudani, 1976). Besides, another form of
weighing turned out to be useful: If an incomplete la-
bel ranking σi is extended to a complete ranking in the
course of our (approximate) EM approach, the latter
is arguably less reliable than a truly observed rank-
ing. Therefore, we weigh the corresponding instance
by |Y(σi)|/n. The total weight of an instance is then
given by this value multiplied with its distance weight.
To make our inference procedure amenable to weighted
instances, the Borda count principle is replaced by the
weighted Borda count (Ho et al., 1994).

5. Decision Trees for Label Ranking

Decision tree induction is one of the most extensively
studied methods in machine learning (Breiman et al.,
1984; Quinlan, 1993), where tree-based models have
been used for the purpose of classification as well as
regression learning. Decision trees are competitive to
other state-of-the-art methods in terms of predictive
accuracy and, not less relevant, are generally consid-
ered as being more comprehensible and interpretable
than most other model classes in machine learning.

In a decision tree, each leaf node represents a (typi-
cally rectangular) part of the instance space X and is
labeled with a local model for prediction. In regres-
sion, the model is given in the form of a constant or
linear function, while in classification, it is simply a
class assignment. Here, we are interested in learning
decision trees the leaf nodes of which are associated
with (possibly incomplete) label rankings.

5.1. Tree Induction

To learn such trees, we resort to the common principle
of partitioning the training data in a recursive way,
using one-dimensional splits defined by thresholds for
an attribute value. This approach is well-known in
the machine learning field and therefore not fully de-
tailed here. Our current implementation is restricted
to binary splits and only handles numerical attributes.

The main modification of conventional decision tree
learning concerns the split criterion at inner nodes and
the criterion for stopping the recursive partitioning.
As to the former, consider a subset T = {(xi, σi)} of
the training data, where the σi are possibly incomplete
rankings. A predicate of the form (A ≤ a), where
A is an attribute used to characterize instances and
a is a value of this attribute’s domain, splits T into
two subsets T+ and T−. The goal of a split is to
make these subsets as homogeneous or, say, pure as
possible. In general, this can be done by fitting a local

model to the examples in T+ and T−, respectively, and
measuring the quality of these fits. In regression trees,
for example, this can be realized by taking the mean µ
of the output values (i.e., the constant mapping x 7→
µ) as the model and the variance as a quality measure.
Indeed, the mean and variance are optimal estimators
if one assumes the data to be an i.i.d. sample from a
(locally constant) normal distribution.

We can essentially apply the same principle, though
instead of fitting a normal distribution to a real-valued
sample, we fit the Mallows model to a set of (possibly
incomplete) label rankings. In Section 4.2, we have
proposed a solution for this problem. This approach
delivers an estimation of the “mean value” in the form
of a center ranking π̂, and an estimation of the variance
in terms of the spread parameter θ̂. As a goodness-of-
split measure, we can hence use a weighted average
of the within-leaf variances, just like in the case of
regression trees:

|T |−1 (|T+| · θ+ + |T−| · θ−) , (6)

where θ+ (θ−) denotes the estimated spread for the
sample T+ (T−). Thus, a split is optimal if it maxi-
mizes (6).

Note that, in the course of recursive partitioning, it
can happen that a set of examples T is split in such a
way that T+ (or T−) only contains examples (xi, σi)
in which a certain label is missing. In contrast to our
instance-based method, we estimate a ranking for a
training set T only on the subset of labels that are
present in T . In fact, in the case of missing labels, the
recursive partitioning scheme suggests the acquisition
of further information from predecessor nodes. This
idea will be detailed below.

Our current stopping criterion is rather simple. First,
we stop if T is completely pure, which means that all
rankings in T are consistent in the following sense:
If two labels yi, yj ∈ Y both occur in two different
rankings in T , then they are put in the same order.
For the estimation of the parameters of the Mallows
model, this is an exceptional case which leads to θ =
∞. Second, to prevent an excessive fragmentation,
we stop if the number of labels in a node becomes
too small; concretely, we currently use 2|Y| as a lower
bound. This latter condition implements a kind of
pre-pruning, though a very simple one. As opposed to
this, we have not yet implemented a post-pruning step
in which the induced tree is simplified.

One may suspect that decision trees for ranking can
become undesirably large, due to the high number of
different predictions that can be made. First, how-
ever, one should note that the model complexity is
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not directly determined by this number. Instead, it is
determined by the typically much smaller number of
outputs that are really attained, as well as their distri-
bution in the instance space. Second, the problem is
arguably not worse for label ranking than it is for re-
gression, where tree-based models offer good (approx-
imate) models despite the potentially infinite number
of different outcomes. Our experimental results will
indeed show that label ranking trees are typically not
much bigger than classification trees.

5.2. Prediction

Once a decision tree has been constructed, it can be
used to derive predictions for new query instances.
This is done as usual, namely by propagating the in-
stance through the tree until reaching a leaf node. The
prediction is then given by the label ranking σ associ-
ated with this leaf.

Here, a problem only occurs if σ is not complete. As
mentioned above, this can happen if not all labels are
present in a set of examples T . In such a case, we com-
plete the prediction σ by resorting to the predecessor
nodes of the leaf. More specifically, this is done as fol-
lows. The first predecessor is searched that contains
more label information than the leaf; let the ranking
associated with this node be π. The ranking of the
leaf, σ, is then expanded to a ranking σ∗ by looking
for the ranking of the labels in Y(π) which is as close
to π, in terms of the distance (1), while retaining the
ordering of the labels in σ. This is exactly the same
problem that we already faced in the instance-based
approach, and that we solved on the basis of Proposi-
tion 1. Thus, the same solution can be used here. In
case the expansion does still not contain all labels, the
procedure is continued, i.e., σ∗ is further expanded on
the basis of the ranking of the next predecessor with
more label information (note that the root of the tree
contains full information unless there is a label that
has never been observed).

6. Experimental Results

In this section, we present an empirical evaluation of
instance-based label ranking (IBLR) and label ranking
trees (LRT) as introduced in the previous sections. In
(Hüllermeier et al., 2008), it was shown that constraint
classification, log-linear models for label ranking, and
ranking by pairwise comparison are quite compara-
ble in terms of predictive accuracy. Here, we use
constraint classification (CC) as a baseline to com-
pare with, as it has the smallest number of degrees
of freedom and, therefore, a comparatively straight-
forward implementation. Concretely, CC was imple-

mented in its online-variant as proposed in (Har-Peled
et al., 2003), using a noise-tolerant perceptron algo-
rithm as a base learner (Khardon & Wachman, 2007).1

For IBLR, the neighborhood size was selected through
cross validation on the training set. As a distance
measure on the instance space we simply used the Eu-
clidean distance (after normalizing the attributes).

6.1. Data

In view of a lack of benchmark data for label rank-
ing, we resorted to multi-class and regression data sets
from the UCI repository and the Statlog collection and
turned them into label ranking data in two different
ways. (A) For classification data, we followed the pro-
cedure proposed in (Hüllermeier et al., 2008): A naive
Bayes classifier is first trained on the complete data
set. Then, for each example, all the labels present in
the data set are ordered with respect to the predicted
class probabilities (in the case of ties, labels with lower
index are ranked first). (B) For regression data, a cer-
tain number of (numerical) attributes is removed from
the set of predictors, and each one is considered as a la-
bel. To obtain a ranking, the attributes are standard-
ized and then ordered by size. Given that the original
attributes are correlated, the remaining predictive fea-
tures will contain information about the ranking thus
produced. Yet, as will be confirmed by the experimen-
tal results, this second type of data generation leads
to more difficult learning problems. A summary of the
data sets and their properties is given in Table 1.2

Table 1. Data sets and their properties (the type refers to
the way in which the data has been generated).

data set type # inst. # attr. # labels
authorship A 1513 70 4
bodyfat B 452 7 7
calhousing B 37152 4 4
cpu-small B 14744 6 5
elevators B 29871 9 9
fried B 73376 9 5
glass A 382 9 6
housing B 906 6 6
iris A 270 4 3
pendigits A 19784 16 10
segment A 4158 18 7
stock B 1710 5 5
vehicle A 1518 18 4
vowel A 944 10 11
wine A 314 13 3
wisconsin B 346 16 16

1This algorithm is based on the “alpha-trick”. We set
the corresponding parameter α to 500.

2The data sets, along with a description, are available
at www.uni-marburg.de/fb12/kebi/research
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6.2. Experiments and Results

Results were derived in terms of Kendall’s tau co-
efficient from five repetitions of a ten-fold cross-
validation. To model incomplete observations, we
modified the training data as follows: A biased coin
was flipped for every label in a ranking to decide
whether to keep or delete that label; the probability for
a deletion is specified by a parameter p ∈ [0, 1]. Hence,
p × 100% of the labels will be missing on average.

The summary of the results is shown in Table 2. To
analyze these results, we followed the two-step proce-
dure recommended in (Demsar, 2006), consisting of a
Friedman test of the null hypothesis that all learners
have equal performance and, in case this hypothesis is
rejected, a Nemenyi test to compare learners in a pair-
wise way. Both tests are based on the average ranks
(for each problem, the methods are ranked in decreas-
ing order of performance, and the ranks thus obtained
are averaged over the problems) as shown in the bot-
tom line in Table 2. At a significance level of 10%,
IBLR is better than both CC and LRT in the case of
complete rankings and better than LRT for 30% miss-
ing label information, while there are no significant
differences in the case of 60% missing labels. Besides,
CC and LRT perform more or less on par in all three
settings, without any significant differences.

As mentioned earlier, we hypothesize that, since our
tree- and instance-based methods for label ranking fit
local models to the data, they are especially useful
for problems requiring complex decision boundaries.
Some evidence in favor of this hypothesis is indeed
provided by the learning curves depicting the perfor-
mance as a function of the fraction of missing label in-
formation. While the learning curves of CC are often
rather flat, showing a kind of saturation effect, they
are much steeper for IBLR and LRT. This suggests
that additional label information is still beneficial for
these methods even when CC, due to a lack of flexi-
bility, is no longer able to exploit and adapt to extra
data. A typical example is the housing data, for which
the learning curves are shown in Fig. 1.

For LRT, Table 2 further shows the relative size of the
trees, namely the average number of leaf nodes divided
by the number of leaf nodes of the tree learned by J48,
the C4.5 implementation of WEKA (in its default set-
ting), on the corresponding classification data (which
is obtained from the label ranking data by keeping the
top-label as class information and removing the rest
of the ranking). As can be seen, there is no dramatic
difference in the size of the trees, and sometimes the
label ranking tree is even smaller.
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Figure 1. Ranking performance (in terms of Kendall’s tau)
as a function of the missing label rate.

We conclude this section with short remarks on two
issues for which no empirical results are presented due
to space restrictions. First, as to the computational
complexity of the label ranking methods, a direct com-
parison is complicated by the fact that IBLR is a lazy
learner, with almost no costs at training time but
higher costs at prediction time. Anyway, in their cur-
rent implementations, both IBLR and LRT are very
efficient and quite comparable, in terms of runtime,
to their corresponding counterparts for classification.
This is true despite the more complex local estima-
tion procedures, mainly because our approximate EM
procedure converges very quickly.

Second, as mentioned earlier, an advantage of a local
estimation method is that it delivers, as a byproduct,
natural measures of the reliability of a prediction. In
the case of IBLR, the estimated spread θ̂ is such a
measure. For LRT, the θ̂ associated with a leaf can-
not be used directly, since the leafs are deliberately
constructed so as to maximize purity. Therefore, we
tried a modified measure, namely the product of θ̂ and
the fraction of examples in the leaf node. Anyway, in
both cases, the reliability measures showed a very high
correlation with the quality of prediction (in terms of
Kendall’s tau), suggesting that they are indeed rea-
sonable indicators of the uncertainty of a prediction.

7. Conclusions and Future Work

We proposed two novel methods for label ranking,
namely instance-based label ranking (IBLR) and la-
bel ranking trees (LRT). As a core component, both
approaches share the problem to estimate local mod-
els, IBLR in the neighborhood of a query and LRT in
a subregion of the instance space. Assuming that the
probability distribution of the output is locally con-
stant, we solve this problem by deriving (an approx-
imation of) an ML estimation based on the Mallows
model, a popular probability model for rankings.



Decision Tree and Instance-Based Learning for Label Ranking

Table 2. Performance of the label ranking methods in terms of Kendall’s tau (in brackets the rank). The columns for
LRT also contain the relative tree size (number to the right of performance).

complete rankings 30% missing labels 60% missing labels
CC IBLR LRT CC IBLR LRT CC IBLR LRT

authorship .920(2) .936(1) .882(3) 1.1 .891(2) .932(1) .871(3) 0.9 .835(2) .920(1) .828(3) 0.7
bodyfat .281(1) .248(2) .117(3) 1.6 .260(1) .223(2) .097(3) 1.7 .224(1) .180(2) .070(3) 1.0
calhousing .250(3) .351(1) .324(2) 0.7 .249(3) .327(1) .307(2) 0.5 .247(3) .289(1) .273(2) 0.3
cpu-small .475(2) .506(1) .447(3) 2.3 .474(2) .498(1) .405(3) 2.3 .470(2) .480(1) .367(3) 1.5
elevators .768(1) .733(3) .760(2) 0.2 .767(1) .719(3) .756(2) 0.2 .765(1) .690(3) .742(2) 0.3
fried .999(1) .935(2) .890(3) 5.5 .998(1) .928(2) .863(3) 5.3 .997(1) .895(2) .809(3) 3.0
glass .846(3) .865(2) .883(1) 2.5 .835(2) .824(3) .850(1) 2.0 .789(2) .771(3) .799(1) 2.0
housing .660(3) .745(2) .797(1) 2.3 .655(3) .697(2) .734(1) 2.4 .638(1) .630(3) .634(2) 1.5
iris .836(3) .966(1) .947(2) 1.5 .807(3) .945(1) .909(2) 1.2 .743(3) .882(1) .794(2) 1.5
pendigits .903(3) .944(1) .935(2) 6.2 .902(3) .924(1) .914(2) 3.2 .900(1) .899(2) .871(3) 2.2
segment .914(3) .959(1) .949(2) 3.8 .911(3) .934(1) .933(2) 3.8 .902(2) .902(3) .903(1) 2.3
stock .737(3) .927(1) .895(2) 1.5 .735(3) .904(1) .877(2) 1.6 .724(3) .858(1) .827(2) 1.1
vehicle .855(2) .862(1) .827(3) 0.8 .839(2) .842(1) .819(3) 0.9 .810(1) .791(2) .764(3) 0.5
vowel .623(3) .900(1) .794(2) 4.6 .615(3) .824(1) .718(2) 3.6 .598(3) .722(1) .615(2) 3.2
wine .933(2) .949(1) .882(3) 0.8 .911(2) .941(1) .862(3) 1.1 .853(1) .789(2) .752(3) 0.8
wisconsin .629(1) .506(2) .343(3) 1.6 .617(1) .484(2) .284(3) 1.5 .566(1) .438(2) .251(3) 1.6
average rank 2.25 1.44 2.31 2.19 1.50 2.31 1.75 1.88 2.38

As mentioned previously, both methods complement
existing approaches in a reasonable way and do have
some advantages. As shown by our empirical studies,
IBLR is particularly strong in terms of predictive accu-
racy. Label ranking trees, while being at least compet-
itive to state-of-the-art label ranking methods in this
regard, are especially appealing from a comprehensi-
bility point of view. Besides, both methods provide
natural measures of the reliability of a prediction.

Despite the already strong performance of both meth-
ods, there is of course scope for further improvement.
In the case of IBLR, for example, extensions known
to be beneficial for classification learning, such as in-
stance selection, feature weighing, or locally adaptive
metrics, are likely to improve performance in label
ranking, too. The most important extension of LRT,
to be addressed in future work, is an effective pruning
strategy to simplify a learned tree and prevent from a
possible overfitting of the data.
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