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Abstract

A method of instance-based learning is introduced which makes use

of possibility theory and fuzzy sets. Particularly, a possibilistic version

of the similarity-guided extrapolation principle underlying the instance-

based learning paradigm is proposed. This version is compared to the

commonly used probabilistic approach from a methodological point of

view. Moreover, aspects of knowledge representation such as the mod-

eling of uncertainty are discussed. Taking the possibilistic extrapolation

principle as a point of departure, an instance-based learning procedure is

outlined which includes the handling of incomplete information, methods

for reducing storage requirements and the adaptation of the influence of

stored cases according to their typicality. First theoretical and experimen-

tal results showing the efficiency of possibilistic instance-based learning

are presented as well.

Keywords: possibility theory, fuzzy set theory, machine learning, instance-

based learning, nearest neighbor classification, probability.

1 Introduction

A major theme in machine learning concerns the problem of induction, that is
the creation of general knowledge from particular examples or observed data.
In this respect, uncertainty plays a fundamental role. To begin with, the data
presented to learning algorithms is imprecise, incomplete or noisy most of the
time, a problem that can badly mislead a learning procedure. But even if obser-
vations were perfect, the generalization beyond that data would still be afflicted
with uncertainty. For example, observed data can generally be explained by
more than one candidate theory, which means that one can never be sure of
the truth of a particular theory. Consequently, inductive reasoning – by its very
nature – is inseparably connected with uncertainty [13].
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In fact, the insight that inductive inference can never produce ultimate truth
can be traced back at least as far as Francis Bacon’s epistemology. In his
Novum Organum

1, Bacon advocates a gradualist conception of inductive en-
quiry and proposes to set up degrees of certainty. Thus, from experience in the
form of given data, one may at best conclude that a theory is likely to be true
– not, however, that it is true with certainty. In machine learning and math-
ematical statistics, uncertainty of this type is generally handled by means of
probabilistic methods. In Bayesian approaches, for example, an inference result
is usually given in the form of a probability distribution over the space of can-
didate models, that is, each model (theory) is assigned a degree of probability.

In this paper, our interest concentrates on possibility theory [29] as an alternative
calculus for modeling and processing uncertainty or, more generally, partial be-
lief. By using possibility theory for handling uncertainty in learning procedures,
inductive reasoning becomes possibilistic in the sense that certain generalizations
are declared more or less plausible. In this paper, we shall employ possibility
theory in the context of instance-based learning (IBL), a special approach to
(supervised) machine learning. IBL relies on a kind of extrapolation principle2

expressing a commonsense rule already suggested by David Hume:3 “In reality,
all arguments from experience are founded on the similarity, which we discover
among natural objects, and by which we are induced to expect effects similar
to those, which we have found to follow from such objects. ... From causes,
which appear similar, we expect similar effects. This is the sum of all our ex-
perimental conclusions.” Thus, Hume suggests to extrapolate properties of one
object to properties of similar ones. The idea of possibilistic induction, com-
bined with this extrapolation principle, leads to the following inference pattern:
The more similar two causes are, the more plausible it is that they have the
same effects. Since possibility theory (in conjunction with fuzzy set theory) es-
tablishes a close connection between the concepts of similarity and uncertainty,
it provides an excellent framework for translating this principle into a formal
inference procedure.

This paper complements recent work on the use of possibility theory and fuzzy
sets in instance-based reasoning [27, 25, 26]. The latter is more concerned with
extending IBL by means of fuzzy set-based modeling techniques, whereas here
the focus is on the learning process itself. More specifically, we introduce a
method of possibilistic IBL, referred to as PossIBL, which implements the
above-mentioned inference pattern. Together, the two frameworks yield a pow-
erful methodology of instance-based reasoning in which possibility theory and
fuzzy set-based modeling are used, respectively, for representing gradation of
uncertainty and evidential support and for complementing the data-driven in-

1Published in 1620.
2
IBL does actually not realize induction proper, as will be discussed later.

3See e.g. [45], page 116.
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ference procedure by means of domain-specific expert knowledge.

By way of background, Section 2 recalls some important ideas of possibility
theory and Section 3 gives a brief review of instance-based learning and the
Nearest Neighbor principle upon which it is based. Besides, the aspect of
uncertainty in IBL is discussed in this section. In Section 4, a possibilistic ex-
trapolation principle is introduced and compared to other principles commonly
used in instance-based learning. Proceeding from this extrapolation principle,
a method of possibilistic instance-based learning is developed in Section 5. Fi-
nally, Section 6 presents experimental studies. The paper concludes with a
summary in Section 7.

2 Background on Possibility Theory

In this section, we recall some basic concepts from possibility theory, as far
as required for the current paper. Possibility theory deals with “degrees of
possibility”. The term “possibility” is hence employed as a graded notion, much
in the same way as the term “probability”. At first sight, this might strike as odd
since “possibility” is usually considered a two-valued concept in natural language
(something is possible or not). Before turning to more technical aspects, let us
therefore make some brief remarks on the semantics underlying the notion of
“possibility” as used in possibility theory.

Just as the concept of probability, the notion of possibility can have different
semantic meanings. To begin with, it can be used in the (physical) sense of
a “degree of ease”. One might say, for instance, that it is more possible for
Hans to have two eggs for breakfast than eight eggs, simply because eating two
eggs is more easy (feasible, practicable) than eating eight eggs [82]. However, as
concerns the use in most applications, and in this paper in particular, possibil-
ity theory is considered as a means for representing uncertain knowledge, that
means, for characterizing the epistemic state of an agent. For instance, given
the information that Hans has eaten many eggs, one is clearly uncertain about
the precise number. Still, three eggs appears somewhat more plausible (possi-
ble) than two eggs, since three is more compatible with the linguistic quantifier
“many” than two.

It is important to note that a degree of possibility, as opposed to a degree of
probability, is not necessarily a number. In fact, for many applications it is
sufficient, and often even more suitable, to assume a qualitative (ordinal) scale
with possibility degrees ranging from, e.g., “not at all” and “hardly” to “fairly”
and “completely” [52, 33]. Still, possibility degrees can also be measured on the
cardinal scale [0, 1], again with different semantic interpretations. For example,
possibility theory can be related to probability theory, in which case a possibility
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degree can specify, e.g., an upper probability bound [31]. For convenience,
possibility degrees are often coded by numbers from the unit interval even within
the qualitative framework of possibility theory.

As a means of representing uncertain knowledge, possibility theory makes a dis-
tinction between the concepts of the certainty and the plausibility of an event.
As opposed to probability theory, possibility theory does not claim that the con-
fidence in an event is determined by the confidence in the complement of that
event and, consequently, involves non-additive measures of uncertainty. Taking
the existence of two quite opposite but complementary types of knowledge rep-
resentation and information processing into account, two different versions of
possibility theory will be outlined in the following. For a closer discussion refer
to [34] and [24].

2.1 Possibility Distributions as Generalized Constraints

A key idea of possibility theory as originally introduced by Zadeh [82] is to
consider a piece of knowledge as a (generalized) constraint that excludes some
“world states” (to some extent). Let Ω be a set of worlds conceivable by an
agent, including the “true world” ω0. With (incomplete) knowledge K about
the true world one can then associate a possibility measure ΠK such that ΠK(A)
measures the compatibility of K with the event (set of worlds) A ⊆ Ω, i.e. with
the proposition that ω0 ∈ A. Particularly, ΠK(A) becomes small if K excludes
each world ω ∈ A and large if at least one of the worlds ω ∈ A is compatible with
K. More specifically, the finding that A is incompatible with K to some degree
corresponds to a statement of the form ΠK(A) ≤ p, where p is a possibility
degree taken from an underlying possibility scale P .

The basic informational principle underlying the possibilistic approach to knowl-
edge representation and reasoning is stated as a principle of minimal specificity:4

In order to avoid any unjustified conclusions, one should represent a piece of
knowledge K by the largest possibility measure among those measures compat-
ible with K, which means that the inequality above is turned into an equality:
ΠK(A) = p. Particularly, complete ignorance should be modeled by the measure
Π ≡ 1.

Knowledge K is usually expressed in terms of a possibility distribution πK, a
mapping Ω → P related to the associated measure ΠK through ΠK(A) =
supω∈A πK(ω). Thus, πK(ω) is the degree to which world ω is compatible with
K.

Apart from the boundary conditions ΠK(Ω) = 1 (at least one world is fully
possible) and ΠK(∅) = 0, the basic axiom underlying possibility theory after

4This principle plays a role quite comparable to the maximum entropy principle in proba-

bility theory.
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Zadeh involves the maximum-operator:

ΠK(A ∪B) = max
{
ΠK(A), ΠK(B)

}
. (1)

In plain words, the possibility (or, more precisely, the upper possibility-bound)
of the union of two events A and B is the maximum of the respective possibilities
(possibility-bounds) of the individual events.

As constraints are naturally combined in a conjunctive way, the possibility mea-
sures associated with two pieces of knowledge, K1 andK2, are combined by using
the minimum-operator:

πK1∧K2(A) = min{πK1(A), πK2(A)}

for all A ⊆ Ω. Note that πK1∧K2(Ω) < 1 indicates that K1 and K2 are not fully
compatible, i.e. that K1 ∧ K2 is contradictory to some extent.

The distinction between possibility and certainty of an event is reflected by
the existence of a so-called necessity measure NK that is dual to the possibility
measure ΠK. More precisely, the relation between these two measures is given
by NK(A) = 1−ΠK(Ω \A) for all A ⊆ Ω:5 An event A is necessary in so far as
its complement (logical negation) is not possible.

Worth mentioning is the close relationship between possibility theory and fuzzy
sets. In fact, the idea of Zadeh [82] was to induce a possibility distribution from
knowledge stated in the form of vague linguistic information and represented
by a fuzzy set. Formally, he postulated that πK(ω) = µF (ω), where µF is the
membership function of a fuzzy set F . To emphasize that ω plays different roles
on the two sides of the equality, the latter might be written more explicitly as
πK(ω |F ) = µ(F |ω): Given the knowledge K that ω is an element of the fuzzy
set F , the possibility that ω0 = ω is evaluated by the degree to which the fuzzy
concept (modeled by) F is satisfied by ω. To illustrate, suppose that world
states are just integer numbers. The uncertainty related to the vague statement
that “ω0 is a small integer” (ω0 is an element of the fuzzy set F of small integers)
might be translated into a possibility distribution that lets ω0 = 1 appear fully
plausible (µF (1) = 1), whereas, say, 5 is regarded as only more or less plausible
(µF (5) = 1/2) and 10 as impossible (µF (10) = 0).

2.2 Possibility as Evidential Support

Possibility theory as outlined above provides the basis of a generalized approach
to constraint propagation, where constraints are expressed in terms of possibil-
ity distributions (fuzzy sets) rather than ordinary sets (which correspond to

5If the possibility scale P is not the unit interval [0, 1], the mapping 1 − (·) has to be

replaced by an order-reversing mapping of P .
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the special case of {0, 1}-valued possibility measures). A constraint usually
corresponds to a piece of knowledge that excludes certain alternatives as be-
ing impossible (to some extent). This “knowledge-driven” view of reasoning is
complemented by a, say, “data-driven” view that leads to a different type of
possibilistic calculus. According to this view, the statement that “ω is possible”
is not intended to mean that ω is provisionally accepted in the sense of not
being excluded by some constraining piece of information, but rather that ω is
indeed supported or, say, confirmed by already observed facts (in the form of
examples or data).

To distinguish the two meanings of a possibility degree, we shall denote a degree
of evidential support or confirmation of ω by δ(ω),6 whereas π(ω) denotes a
degree of compatibility.

To illustrate, suppose that the values a variable V can assume are a subset of V =
{1, 2, . . . , 10} and that we are interested in inferring which values are possible
and which are not. In agreement with the example-based (data-oriented) view,
we have δ(v) = 1 as soon as the instantiation V = v has indeed been observed
and δ(v) = 0 otherwise. The knowledge-driven approach can actually not exploit
such examples, since an observation V = v does not exclude the possibility that
V can also assume any other value v′ 	= v. As can be seen, the data-driven and
the knowledge-driven approach are intended, respectively, for expressing positive
and negative evidence. As examples do express positive evidence, they do never
change the distribution π ≡ 1. This distribution would only be changed if we
knew from some other information source, e.g., that V can only take values
v ≥ 6, in which case π(v) = 1 for v ≥ 6 and π(v) = 0 for v ≤ 5.

The distinction between modeling positive and negative evidence becomes es-
pecially clear when it comes to expressing complete ignorance. As already men-
tioned above, this situation is adequately captured by the possibility distribution
π ≡ 1: If nothing is known, there is no reason to exclude any of the worlds ω,
hence each of them remains completely possible. At the same time, complete
ignorance is modeled by the distribution δ ≡ 0. The latter does simply express
that none of the worlds ω is actually supported by observed data.

Within the context of modeling evidential support, possibilistic reasoning ac-
companies a process of data accumulation. Each observed fact, φ, guarantees
a certain degree of possibility of some world state ω, as expressed by an in-
equality of the form δφ(ω) ≥ d. The basic informational principle is now a
principle of maximal informativeness that suggests adopting the smallest dis-
tribution among those compatible with the given data and, hence, to turn the
above inequality into an equality. The accumulation of observations φ1 and φ2

6In [75], this type of distribution is called σ-distribution.
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is realized by deriving a distribution that is pointwise defined by

δφ1∧φ2(ω) = max{δφ1(ω), δφ2(ω)}.

As can be seen, adding new information has quite an opposite effect in con-
nection with the two types of possibilistic reasoning: In connection with the
knowledge-driven or constraint-based approach, a new constraint can only re-
duce possibility degrees, which means turning the current distribution π into
a smaller distribution π′ ≤ π. In connection with the data-driven or example-
based approach, new data can only increase (lower bounds to) degrees of possi-
bility.

Closely related to the view of possibility as evidential support is a set-function
that was introduced in [30], called measure of “guaranteed possibility”: ∆(A)
is the degree to which all worlds ω ∈ A are possible, whereas an event A is
possible in the sense of the usual measure of “potential possibility”, namely
Π(A) as discussed above, if at least one ω ∈ A is possible.7 For the measure ∆,
the characteristic property (1) becomes

∆(A ∪B) = min{∆(A), ∆(B)}.

3 Instance-Based Learning

In recent years, several variants of instance-based approaches to (supervised)
machine learning have been devised, such as e.g. memory-based learning [70],
exemplar-based learning [64], or case-based reasoning [50]. Though emphasizing
slightly different aspects, all of these approaches are founded on the concept of an
instance or a case as a basis for knowledge representation and reasoning. A case
(observation, example, ...) can be thought of as a single experience, such as a
pattern (along with its classification) in pattern recognition or a problem (along
with a solution) in case-based reasoning. To highlight the main characteristics
of IBL it is useful to contrast it with model-based learning.8

Typically, IBL methods learn by simply storing (some of) the observed exam-
ples. They defer the processing of these inputs until a prediction (or some other
type of query) is actually requested, a property which qualifies them as lazy
learning methods [3]. Predictions are then derived by combining the informa-
tion provided by the stored examples in some way or other. After the query has
been answered, the prediction itself and any intermediate results are discarded.
As opposed to this, model-based or inductive approaches derive predictions in

7The latter semantics is clearly in line with the measure-theoretic approach underlying

probability theory.
8Needless to say, there is no clear borderline between the two approaches. In fact, several

learning techniques fall in-between (e.g. [22]) or combine concepts of both (e.g. [62]).
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an indirect way: First, the observed data is used in order to induce a model,
say, a decision tree or a regression function. Predictions are then obtained on
the basis of this model (which can also serve other purposes such as explain-
ing). As opposed to lazy learners, inductive methods are eager in the sense
that they greedily compile their inputs into an intensional description (model)
and then discard the inputs. In general, eager (model-based) algorithms have
higher computational costs during the training phase than lazy (instance-based)
methods where learning basically amounts to storing (selected) examples. On
the other hand, lazy methods often have greater storage requirements, typically
linear in the size of the data set, and higher computational costs when it comes
to deriving a prediction.

Model-based learning is in line with parametric methods in (classical) statistics,
whereas instance-based approaches to machine learning share important fea-
tures with non-parametric statistics, such as e.g. kernel smoothing techniques
[74]. It deserves mentioning, however, that instance-based methods are not nec-
essarily non-parametric [77]. Besides, the lazy learning paradigm is naturally
related to what is called transductive inference in statistical learning theory [73].
Transductive inference is inference “from specific to specific”. Thus, it stands
for the problem of estimating some values of a function directly, given a set
of empirical data. Instead of transductive inference we shall also employ the
less pompous term “extrapolation” to denote this process: The known values of
a function are extrapolated – in a locally restricted way– in order to estimate
unknown values. This type of inference represents an alternative to the indirect
(model-based) approach which estimates the complete functional relationship
in a first step (induction) and evaluates this estimation at the points of interest
afterwards (deduction).

3.1 Nearest Neighbor Classification

The well-known Nearest Neighbor (NN) principle originated in the field of
pattern recognition [16] and constitutes the core of the family of IBL algo-
rithms. It provides a simple means to realize the aforementioned extrapolation
of observed instances.

Consider the following setting that will be used throughout the paper: X denotes
the instance space, where an instance corresponds to the description x of an
object (usually in attribute–value form). X is endowed with a distance measure
DX .9 L is a set of labels, and 〈x, λx〉 is called a labeled instance (or a case).
In classification tasks, which are the focus of most IBL implementations, L is
a finite (usually small) set {λ1, . . . , λm} comprised of m classes. S denotes a

9(X ,DX ) is often supposed to be a metric space. From a practical point of view, it is

usually enough to assume reflexivity and symmetry of DX .
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sample that consists of n labeled instances 〈xı, λxı〉 (1 ≤ ı ≤ n). Finally, a new
instance x0 ∈ X is given, whose label λx0 is to be estimated.

In connection with the sample S, note that X × L corresponds to the set of
potential observations. For each label λ ∈ L, let Cλ ⊆ X denote the set of
instances x ∈ X such that 〈x, λ〉 can indeed be observed. Cλ is also referred
to as a concept. For example, a bicycle belongs to the concept “two-wheelers”
whereas a car does not. Formally, we can assume an underlying population
P of entities such that each element p ∈ P is mapped to a labeled instance
〈x(p), λ(p)〉 in a unique way. Thus, x is an element of Cλ or, say, 〈x, λ〉 is an
existing instance if there is at least one p ∈ P such that 〈x, λ〉 = 〈x(p), λ(p)〉.
Observe that the mapping p 
→ x(p) is not assumed to be injective (different
elements of P might have the same description), which means that concepts can
overlap (Cλ ∩ Cλ′ 	= ∅ for λ 	= λ′).

The NN principle prescribes to estimate the label of the yet unclassified point x0

by the label of the closest sample point, i.e. the one which minimizes the distance
to x0. The k-Nearest Neighbor (kNN) approach is a slight generalization
which takes the k > 1 nearest neighbors of a new sample point x0 into account.
That is, an estimation λest

x0
of λx0 is derived from the set Nk(x0) of the k nearest

neighbors of x0, e.g. by means of the majority vote decision rule:

λest
x0

= argmax
λ∈L

card{x ∈ Nk(x0) |λx = λ}. (2)

Not only can the NN principle be used for classification, it is also employable for
realizing a (locally weighted) approximation of continuous-valued target func-
tions. To this end, one reasonably computes the (weighted) mean of the k

nearest neighbors of a new query point instead of returning the most common
value.10

The inductive bias11 underlying the NN principle corresponds to a represen-
tativeness or closeness assumption suggesting that similar (= closely located)
instances have similar (or even the same) classification. This hypothesis, which
gives rise to the similarity-guided extrapolation principle discussed in the in-
troduction, is clearly of a heuristic nature. Still, theoretical properties of NN

classification have been investigated thoroughly from a statistical perspective
(e.g. [14]).12 In fact, the origin of the NN approach can be found in work on
non-parametric discriminatory analysis [38, 39].

Besides, several conceptual modifications and extensions, such as distance weight-
10

Shephard’s interpolation method [67] can be considered as a special type of NN estima-

tion.
11Roughly speaking, the inductive bias corresponds to the a priori assumptions on the

identity of the model to be learned. Without a biased angle of view, observed data is actually

meaningless and generalization beyond that data impossible [56].
12Needless to say, corresponding results can only be derived under certain statistical as-

sumptions on the setting of the problem.
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Figure 1: Two situations of uncertainty in connection with the basic kNN rule,
caused by the existence of more than one frequent class label among the nearest
neighbors (above) and the absence of any close neighbor (below).

ing, which is discussed below, have been considered. Particularly, (editing)
methods for selecting optimal training samples to be stored in the memory have
been developed in order to improve classification performance [78] or to reduce
computational complexity [41] or both. Other extensions aim at supporting
the determination of adequate metrics and the optimal size of the neighbor-
hood. Computational aspects have been addressed as well. For example, fast
algorithms for finding nearest neighbors have been devised in order to improve
computational efficiency [40, 81, 49].

3.2 Uncertainty in NN Classification

In statistical estimation theory, an estimated quantity is always endowed with a
characterization of its reliability, usually in terms of a confidence measure and a
confidence region. Alternatively, an estimation is given directly in the form of a
probability distribution. As opposed to this, the NN principle in its basic form
merely provides a point-estimation or, say, a decision rule, but not an estimation
in a statistical sense. The neglecting of uncertainty makes this principle appear
questionable in some situations [43]. To illustrate, Fig. 1 shows two classification
problems. The new instance x0 is represented by a cross, and dark and light
circles correspond to instances of two different classes, respectively. In both
cases, the kNN rule with k = 5 suggests DARK as a label for x0. As can be
seen, however, this classification is everything but reliable: In the above setting,
the proportion of dark and light examples is almost balanced (apart from that,
the closest points are light). This is a situation of ambiguity. The setting below
illustrates a problem of ignorance: It is true that all neighbors are dark, but
even the closest among them are actually quite distant.

A simple (yet drastic) step to handle this type of problem is to apply a reject
option in the form of a distance or frequency threshold. That is, a classification
or answer to a query is simply refused if the nearest neighbors are actually not
close enough [72, 15, 36] or if the most frequent label among these neighbors is
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still not frequent enough [12, 42].

A second possibility is to equal statistical methods (especially Bayesian ones)
in deriving a probability distribution as an inference result. In fact, this is an
obvious idea since NN techniques have originally been employed in the context
of non-parametric density estimation [38, 53]. Thus, a single decision can be
replaced by an estimation in the form of a probability vector(

px0(λ1), . . . , px0(λm)
)
, (3)

where px0(λı) = Pr(λı |x0) is the probability that λx0 = λı, i.e. the conditional
probability of the label λı given the instance x0. Taking the k nearest neighbors
of x0 as a point of departure, an intuitively reasonable approach is to specify
the probability px0(λı) by the relative frequency of the label λı among the labels
of these neighbors: px0(λı)

.= kı/k, where kı denotes the number of neighbors
having label λı. In fact, this approach can also be justified theoretically, as will
be shown in the following.

The Nearest Neighbor approach to density estimation (not to be confused
with the one to classification) is closely related to kernel-based density estima-
tion. An NN density estimator is a kernel estimator with variable kernel width
[68]: The size of the neighborhood of a point x0 is adapted so as to include ex-
actly k observations. Thus, consider a sample of n observations x1, . . . , xn ∈ Rl

which are realizations of an l-dimensional random vector X with probability
density φ : Rl → R≥0. For x0 ∈ Rl let v be the volume of the smallest sphere
V (x0) around x0 that contains k of these observations. The relation

Pr(X ∈ V (x0)) ≈ φ(x0) · v

(which holds true for small spheres) then suggests the following estimation of
φ(x0), the density at point x0:

φest(x0) =
k

n · v . (4)

Coming back to NN classification, consider a sample S that comprises n =
n1 + . . . + nm observations, where nı denotes the number of tuples 〈x, λx〉 ∈ S

such that λx = λı. Let x0 be a new observation. Again, we choose an as small
as possible hypersphere around x0 which contains a set Nk(x0) of k instances
from S, where k = k1 + . . . + km with kı = card{x ∈ Nk(x0) |λx = λı}. The
conditional probability density of x0 (given the label) can now be estimated by

φest(x0 |λı) =
kı

nı · v , (5)

where v denotes the volume of the hypersphere around x0. Moreover, the uncon-
ditional density of x0 and the prior probability of the label λı can be estimated
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by

φest(x0) =
k

n · v , pest(λı) =
nı

n
, (6)

respectively. For the probabilities in (3) one thus obtains

px0(λı) = pest(λı |x0) =
φest(x0 |λı) · pest(λı)

φest(x0)
=

kı

k
. (7)

Remark 1 Note that the NN estimation of the conditional probability density
(5) is actually given by

φest(x0 |λı) =
kı

nı · vı
,

where vı is the volume of the smallest sphere around x0 that contains all of the
kı neighbors with label λı. Then, however, the probabilities

px0(λı) =
kı · v
k · vı

(8)

do not necessarily add up to 1. This problem is related to a general diffi-
culty of NN density estimation. Namely, deriving (4) for all x ∈ X leads to
a non-normalized density function φest since each x requires a different hyper-
sphere.13 �

Of course, (7) might be considered as a formal justification of the original kNN

(decision) rule: The label estimated by the (majority vote) kNN rule is just
the one of maximal (posterior) probability [18]. Still, one should be cautious
with the distribution (7). Particularly, it is not clear how reliable the estimated
probabilities px0(λı) = kı/k actually are. It is possible to construct correspond-
ing confidence intervals, but these are only asymptotically valid [68]. In fact, k

is generally small and, hence, (7) not very reliable.14 Improving the quality of
predictions by simply increasing k obviously does not work since it also entails
an enlarging of the hypersphere around x0.15

3.3 Weighted NN Rules

A straightforward modification of the kNN rule is to weight the influence of a
neighboring sample point by its distance. This idea leads to replace (2) by

λest
x0

= argmax
λ∈L

∑
x∈Nk(x0) : λx=λ

ω(x |x0, S), (9)

13Apart from that, an NN density estimation may suffer from very heavy tails and an infinite

integral.
14An estimated probability is always a multiplicity of 1/k. Particularly, px0(λı) ∈ {0, 1} in

the special case k = 1, i.e. for the 1NN rule.
15Good estimations are obtained for small hyperspheres containing many points. Besides,

asymptotic convergence generally assumes an adaptation of k as a function of n.
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where ω(x |x0, S) is the weight of the neighbor x. There are different possibilities
to define these weights. For example, let the neighbors Nk(x0) = {x1, . . . , xk}
be arranged such that dı = DX (xı, x0) ≤ DX (x, x0) = d for ı ≤ . In [37], the
weights are then determined as16

ω(xı |x0, S) =

{
dk−dı

dk−d1
if dk 	= d1

1 if dk = d1

. (10)

The weighting of neighbors appears reasonable from an intuitive point of view.
For instance, a weighted kNN rule is likely to yield LIGHT rather than DARK

as a classification in Fig. 1 (above). More general evidence for the usefulness of
distance-weighting is provided in [54, 58], at least in the practically relevant case
of finite samples. In fact, in [5] it was shown that the asymptotic performance
of the kNN rule is not improved by distance-weighting.

Note that the original kNN rule corresponds to the weighted rule with

ω(x |x0, S) =

{
1 if x ∈ Nk(x0)

0 if x 	∈ Nk(x0)
. (11)

Thus, the NN rule can be expressed as a global principle involving the complete
sample S of observations without loss of generality:

λest
x0

= arg max
λ∈L

∑
〈x,λx〉∈S : λx=λ

ω(x |x0, S). (12)

Interestingly enough, it is also possible to consider the probabilistic NN pre-
diction (7) in the context of the weighted NN approach. Namely, (7) can be
written as

px0(λ) =
∑

〈x,λx〉∈S : λx=λ

ω(x |x0, S), (13)

with the weight function ω now being defined by

ω(x |x0, S) =

{
1/k if x ∈ Nk(x0)

0 if x 	∈ Nk(x0)
. (14)

Again, (12) then amounts to choosing the label with maximal posterior proba-
bility.

Of course, in the following situation one would hardly advocate a uniform dis-
tribution suggesting that labels DARK and LIGHT have the same probability:

16See [54] for a modification that performed better in experimental studies; for other types

of weight functions see, e.g., [79].
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This example reveals a shortcoming of the weight function (14), namely the
disregard of the arrangement of the neighbors. In fact, the derivation of the
probabilistic NN estimation (7) disregards the actual distances and positions in
the estimation of probability densities.17 This, however, is only justified if the
sphere containing the k nearest neighbors is indeed very small, which is usually
not the case in practice. (Note that the label DARK is assigned a higher degree
of probability than LIGHT according to (8), cf. Remark 1).

In order to account for this problem, it is possible to combine the idea of
weighting and probabilistic estimation. The use of the uniform weights (14)
corresponds to the use of the (uniform) Parzen window in kernel-based density
estimation [59]. By making use of a more general kernel function K : Rl → R≥0,
a density function which is usually symmetric around 0, the NN density esti-
mation (4) can be generalized as follows:

φest(x0) =
1
n
·

n∑
ı=1

Kdk
(x0 − xı) , (15)

where dk is the distance between x0 and its kth nearest neighbor and Kdk
is a

re-scaling of a kernel function K (with K(u) = 0 for |u| > 1):

Kd : u 
→ 1/dl ·K(u/d).

The same reasoning as in Section 3.2 then suggests a weighted counterpart of
(7):

pest(λ |x0) ∝
∑

〈x,λx〉∈S : λx=λ

Kdk
(x0 − x) . (16)

As can be seen, (16) is nothing else than an estimation derived from the weighted
NN rule by means of normalization.18 Thus, proceeding from weights such as
(10), one simply defines a probability distribution px0 such that

px0(λ) ∝
∑

〈x,λx〉∈S : λx=λ

ω(x |x0, S). (17)

Related to this approach are extensions of NN classification which make use of
fuzzy sets [6, 8, 46, 47]. By weighting neighbors according to their distance,

17Taking positions into account becomes very tricky in instance spaces of higher dimension

[86].
18Note, however, that (16) actually considers more than k instances if the kth nearest

neighbor is not unique. See [58] for an alternative type of distance-weighting in kNN which

unifies classification and density estimation.
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these methods compute a “fuzzy” classification

λest
x0

=
(
uλ1(x0), . . . , uλm(x0)

)
(18)

for a new instance x0. That is, x0 is not assigned a unique label in an unequivocal
way. Rather, a degree of membership, uλ(x0), is specified for each label λ.
Consider as an example the fuzzy kNN algorithm proposed in [47]. The degree
to which x0 is assigned the label λı (is classified into the ıth class) is given by

uλı(x0) =

∑k
=1 uı |x0 − x|−2/(m−1)∑k

=1 |x0 − x|−2/(m−1)
, (19)

where uı = uλı(x) is the membership degree of the instance x in the ıth class.
The possibility of assigning fuzzy membership degrees uı to labeled instances
x is seen as a decisive feature. Turning the (non-fuzzy) label λx of an observed
instance x into a fuzzy label allows one to adjust the influence of that instance if
it is not considerded prototypical of its class. The constant m in (19) determines
the weighting of the distance between x0 and its neighbors.

Clearly, (19) still has a probabilistic flavor since degrees of membership add up
to 1.19 However, the use of fuzzy labels makes it more general than (17). In
fact, a fuzzy classification (18) can be written as

uλ0(x0) ∝
n∑

ı=1

uλ0(xı) · ω(xı |x0, S).

Formally, the main difference between a probabilistic estimation and a fuzzy
classification is hence the use of fuzzy labels in the latter approach: In the
probabilistic case, an observed instance 〈x, λx〉 supports the label λx only. De-
pending on the “typicality” of the instance (it might concern a “boundary case”
whose labeling was not unequivocal), it may also support labels λ 	= λx in the
case of fuzzy classification.

3.4 IBL Algorithms

Proceeding from the basic NN approach, a family of instance-based machine
learning algorithms has been proposed in [4, 2]. The simplest algorithm, known
as IB1, mainly differs from the basic NN algorithm in that it normalizes the
(numeric) attribute values of instances (which are characterized by means of an
attribute–value representation) to guarantee that features are equally weighted,

19Formally, (19) might hence be interpreted as a probability distribution as well. It should

be noted, however, that this interpretation might be criticized since the derivation of (19)

does not assume an underlying probabilistic model.
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processes instances incrementally, and uses a simple method for tolerating miss-
ing attribute values. IB2 extends IB1 by using an editing strategy, i.e. it main-
tains a memory (case base) of selected cases called prototypes (falsely classified
points are added as references). A further extension, IB3, aims at reducing the
influence of noisy observations.20 To this end, a classification record is main-
tained, which counts the correct and incorrect votes of the stored references. By
weighting attribute values in the computation of the distance measure, IB4 and
IB5 [2] take the relevance of features into account. The weights are adapted
each time a new classification has been made.

To summarize, IBL algorithms (for concept learning) basically consist of three
components [2]: A similarity function computes a numeric similarity between
instances. A classification function decides on the membership of a newly pre-
sented instance in a concept, given the similarities between the new instance
and the stored examples as well as the labels (and classification performance) of
these examples. It yields a complete concept description when being applied to
all (still unclassified) instances. After each classification task, a concept descrip-
tion updater derives a modified concept description by maintaining the memory
of cases. The decision whether to retain or remove a case is based on records
of the previous classification performance and the information provided by the
new classification task.

As for the basic NN rule, some efforts have been made to improve the perfor-
mance of IBL algorithms. Important points, some of which have already been
mentioned above, include conceptual aspects such as the reduction of storage
requirements by editing and prototype selection [55], the toleration of noise [4],
the definition of similarity functions [80], and feature weighting or selection [77],
as well as practical issues such as efficient techniques for indexing training ex-
amples [76]. Apart from classification, IBL techniques can also be employed for
function approximation, that is to predict real-valued attributes [48, 86].

4 Possibilistic Extrapolation of Cases

4.1 The Basic Estimation Principle

The following type of possibilistic prediction was proposed in [23] and has been
further developed in [27, 25]:

δx0(λ0)
.= max

1≤ı≤n
min

{
σX (x0, xı), σL(λ0, λı)

}
, (20)

for all λ0 ∈ L, where δx0(λ0) denotes the (estimated) possibility of the label
λ0, i.e. the possibility that λx0 = λ0. Moreover, σX and σL are [0, 1]-valued

20See also [78] for an early work along these lines.
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similarity measures on X and L, respectively.

4.1.1 The possibility distribution δx0

According to (20), λx0 = λ0 is regarded as possible if there is an instance
〈xı, λxı〉 such that both, xı is close to x0 and λxı is close to λ0. Or, if we define
the joint similarity between the labeled instance 〈xı, λxı〉 and the (hypothetical)
case 〈x0, λ0〉 to be the minimum of the similarities σX (x0, xı) and σL(λ0, λxı),
this can be expressed by saying that the case 〈x0, λ0〉 is regarded as possible if
the existence of a similar case 〈xı, λxı〉 is confirmed by observation. In other
words, a similar case provides evidence for the existence of 〈x0, λ0〉 in the sense
of possibility qualification.21

Following the notational convention of Section 2, possibility degrees δx0(λ0) de-
note degrees of “guaranteed possibility”. Thus, they are actually not considered
as degrees of plausibility in the usual sense but rather as degrees of confirmation
as introduced in Section 2.2. More specifically, the distribution δx0 : L → [0, 1]
is thought of as a lower rather than an upper bound. Particularly, δx0(λ0) = 0
must not be equated with the impossibility of λx0 = λ0 but merely means that
no evidence supporting the label λ0 is available so far! In fact, δx0 is of provi-
sional nature, and the degree of possibility assigned to a label λ0 may increase
when gathering further evidence by observing new examples, as reflected by the
application of the maximum operator in (20).

This is completely in accordance with the use of possibility theory in connection
with a special approach to fuzzy rule-based reasoning. Indeed, proceeding from
the rule “The closer x to x0, the more possible it is that λx is close to λx0”, the
possibility distribution (20) has originally been derived as the inference result of
a related approximate reasoning method [32]. The latter concerns an example-
based approach to fuzzy rules where a single rule (case) is considered as a piece
of data [84]. This contrasts with the constraint-based approach where a rule
is modeled as an implication and several rules are combined conjunctively (a
possibility distribution is then an upper bound, cf. Section 2.1).

It is natural to assume a possibility distribution π : Ω→ [0, 1] to be normalized
(in the sense that supω∈Ω π(ω) = 1) if π(ω) specifies the degree of plausibility
that ω corresponds to the “true world” ω0.22 The above remarks make clear
that this constraint does not make sense for δx0 . In this connection, it should
also be noticed that there is not necessarily a unique actual world ω0 in the
sense of the possible worlds semantics [9]. Since x0 is not assumed to have a
unique label, δx0 rather provides information about the set {λ ∈ L |x0 ∈ Cλ}

21The idea of possibility qualification is usually considered in connection with natural lan-

guage propositions [65, 83]. Here, possibility qualification is casuistic rather than linguistic.
22Though generally accepted, this constraint is questioned by some authors. For example,

a sub-normalized distribution might be allowed in order to express a kind of conflict.
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of potential labels. Thus, the state of “complete knowledge” corresponds to the
distribution δx0 with δx0(λ) = 1 if x0 ∈ Cλ and δx0(λ) = 0 otherwise.

When being applied to all x ∈ X , (20) yields “fuzzy” concept descriptions, that
is possibilistic approximations of the concepts Cλ (λ ∈ L):

Cest
λ = {(x, δx(λ)) |x ∈ X}, (21)

where δx(λ) is the degree of membership of x ∈ X in the fuzzy concept Cest
λ .

Note that these fuzzy concepts can overlap in the sense that some x has a
positive degree of membership in two concepts Cest

λ and Cest
λ′ , λ 	= λ′.23

4.1.2 The similarity measures σX and σL

Let us make some remarks on the similarity measures σX and σL. To begin with,
notice that – according to (20) – the similarity of cases is in direct correspon-
dence with the possibility assigned to a label. Roughly speaking, the principle
expressed by (the fuzzy rule underlying) equation (20) gives rise to turn similar-
ity into possibilistic support. Consequently, σX and σL are thought of as, say,
support measures rather than similarity measures in the usual sense. They do
actually serve the same purpose as the weight functions in Section 3.3. Partic-
ularly, σX (x0, xı) = 0 means that the label λxı is not considered as a relevant
piece of information since xı is not sufficiently similar to x0. For computation,
irrelevant cases in (20) can clearly be left out of account. Thus, it is enough to
consider cases in a certain region around x0. As opposed to the kNN approach,
it is the size of this region rather than the number of neighboring cases which
is fixed.

We assume σX and σL to be reflexive and symmetric, whereas no special kind
of transitivity is required. In fact, the application of the maximum operator in
(20) does even permit a purely ordinal approach. In this case, the range of the
similarity measures is a finite subset A ⊂ [0, 1] that encodes an ordinal scale
such as

{completely different, . . . , very similar, identical}. (22)

Correspondingly, degrees of possibility are interpreted in a qualitative way [52,
33]. That is, δx0(λ) < δx0(λ′) only means that label λ is less supported than
label λ′; apart from that, the difference between these values has no meaning.

Needless to say, a scale such as (22) is more convenient if instances are complex
objects rather than points in a Euclidean space and if similarity (distance)
between objects must be assessed by human experts (which is common practice

23In practice, fuzzy and/or overlapping concepts seem to be the rule rather than the excep-

tion [1].
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in case-based reasoning). Note that an ordinal structure is also sufficient for
the original kNN rule. In connection with distance-weighting, however, the
structures of the involved measures become more important. In any case, one
should be aware of the fact that a cardinal interpretation of similarity raises
some crucial semantic questions if corresponding measures cannot be defined
in a straightforward way. In the weighted kNN rule, for example, one patient
that died from a certain medical treatment compensates for two patients that
survived if the former is twice as similar to the current patient. But what exactly
does “twice as similar” mean in this context?

Looking at (20) from the point of view of observed cases, this estimation princi-
ple defines a (possibilistic) extrapolation of each sample 〈x, λx〉. In the original
NN approach, which does not involve a distance measure DL on L, a case
〈xı, λxı〉 ∈ S can only support the label λxı . This corresponds to the special
case where σL in (20) is given by

σL(λ, λ′) =
{

1 if λ = λ′

0 if λ 	= λ′ , (23)

which is reasonable if L is a nominal scale, as e.g. in concept learning or pattern
recognition (classification with |L| = 2).

By allowing for graded distances between labels, the possibilistic approach pro-
vides for a case 〈xı, λxı〉 to support similar labels as well. This type of extended
extrapolation is reasonable if L is a cardinal or at least ordinal scale. In fact,
it should be observed that (20) applies to continuous scales in the same way
as to discrete scales and thus unifies the performance tasks of classification and
function approximation. For example, knowing that the price (= label) of a cer-
tain car is $10,500, it is quite plausible that a similar car has exactly the same
price, but it is plausible as well that it costs $10,700. Interestingly enough,
the same principle is employed in kernel-based estimation of probability density
functions, where probabilistic support is allocated by kernel functions centered
around observations [63, 59]. Indeed, (20) can be considered as a possibilistic
counterpart of kernel-based density estimation. Let us finally mention that the
consideration of graded distances between labels is also related to the idea of
class-dependent misclassification costs [60, 71].

4.2 Generalized Possibilistic Estimation

The possibility distribution δx0 , which specifies the fuzzy set of well-supported
labels, is a disjunctive combination of the individual support functions

δı
x0

: λ0 
→ min
{
σX (x0, xı), σL(λ0, λxı)

}
. (24)

In fact, the max-operator in (20) is a so-called t(riangular)-conorm and serves
as a generalized logical or-operator: λx0 = λ0 is regarded as possible if 〈x0, λ0〉
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is similar to 〈x1, λx1〉 or to 〈x2, λx2〉 or . . . or to 〈xn, λxn〉.
Now, fuzzy set theory offers t-conorms other than max and, hence, (20) can be
generalized as follows:

δx0(λ0)
.= δ1

x0
(λ0)⊕ δ2

x0
(λ0)⊕ . . .⊕ δn

x0
(λ0)

=
⊕

1≤ı≤n

min
{
σX (x0, xı), σL(λ0, λxı)

}

= 1−
⊗

1≤ı≤n

max
{
1− σX (x0, xı), 1− σL(λ0, λxı)

}
for all λ0 ∈ L, where ⊗ and ⊕ are a t-norm and a related t-conorm, respectively.
Recall that a t-norm is a binary operator ⊗ : [0, 1]2 → [0, 1] which is commu-
tative, associative, monotone increasing in both arguments and which satisfies
the boundary conditions x ⊗ 0 = 0 and x ⊗ 1 = x. An associated t-conorm is
defined by the mapping (α, β) 
→ 1− (1− α)⊗ (1− β). The t-norm associated
with the t-conorm max is the min-operator. Other important operators are the
product ⊗P : (α, β) 
→ αβ with related t-conorm ⊕P : (α, β) 
→ α + β−αβ and
the Lukasiewicz t-norm ⊗L : (α, β) 
→ max{0, α + β − 1} with related t-conorm
⊕L : (α, β) 
→ min{1, α + β}.
Observe that the minimum operator employed in the determination of the joint
similarity between cases can be considered as a logical operator as well, namely
as a fuzzy conjunction: Two cases 〈x0, λx0〉 and 〈x1, λx1〉 are similar if both, x0

is similar to x1 and λx0 is similar to λx1 . Consequently, this operator might be
replaced by a t-norm, too. By doing so, (24) and (20) become

δı
x0

: λ0 
→ σX (x0, xı) ⊗ σL(λ0, λxı) (25)

and

δx0(λ0)
.=

⊕
1≤ı≤n

σX (x0, xı)⊗ σL(λ0, λxı), (26)

respectively. Note, however, that a (fuzzy) logic-based derivation of the joint
similarity is not compulsory. Particularly, the t-norm ⊗ in (26) need not neces-
sarily be the one related to the t-conorm ⊕. For example, one might thoroughly
take ⊗ = min and ⊕ = ⊕P , or even combine the similarity degrees σX (x0, xı)
and σL(λ0, λxı) by means of an operator which is not a t-norm. In that case,
however, the “logical” interpretation of (26) is lost.

4.2.1 Control of compensation and accumulation of support

By choosing an appropriate t-conorm⊕ in (26) one can control the accumulation
of individual degrees of evidential support, especially the extent of compensa-
tion. To illustrate, consider the following situation, where σX (x0, x1) = 3/4,
σX (x0, x2) = σX (x0, x3) = 1/2, and σX (x0, x4) = 1/4:
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x1 x2x3x4

Should one prefer DARK or LIGHT as a classification of the new point?
The use of the max-operator as a t-conorm yields δx0(DARK) = 3/4 and
δx0(LIGHT) = 1/2 and, hence, the decision DARK. The three moderately
similar instances with label LIGHT do not compensate for the one very similar
instance with label DARK. As opposed to this, the probabilistic sum (α, β) 
→
α + β − αβ brings about a compensation effect and entails δx0(DARK) = 3/4
and δx0(LIGHT) = 13/16, that is, a slightly larger possibility for LIGHT.

More generally, different t-conorms can model different accumulation modes,
which typically entail a kind of saturation effect. In the case of the probabilistic
sum ⊕P , for example, an additional β-similar observation increases the current
support α by β(1 − α). Thus, the larger the support already granted is, the
smaller the absolute increase due to the new observation will be. This appears
reasonable from an intuitive point of view: If the support of a label is already
large, one is not surprised to see another (close) instance having the same label.
A small support increment then reflects the low information content related to
the new observation [44].

4.2.2 Possibilistic support and weighted NN estimation

A t-norm ⊗ is called Archimedian if the following holds: For all x, y ∈ ]0, 1[
there is a number n ∈ N such that ⊗(n)(x) < y (where ⊗(n)(x) = ⊗(n−1)(x)⊗x

and ⊗(1)(x) = x). It can be shown that ⊗ is a continuous Archimedian t-norm
iff there is a continuous, strictly decreasing function g : [0, 1]→ [0,∞] such that
g(1) = 0 and

α⊗ β = g(−1)(g(α) + g(β)) (27)

for all 0 ≤ α, β ≤ 1, where the pseudo-inverse g(−1) is defined as

g(−1) : x 
→
{

g−1(x) if 0 ≤ x ≤ g(0)

0 if g(0) < x
.

The function g is called the additive generator of ⊗. For example, x 
→ 1 − x

and x 
→ − ln(x) are additive generators of the Lukasiewicz t-norm ⊗L and the
product ⊗P , respectively.

Based on the representation (27), one can establish an interesting connection
between (26) and the weighted NN rule. To this end, let g be the additive
generator of the t-norm24 related to the t-conorm ⊕ used as an aggregation

24This is not the t-norm used in (26) for defining a joint similarity measure.
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operator in (26). With dı = 1−σX (x0, xı)⊗σL(λ0, λxı) and ωı = g(dı), we can
write (26) as

δx0(λ0) = 1− g(−1)(ω1 + ω2 + . . . + ωn). (28)

Since g is decreasing, it can be considered as a weight function that turns a
distance dı into a weight ωı associated with the ıth instance. Then, (28) tells us
that the possibility degree δx0(λ0) is nothing else than a (monotone increasing)
transformation of the sum of weights ωı. In other words, (26) can be seen as a
distance-weighted NN estimation, where the weight of a neighbor is determined
as a function of its similarity to the new instance. As opposed to (9), however,
the weight of a case according to (28) does not depend on other cases stored in
memory (cf. Section 4.3.1 below).

Consider the Lukasiewicz t-(co)norm as an example, for which we obtain ωı =
1− dı = σX (x0, xı)⊗ σL(λ0, λxı) and

δx0(λ0) = min{1, ω1 + ω2 + . . . + ωn}. (29)

If, moreover, σL is given by (23), then δx0(λ0) is nothing else than the bounded
sum of the similarity degrees σX (xı, x0) between x0 and the instances xı with
label λxı = λ0. Thus, (29) is basically equivalent to the global NN method,
i.e. the weighted NN approach with k = n,25 apart from the fact that it does
not distinguish between labels whose accumulated support exceeds 1 (this is
another type of saturation effect). For the probabilistic sum ⊕P , the mapping
between possibility degrees and the sum of weights is one-to-one:

δx0(λ0) = 1− exp
(− (ω1 + ω2 + . . . + ωn)

)
.

In connection with the generalized model (26), the t-conorm ⊕ used for com-
bining individual degrees of support defines another degree of freedom of the
model. It is hence interesting to mention the existence of parameterized families
of t-(co)norms which comprise commonly used operators as special cases. For
example, the Frank-family is defined as

⊕ρ : (α, β) 
→




max(α, β) if ρ = 0
α + β − αβ if ρ = 1
min{1, α + β} if ρ =∞
1− lnρ

(
1 + (ρ1−α−1)(ρ1−β−1)

ρ−1

)
otherwise

. (30)

Proceeding from such a family of t-conorms, the degree of freedom of the model
reduces to a single parameter, here ρ, which can be adapted in a simple way,
e.g. by means of cross-validation techniques.

25The proper kNN rule cannot be emulated as in (11) since the weights ωı depend on

absolute distance (again, see Section 4.3.1 below).
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4.2.3 Upper and lower possibility bounds

The possibility degree (26) represents the support (confirmation) of a label λ0

gathered from similar instances, according to the basic NN principle suggesting
that similar instances have similar labels. Now, in the sense of this principle,
an observation 〈xı, λxı〉 might not only confirm but also disqualify a label λ0.
This happens if xı is close to x0 but λxı is not similar to λ0. A possibility
distribution expressing degrees of exclusion rather than degrees of support and,
hence, complementing (26) in a natural way is given by

πx0 : λ0 
→
⊗

1≤ı≤n

(1− σX (x0, xı))⊕ σL(λ0, λxı). (31)

According to (31), an individual observation 〈xı, λxı〉 induces a constraint on
the label of x0: A label λ0 is disqualified by 〈xı, λxı〉 if both, σX (x0, xı) is large
and σL(λ0, λxı) is small. As opposed to this, 〈xı, λxı〉 is completely ignored if
σX (x0, xı) = 0, in which case the individual support on the right-hand side of
(31) is 1 (πx0 ≡ 1 is an expression of complete ignorance: all upper possibility
bounds are 1 since there is no reason to discredit any label). This approach is
obviously in agreement with the constraint-based view of possibilistic reasoning
(cf. Section 2.1). Moreover, the distribution (31) is again related to a special
type of fuzzy rule [26].

The possibility of a label λ0 can now be characterized by means of an extended
estimation, namely as a tuple

δ∗x0
(λ0) = [ δx0(λ0), πx0(λ0) ]

with a lower bound δx0(λ0) expressing a degree of confirmation, and an upper
bound πx0(λ0) expressing a degree of plausibility. The following cases show
that the complementary distribution πx0 can greatly improve the informational
content of a possibilistic evaluation:26

• δ∗x0
(λ0) = [0, 1]: This is an expression of complete ignorance. Neither is

λ0 supported nor is it (partly) excluded by any observation. Thus, λ0 is
fully plausible though not confirmed at all.

• δ∗x0
(λ0) = [0, 0]: Clear evidence against λ0 has been accumulated in the

form of instances similar to x0 with labels dissimilar to λ0.

• δ∗x0
(λ0) ≈ [1, 1]: The label λ0 is strongly supported through the observa-

tion of similar instances.

Notice that

δx0(λ0) > πx0(λ0) (32)

26Recall that positive and negative evidence cannot be distinguished in probability theory.
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indicates a kind of conflict and is closely related to the problem of ambiguity
in connection with the NN principle (cf. Section 3.2). In fact, (32) can occur
if x0 has close neighbors xı and x with quite dissimilar labels λxı and λx

(mathematically speaking, x0 is a point of discontinuity). In this case, the
evaluation of λ0 is unsteady, and the support δx0(λ0) should be taken with
caution. The inequality in (32) might also trigger a revision process that aims
at removing the conflict by means of a model adaptation.

4.2.4 Fuzzy logical evaluation

The values δx0(λ0) in (26) can also be considered as membership degrees of a
fuzzy set, namely the fuzzy set of “well-supported labels”. In fact, the possibility
degree δx0(λ0) can be seen as the truth degree, 〈P (λ0)〉, of the following (fuzzy)
predicate P (λ0): “There is an instance close to x0 with a label similar to λ0.”
P (λ0) defines the property that qualifies λ0 as a well-supported label.

Of course, one might easily think of alternative characterizations of well-supported
labels. Fuzzy set-based modeling techniques allow for translating such charac-
terizations given in linguistic form into logical expressions. By using fuzzy log-
ical connectives including t-norms, fuzzy quantifiers such as “a few” and fuzzy
relations such as “closely located”, one can specify sophisticated fuzzy decision
principles that go beyond the simple NN rule. Example:

“There are at least a few closely located instances, most of these
instances have the same label, and none of the moderately close
instances has a very different label.”

The logical expression P (·) associated with such a specification can be used in
place of the right-hand side in (26):

δx0(λ0)
.= 〈P (λ0)〉. (33)

The decision rule related to (26) favors the label λest
x0

that meets the requirements
specified by P (·) best. This generalization appears especially interesting since
it allows one to adapt the NN principle so as to take specific characteristics of
the application into account.

Observe that (33) can also mimic the original kNN rule: Consider the fuzzy
proposition “λ0 is supported by many of the k nearest neighbors of x0”, and
let the fuzzy quantifier “many (out of k)” be modeled by the mapping ı 
→ ı/k.
Then, δx0(λ0) = ı/k iff ı among the k nearest neighbors have label λ0. In this
case, possibility degrees (derived from fuzzy truth degrees) formally coincide
with probability degrees.
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4.3 Comparison of Extrapolation Principles

So far, we have discussed two types of NN approaches to estimation and decision
making: A probabilistic one, which is in agreement with the original kNN

rule, and a possibilistic one introduced in this section. Both approaches can be
considered as a two-step procedure. The first step derives a distribution that
will subsequently be referred to as the NN estimation. This estimation defines
a degree of support for each label λ ∈ L. The second step, the NN decision,
chooses one label on the basis of the NN estimation. Usually, the decision is
given by the label with maximal support, and ties are broken by coin flipping.
Still, in the case of a continuous (or at least ordinal) scale L, a decision might
also be obtained by some kind of averaging procedure.

In order to facilitate the comparison of the two approaches, we write degrees of
evidential support in the general form

ν(λ |x0, S) = α
({νx(λ |x0, S) | 〈x, λx〉 ∈ S}) (34)

and thus obtain the (maximal support) decision as

λest
x0

= argmax
λ∈L

ν(λ |x0, S). (35)

In (34), νx(λ |x0, S) is the support of the hypothesis λx0 = λ provided by the
labeled instance 〈x, λx〉, and α is an aggregation function.

To reveal the original kNN rule and the probabilistic approach as special cases
of (35), note that the probability distribution (7) is obtained by using the arith-
metic sum as an aggregation function α and defining the support function as

νp
x(λ |x0, S) =

{
1/k if x ∈ Nk(x0) and λ = λx

0 otherwise
. (36)

More generally, a support function can be defined as

νp
x(λ |x0, S) =

{
Kdk

(x0 − x) if λ = λx

0 otherwise
, (37)

where K is a kernel function. The index dk denotes the distance between x0

and its kth nearest neighbor. It signifies that the kernel function is scaled so as
to exclude exactly those instances xı with DX (x0, xı) > dk. Proceeding from
(37), the probability distribution px0 is obtained by normalizing the supports

νp(λ |x0, S) =
∑

〈x,λx〉∈S

νp
x(λ |x0, S),

which yields

px0(λ) =
νp(λ |x0, S)∑m

=1 νp(λ |x0, S)
(38)
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for all λ ∈ L. That is, the aggregation α is now the normalized rather than
the simple arithmetic sum. Of course, since normalization does not change the
mode of a distribution it has no effect on decision making and could hence be
omitted from this point of view.

The possibilistic approach (26) is recovered by α = ⊕ and

νδ
x(λ |x0, S) = σX (x0, x) ⊗ σL(λ, λx). (39)

As can be seen, the main difference between the probabilistic and the possibilis-
tic approach concerns the definition of the individual support function νx and
the aggregation of the corresponding degrees of support.

Apart from that, however, a direct comparison is complicated by the similarity
measure over labels, σL, which is used in (39) but not in (37). One possibility
to handle this problem is to consider (39) only for the special case (23):

νδ
x(λ |x0, S) =

{
σX (x0, x) if λ = λx

0 otherwise
. (40)

Equation (40) reveals that the similarity measure σX now plays the same role
as the kernel function K in (37).

4.3.1 Absolute versus relative support

An important difference between (37) and (40) is that an example 〈x, λx〉 ∈ S

provides relative support of a label λ in the probabilistic approach but absolute
support in the possibilistic one. That is, νδ

x(λ |x0, S) depends on the absolute
similarity between x0 and x but is independent of further observations. In fact,
we can actually write νδ

x(λ |x0) in place of νδ
x(λ |x0, S) since S does not appear

on the right-hand side of (40): The support provided by observed samples 〈x, λx〉
is bounded to nearby instances, decreases gradually with distance, and vanishes
for completely dissimilar examples.

As opposed to this, the support νp
x(λ |x0, S) is relative and depends on the

relation between the distance of x to x0 and the distances of other observations
to x0. This is reflected by the scaling of the kernel function in (37). On the
one hand, this means that νp

x(λ |x0, S) can be large even though x is quite
distant from x0. On the other hand, the extension of the sample S by another
instance close enough to x0 might exclude a quite similar observation x from the
neighborhood Nk(x0). The corresponding re-scaling of the kernel function will
then cancel the support provided by 〈x, λx〉 so far. The induced thresholding
effect appears especially radical (and might be questioned on such grounds) in
connection with (36), where νp

x(λ |x0, S) is reduced from 1/k to 0, that is from
full support to no support at all.
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The bounding of evidential support, as realized by the possibilistic approach, is
often advisable. Consider a simple example: Let X = [0, 1] and λx = I[1/2,1](x)27

and suppose instances to be chosen at random according to a uniform distri-
bution. Moreover, assume that a new instance x0 must be labeled, given only
one observation, x1. Using the 1NN rule, the probability of a correct decision is
obviously 1/2. Now, suppose that the NN rule is applied only if |x0 − x1| ≤ d,
whereas a decision is determined by flipping a coin otherwise (this is exactly the
procedure that results from the possibilistic approach by defining σX in (20)
by σX (x, x′) = 1 if |x − x′| ≤ d and 0 otherwise). A simple calculation shows
that the probability of a correct decision is now 1/2+ d(1− d). As can be seen,
dissimilar instances are likely to provide misleading information in this example
and, hence, the disregard of such instances is indeed advantageous. Loosely
speaking, it is better to guess a label at random than to rely on observations
not similar enough.

Of course, the concept of absolute support is actually not reserved to the pos-
sibilistic approach but can be realized for the probabilistic method as well. To
this end, one simply replaces (37) by

νp
x(λ |x0, S) =

{
K(x0 − x) if λ = λx

0 otherwise
, (41)

where the kernel function K is now fixed. That is, K is no longer scaled by
the size of the neighborhood of x0. This is exactly the estimation one derives
by the reasoning in Section 3.2 if the generalized NN density estimation (15) is
replaced by the simple kernel estimator:

φest(x0) =
1
n
·

n∑
ı=1

K(x0 − xı). (42)

Here, the only problem occurs if νp(λ |x0, S) = 0 for all λ ∈ L. In this situ-
ation (of complete ignorance), a probability distribution cannot be derived by
normalization.

Apart from that, (41) might indeed be preferred to (37) due to the reasons
mentioned above. In fact, one should realize that one of the major reasons for
using the NN density estimator (15) rather than the kernel estimator (42) is to
guarantee the continuity of the density function φest. In the context of instance-
based learning, however, this is not important since one is not interested in
estimating a complete density function but only a single value thereof. To the
best of our knowledge, (37) and (41) have not been compared in a systematic
way in IBL so far. Note that (41) should actually be called a Near Neighbor

estimation since it involves the near rather than the nearest neighbors. The
same remark applies to the possibilistic approach, of course.

27
IA is the indicator function: IA(x) = 1 if x ∈ A and 0 otherwise.
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Above, it has been argued that the consideration of graded degrees of similarity
between labels is often advised (see also our example in Section 4.5 below).
It should be mentioned, therefore, that the probabilistic approach might be
extended in this direction as well. To this end, a joint probability density can
be estimated based on a kernel function K, which is now defined over X × L.
An estimation for the label λ can then be derived by conditioning on x0:

px0(λ) ∝
∑

〈x,λx〉∈S

νp
x(λ |x0, S) =

∑
〈x,λx〉∈S

K
(
x0 − x, λ− λx

)
.

This is the most general form of a probabilistic estimation. Still, one should
keep in mind that it requires X × L to have a certain mathematical structure,
an assumption which is not always satisfied in applications (again, we refer to
our example below).

Let us conclude this section with a final remark on related work in a different
context. Interestingly enough, a distinction similar to ours between absolute
and relative support has also been made in connection with cluster analysis.
In fuzzy cluster analysis, a point may have a positive degree of membership
in several classes. Still, in the classical approach [7] the membership degrees
add up to 1 and must hence be interpreted as relative numbers. In [51], some
difficulties caused by this constraint are discussed, and possibilistic clustering is
advocated as an alternative. In this approach, a membership degree does indeed
reflect the (absolute) compatibility of a point with the prototype of a cluster.

4.3.2 Similarity versus frequency

The estimation principle underlying the probabilistic approach combines the
concepts of similarity (distance) and frequency: It applies a closeness assump-
tion, typical of similarity-based reasoning, that suggests to focus on the most
similar observations (or to weight observations by their distance). From the re-
duced set of supposedly most relevant instances, probabilities are then estimated
by relative frequencies. This contrasts with the basic (max–min) possibilistic
approach (20) which relies on similarity alone: The application of the maximum
operator does not produce any compensation or reinforcement effect. Thus, pos-
sibility depicts the existence of supporting evidence, not its frequency.28 The
generalized possibilistic approach based on (26) allows for modes of compensa-
tion which combine both aspects. Especially, the operators mentioned above
produce a kind of saturation effect, that is, a limited reinforcement effect: The
increase of support due to the observation of a similar instance is a decreasing
function of the support that is already available.

28To a certain extent, this is related to the distinction between an existential and an enu-

merative analogy factor in models of analogical induction [57].
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In this connection, it is important to realize the different nature of the concepts
of possibility and probability. Particularly, it should be emphasized that the for-
mer is not interpreted in terms of the latter.29 For example, consider the stan-
dard probabilistic setting where cases are chosen randomly and independently
according to a fixed probability measure over X × L. The possibility degree
δx0(λ0) will then converge to 1 with increasing sample size whenever 〈x0, λ0〉
has a non-zero probability of occurrence. In fact, the possibilistic approach is
interested in the existence of a case, not in its probability. Roughly speaking,
the major concern of this approach is the approximation of the concepts Cλ,
whereas the probabilistic approach aims at estimating conditional probability
distributions px0 = Pr(· |x0). Of course, this distinction is relevant only if the
concepts are overlapping, that is, if the query x0 does not have a unique la-
bel. Otherwise, a possibilistic and a probabilistic approach are equivalent in the
sense that x0 ∈ Cλ ⇔ Pr(λ |x0) = 1.

It is beyond question that the frequency of observations usually provides valu-
able information. Yet, the frequency-based approach does heavily rely on statis-
tical assumptions concerning the generation of training (and test) data. Thus,
it might be misleading if these assumptions are violated. Suppose, e.g., that the
probability of observing a positive example, while learning a concept C1 ⊆ X ,
depends on the number of positive examples observed so far and hence con-
tradicts an independence assumption (the probability of a label λx, given the
instance x, is not independent of the data). In this case, a probabilistic estima-
tion is clearly biased, whereas the possibility distribution (20) is not affected at
all. Indeed, the information expressed by δx0 remains valid even if only negative
examples xı ∈ C0 = X \ C1 have been presented so far: δx0(1) = 0 then simply
means that no evidence for x0 ∈ C1 has been gathered as yet. Moreover, the
value δx0(0) reflects the available support for x0 ∈ C0. This support depends
on the distance of x0 to the observed negative examples. Note that δx0(0) = 0
is possible as well. In this case, no evidence is available at all, neither for nor
against x0 ∈ C1. See Section 6.3 for a simulation experiment which concerns
the aspect of robustness of NN estimation toward violations of the standard
statistical assumptions.

Apart from statistical assumptions, the structure of the application has an im-
portant influence. To illustrate, consider two classes in the form of two clusters
such that the (known) diameter of both clusters is smaller than the distance
between them, that is DX (x1, x2) < DX (x1, x3) whenever λx1 = λx2 	= λx3 .
The label of an instance can then be determined with certainty as soon as the
distance from its nearest neighbor is known. In other words, the 1NN rule which
does not involve frequency information performs better than any kNN rule with
k > 1.

29Though such a relationship can be established, e.g., by interpreting possibility as upper

probability [31] or fuzzy sets as coherent random sets [28].
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4.4 NN Estimations and NN Decisions

In addition to the extrapolation principles let us compare the induced distribu-
tions, referred to as NN estimations, from a knowledge representational point
of view, especially against the background of the two shortcomings of the NN

rule illustrated in Fig. 1.

A crucial difference between a possibility distribution δ and a probability func-
tion p is that the latter obeys a normalization constraint that demands a total
probability mass of 1, whereas no such constraint exists in possibility theory.
Consequently, a possibility distribution is more expressive in some situations.
Especially, the following points deserve mentioning:

• Possibility reflects ignorance: All possibility degrees δx0(λ) remain rather
small if no sufficiently similar instances are available. Particularly, the
distribution δx0 ≡ 0 is an expression of complete ignorance and reflects the
absence of any relevant observation (σX (x0, xı) = 0 for all xı). A learning
agent using this estimation “knows that it doesn’t know” [70]. As opposed
to this, a distribution such as, say, δx0 ≡ 1/m indicates that some (small)
evidence is available for each of the m labels λı. These two situations
cannot be distinguished in probability theory where they induce the same
distribution px0 ≡ 1/m (if, as suggested by the principle of insufficient
reason, complete ignorance is modeled by the uniform distribution).

• Possibility reflects absolute frequency: For example, suppose σX (x0, xı) =
1−d > 0 and λxı = λ1 for all n instances xı stored in memory. The prob-
abilistic estimation (7) then yields the one-point distribution px0(λ1) = 1
and px0(λ) = 0 for all λ 	= λ1. Thus, it suggests that λx0 = λ1 is certain,
even if n is rather small. With a compensating t-conorm such as the prob-
abilistic sum ⊕P , the extended estimation (26) yields δx0(λ1) = 1−dn and
δx0(λ) = 0 for all λ 	= λ1. Thus, not only does the possibilistic support of
the hypothesis λx0 = λ1 reflect the distance but also the actual number
of voting instances: δx0(λ1) is an increasing function of n and approaches
1 for n→∞.

As can be seen, a probabilistic estimation can represent ambiguity, whereas
the possibilistic approach captures both problems, ambiguity and ignorance:
Ambiguity (Fig. 1, above) is present if there are several plausible labels with
similar degrees of support, and ignorance (Fig. 1, below) is reflected by the fact
that even the most supported label has a small degree of possibility. Thus, (26)
can be taken as a point of departure for a decision making procedure that goes
beyond the guessing of a label. For example, a possible line of action proceeding
from (26) might be expressed by the following rules (involving thresholds 0 <

dmax < dmin < 1):
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• If δx0(λ∗) ≥ dmin for the most supported label λ∗ and δx0(λ) ≤ dmax for
all λ 	= λ∗, then let λest

x0
= λ∗.

• If δx0(λ∗) < dmin, then gather further information.

• If δx0(λ∗) ≥ δx0(λ) ≥ dmin for two labels λ∗, λ ∈ L, then refuse a predic-
tion.

The Echocardiogram Database
30 is a real-world example that is quite in-

teresting in this respect. One problem that has been addressed by machine
learning researchers in connection with this database is to predict from several
attributes whether or not a patient who suffered from a heart attack will sur-
vive at least one year. Since data is rather sparse (132 instances and about 10
attributes), the possibilistic approach often yields estimations with low support
for both alternatives, surviving and not surviving at least one year. This is
clearly reasonable from a knowledge representational point of view and reveals
an advantage of absolute over relative degrees of support. For example, telling
a patient that your experience does not allow any statement concerning his
prospect of survival (δx0 ≡ 0) is very different from telling him that his chance
is 1/2 (px0 ≡ 1/2).

Let us mention that a generalization of the kNN rule closely related to our
approach has been developed in [19]. In this method, which is also motivated by
the problems of ambiguity and ignorance in the original kNN rule, an estimation
of the label λx0 is given in terms of a belief function [66] rather than a possibility
distribution. See [27] for a comparison between the two approaches.

The discrepancy between a probabilistic and a possibilistic approach (or an
approach based on belief functions) disappears to some extent if one is only
interested in a final decision, that is if a decision must be made irrespective of
the quality and quantity of the information at hand. The method in [19], for
example, refers to the so-called transferable belief model [69] and, hence, turns
the belief function (at the “credal” level) specifying the unknown label into a
probability function (at the “pignistic” level) before making a decision. Thus,
the support of individual labels is expressed in terms of probability, and an
NN estimation can be derived by taking one among the most probable labels,
breaking ties at random.

Observe that, as a consequence of applying the maximum operator, a possibilis-
tic NN decision derived from (20) coincides with the 1NN rule. The generalized
version (26), where several moderately similar examples can compensate for one
very similar instance, comes closer to the original kNN rule. In fact, for certain
special cases, the possibilistic approach is equivalent – from a decision making
point of view – to the probabilistic approach based on the support function (41).

30Available at http://www.ics.uci.edu/˜mlearn.
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Equation (28) shows that a possibility degree δx0(λ) is a monotone transforma-
tion of the sum of weights ωı, and this relation is one-to-one if the pseudo-inverse
g(−1) is actually the inverse g−1. The similarity function σX can then be chosen
such that

δx0(λı) ≤ δx0(λ) ⇔ px0(λı) ≤ px0(λ).

That is, labels which are better supported in a possibilistic sense are also more
probable and vice versa.

To illustrate, consider the case where X = Rl and σL(λ, λ′) = 1 if λ = λ′

and 0 otherwise. Let K be a kernel function and define σX as (x, y) 
→ 1 −
exp (−K(x, y)).31 For the t-conorm ⊕P , the weights in (28) are then given by
ωı = K(x0 − xı). Therefore,

δx0(λı) = 1− exp


− ∑

〈x,λx〉∈S : λx=λı

K(x0 − x)




= 1− exp (−c · px0(λı)) ,

where px0(λı) is the probability degree derived from (41) using the kernel func-
tion K and c is the normalization factor c =

∑
λ∈L px0(λ).

4.5 An Illustrative Example

Here, we present a simple example for which the possibilistic approach might
be considered superior to the probabilistic one. The task shall be to predict
a student’s grade in physics given some information on other grades of that
student. Thus, an instance is now a subject, and the label is given by the
corresponding grade. We assume that grades are taken from the scale L =
{0, 1, . . . , 10}, where 10 is the best result. Moreover, we consider two scenarios
S1 and S2:

Subject S1 S2

Chemistry – 10
French – 3
Philosophy – 3
Spanish – 3
Sports 5 –

It is clearly not obvious how to define a reasonable similarity measure over
the set of subjects. In fact, an ordinal measure – sufficient for the possibilistic
approach (20) – appears much simpler than a cardinal one. Nevertheless, let us
assume the following (cardinal) degrees of similarity:

31Formally, one might set K(0)
.
= ∞ to ensure that σX is reflexive.
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σX Chem. French Phil. Span. Sports
Physics 3/4 1/3 1/3 1/3 0

Concerning the set of labels L, graded degrees of similarity are clearly advised
in this example. Let us define the similarity between two grades a and b to be

σL(a, b) = max
{

1− 1
5
|a− b|, 0

}
.

Needless to say, our application does not define a statistical setup par excellence,
which is a main reason why the probabilistic approach does hardly appear suit-
able. To begin with, a scenario as defined above cannot be considered as an
independent sample (perhaps the information is censored if it comes from the
student himself), not to mention the small number of observations. Moreover,
a relative frequency interpretation does not make sense. Finally, the set X en-
dowed with the similarity measure σX (as partly specified above) is likely to lack
the mathematical (metric) structure that enables one to define a reasonable ker-
nel function K (either on X or on X × L). Consequently, the derivation of the
kNN estimation in Section 3.2 is no longer valid. Clearly, nothing prevents us
from still applying the formulae and simply interpreting the normalized degrees
of additive support as degrees of probability. But one should keep in mind that
this approach actually lacks a solid foundation.

The first scenario is a typical example of complete ignorance, for one does not
have any relevant piece of information. It is true that the case base is not empty,
but the grade in sports does not allow one to draw any conclusion on the grade in
physics since these two subjects are very dissimilar. This is adequately reflected
by the possibilistic estimation which yields δx0 = δphysics ≡ 0. A probabilistic
estimation with relative support is obviously not appropriate in this example.
Since sports is the only neighbor one obtains a probability distribution that
favors grade 5 for physics. Thus, it is clearly advised to use absolute rather than
relative support. Then, however, a probability is actually not defined since the
denominator in (38) is zero. One way out is to take the uniform distribution
px0 ≡ 1/11 as a default estimation, but this raises the well-known question
whether the latter is an adequate expression of complete ignorance (which is
definitely denied by most scholars).

Scenario S2 reveals problems of weighting and aggregation. Undoubtedly, a
weighted estimation should be preferred in this example. Still, the example
shows that the definition and aggregation of weights can be tricky. What is the
most likely grade? Particularly, is grade 3 for physics more likely than grade 10
or vice versa? The weighted kNN rule favors grade 3 since the three subjects
which are moderately similar to physics compensate for the one (chemistry)
which is very similar. Of course, this result might be judged critically. Espe-
cially, this example reveals a problem of interdependence which is not taken
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into account by means of a simple summation of weights. Namely, the two
subjects Spanish and French are very similar by themselves. Thus, one might
wonder whether the grade 3 should really count twice. In fact, one might pre-
fer to consider the grades in French and Spanish as only one piece of evidence
(suggesting that the student is not good at languages) instead of two pieces of
distinct information. Formally, the problem is that the probabilistic approach
makes an assumption of (conditional) independence which is no longer valid
when taking structural assumptions about the application into account. Here,
such assumptions correspond to the NN inductive bias, namely the hypothesis
that similar instances have similar classifications. Given this hypothesis, the
instances stored in the case base are no longer independent (grade 3 in French,
in conjunction with this hypothesis, makes grade 3 in Spanish very likely).

The problem of interdependence cannot be taken into account as long as an
estimation disregards the similarity between the instances stored in memory,
as do all the estimations presented so far. Still, the aggregation operator ⊕ in
the possibilistic approach provides a means for alleviating the problem. With
⊕ = max, for example, frequency does not count at all and one obtains δx0(3) =
1/3 < 3/4 = δx0(10). The probabilistic sum ⊕P brings about a reinforcement
effect but still yields δx0(3) = 0.7 < 3/4 = δx0(10), a result that appears quite
reasonable.

A second problem related to scenario S2 is that of ambiguity. Particularly, the
probabilistic approach yields a bimodal distribution px0 , and the same is also
true for most aggregation operators in the possibilistic approach. For example,
(26) with ⊕ = ⊕P (and ⊗ = ⊗P ) yields δx0(3) > δx0(7) < δx0(10). This result
is not intuitive, for one might hardly judge an intermediate grade less possible
than two extreme grades. To solve this problem, δx0 can be replaced by its
convex hull

λ 
→ min
{

max
λ′≤λ

δx0(λ
′), max

λ′≥λ
δx0(λ

′)
}

. (43)

In our example, this leads to the following distribution:

λ 0 1 2 3 4 5 6 7 8 9 10
δx0(λ) 0 0.3 0.53 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.75

Of course, this prediction is still ambiguous in the sense that is supports several
grades by means of high degrees of possibility. This is not a defect, however,
but rather an adequate representation of the ambiguity which is indeed present
in the situation associated with scenario S2.

The modification (43) of δx0 should not be considered ad-hoc. Rather, the
convexity requirement can be thought of as a possibility-qualifying rule that
complements the similarity-based justification of possibility degrees: The more
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possible two labels are, the more possible is any label in-between. This type of
background knowledge and the associated constraints can be met more easily
in the possibilistic approach than in the probabilistic one. In fact, the incor-
poration of background information is hardly compatible with non-parametric
density estimation.

In summary, the example has shown the following advantages of the possibilistic
approach: First, the interpretation of aggregated weights in terms of degrees of
evidential support is often less critical than the interpretation in terms of degrees
of probability. Second, a possibility distribution can represent ignorance. Third,
the use of aggregation operators other than the arithmetic sum can be useful.
Fourth, the possibilistic approach is more flexible and allows for incorporating
constraints or background knowledge.

4.6 Complexity Issues

Even though algorithmic aspects are beyond the scope of this paper, let us
have a rough look at the computational complexity of our possibilistic approach
to IBL. A straightforward implementation of the prediction (25) has a running
time which is linear in the size |S| of the sample and the number |L| of labels. In
this respect, it is hence completely comparable to other instance-based learning
methods.

In order to reduce the computational complexity, IBL approaches take advan-
tage of the fact that a prediction is already determined by the nearest neighbors
of the query instance. Thus, the consideration of each sample instance is ac-
tually not necessary, and efficiency can be gained by means of fast algorithms
for finding nearest neighbors [40, 81, 49]. Such algorithms employ efficient
similarity-based indexing techniques and corresponding data structures in order
to find the relevant instances quickly.

The same idea can be applied in connection with our possibilistic approach. In
fact, a possibility degree δx0(λ) is completely determined by the neighborhood of
the case 〈x0, λ〉, that is the sample instances 〈x, λx〉 satisfying σX (x, x0) > 0 and
σL(λx, λ) > 0. As can be seen, apart from minor differences, the possibilistic
method is quite comparable to other IBL methods from a complexity point
of view. One such difference concerns the relevant sample instances. In the
kNN approach, the number of relevant instances in always k, but the (degree
of) relevance of an instance may change when modifying the case base. As
opposed to this, the degree of relevance of a neighboring instance is fixed in the
possibilistic approach, but the number of relevant instances can change.

Let us finally mention that efficiency can also be gained if the complete pos-
sibility distribution δx0 is not needed. In fact, quite often one will only be
interested in those labels having a high degree of possibility. For example, one
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might be interested in a fixed number of maximally supported labels, or in those
labels whose support exceeds a given possibility threshold. In such cases, the
computation of δx0(λ) can be omitted (or broken off) for certain labels λ.

5 Possibilistic Instance-Based Learning

Proceeding from the NN estimation (26), we have developed a possibilistic
method of instance-based learning, called PossIBL. This section presents some
extensions of the basic model which turn PossIBL into a powerful and practi-
cally useful IBL algorithm.

5.1 Dealing with Incomplete Information

The problem of dealing with incomplete information such as missing attribute
values in an important issue in machine learning [20, 61]. For example, suppose
that the specification of the new instance x0 is incomplete, and let X0 ⊆ X
denote the instances compatible with the description of x0. Moreover, recall
the lower support-bound semantics of our possibilistic approach to IBL. The
following generalization of (26) is in accordance with these semantics:

δx0(λ) .= inf
x∈X0

δx(λ) = (44)

= inf
x∈X0

⊕
1≤ı≤n

σX (x, xı) ⊗ σL(λ, λxı).

Indeed, each potential candidate x ∈ X0 gives rise to a lower bound according
to (26), and without additional knowledge we can guarantee but the smallest
of these bounds to be valid. This is in agreement with the idea of guaranteed
possibility (cf. Section 2.2). The simplicity of handling incomplete information
in a coherent (namely possibilistic) way is clearly a strong point of PossIBL.
Notice that the computation of the lower bound in (44) is in line with the
handling of missing attribute values in IB1, where these values are assumed
to be maximally different from the comparative value. Yet, the possibilistic
solution appears more appealing since it avoids any default assumption. Indeed,
inferring what is possible seems to be a reasonable way of dealing with missing
attribute values and for handling incomplete and uncertain information in a
coherent way.

More generally, imprecise knowledge about x0 can be modeled in the form of a
possibility distribution π on X , where π(x) corresponds to the degree of plau-
sibility that x0 = x. A graded modeling of this kind is useful, e.g., if some
attributes are specified in a linguistic way. It suggests the following generaliza-
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tion of (44):

δx0(λ) .= inf
x∈X

(
π(x)� δx(λ)

)
, (45)

where � is a generalized implication operator that is reasonably chosen as the
Gödel implication [35]:

α� β
.=

{
1 if α ≤ β

β if α > β
.

From a logical point of view, (45) specifies the extent to which the label λ

is supported by all plausible candidates for x0. Notice that the distributions
δx and π in (44) have different semantics and express degrees of confirmation
and plausibility, respectively (cf. Section 2). Particularly, π is assumed to be
normalized, i.e. there is at least one instance x with π(x) = 1. One obviously
recovers (44) from (45) for the special case where π is a {0, 1}-valued possibility
distribution π = IX0 and hence corresponds to a crisp subset X0 ⊆ X .

Similar generalizations can also be realized for coping with incompletely spec-
ified examples. Let the ıth case in the memory be characterized by the set
Xı × Lı ⊆ X × L. Then, (26) becomes

δx0(λ) .=
⊕

1≤ı≤n

inf
〈x,λx〉∈Xı×Lı

σX (x0, x) ⊗ σL(λ, λx),

which is in accordance with (44). Moreover, we obtain

δx0(λ) .=
⊕

1≤ı≤n

inf
〈x,λx〉∈X×L

max
{
σX (x0, x)⊗ σL(λ, λx), 1− πı(x, λx)

}

if the ıth case is characterized by means of a possibility distribution πı on
X × L rather than by a crisp set Xı × Lı. Observe that this expression can
be combined with (45) in order to handle incomplete specifications of both, the
sample cases and the new instance. Moreover, notice that the distribution δx0

will generally remain unaffected if an example is completely unspecified (πı ≡ 1),
which is clearly a reasonable property. See [27] for a more thorough discussion
of handling incomplete information and for a more detailed derivation of the
above extensions.

5.2 Discounting Noisy and Atypical Instances

IBL is quite sensitive to noisy instances which should hence be discarded [2].
By noise one generally means incorrect attribute value information, concerning
either the descriptive part x of a case or the label λx (or both). However, the
problem of noise is also closely related to the “typicality” of a case. A typical
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instance is representative of its neighbors, whereas an exceptional (though not
incorrect) instance has a label quite different from the labels of neighboring
instances [85].

Recall that each case 〈xı, λxı〉 ∈ S is extrapolated by placing the support func-
tion or, say, “possibilistic kernel” (25) around the point 〈xı, λxı〉 ∈ X × L, just
like a density (kernel) function is centered around each observation in kernel-
based density estimation. Of course, the less representative (i.e. noisy or excep-
tional) an instance is of its neighborhood, the smaller the extent of extrapolation
should be.

A simple learning mechanism that adapts the extent of extrapolation of stored
cases can be realized by means of a slight generalization of the kernel function
(25):

δı
x0

: λ 
→ mı

(
σX (x0, xı)

) ⊗ σL(λ, λxı). (46)

Here, mı : [0, 1]→ [0, 1] is a monotone increasing modifier function with mı(1) =
1. This function allows for discounting atypical cases. Roughly speaking, mı

adapts the similarity between the instance xı and its neighbors. For example,
xı is made completely dissimilar to all other instances by letting (mı|[0, 1[) ≡ 0.
Replacing σX by the modified measure mı ◦ σX is closely related to the idea of
local distance measures in NN algorithms.

Suppose that a new observation x0 with label λx0 has been made, and consider
a stored case 〈xı, λxı〉. Should this case be discounted in the light of the new
observation? The fact that 〈xı, λxı〉 supports a label different from the observed
label λx0 need not necessarily be a flaw. In fact, recall that x0 ∈ Cλx0

does not
exclude that x0 ∈ Cλ for some λ 	= λ0. In other words, neither the non-
support of the observed nor the support of a different label can actually be
punished. However, what can be punished is the disqualification of the label
λx0 as expressed by the upper possibility model (31). Thus, it is reasonable to
require that the degree of disqualification induced by 〈xı, λxı〉 is bounded:

1−mı(σX (x0, xı))⊗ σL(λx0 , λxı) ≥ β, (47)

where β � 0 is a constant.

The constraint (47) suggests an update scheme in which a stored case 〈xı, λxı〉
is (maybe) discounted every time a new observation 〈x0, λx0〉 is made: Let F
denote a parameterized and completely ordered class of functions from which
mı is chosen. An adaptation is then realized by

mı ← min
{
mı, sup{f ∈ F | 1− f(σX (x0, xı))⊗ σL(λx0 , λxı) ≥ β}}

. (48)

The discounting of noisy and atypical instances through modifying possibilistic
kernel functions appears natural and somewhat simpler than the method used
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xı xı
x0

Figure 2: Left: The large circle corresponds to the support function (possibilistic
kernel) centered around xı and marks the extrapolation of label λxı . Right: The
support function is updated after observing a new instance which has a different
label λx0 	= λxı and hence must not be supported.

in IB3 [2]. Firstly, possibilistic discounting is gradual, whereas an instance is
either accepted or rejected (or is temporarily in-between) in IB3. Secondly, the
question whether to discount an instance and to which extent is answered quite
naturally in the possibilistic approach, where support is absolute and graded.
In IB3, an instance is either punished or not, and the corresponding decision
is based on a rule that appears reasonable but might still be considered ad-hoc
(xı is discounted if DX (xı, x0) is smaller than or equal to the distance between
x0 and its closest accepted neighbor32).

The possibilistic adaptation scheme becomes rather simple for the special case
X = Rl, L = {0, 1} and mı = I]γı,1], where 0 ≤ γı < 1. If σX is a strictly
decreasing function of Euclidean distance, then the support function (25) cor-
responds to a ball around xı: δı

x0
(λ) = 1 if λ = λx and x0 is located inside that

ball and δı
x0

(λ) = 0 otherwise. The parameter γı is chosen as large as possible,
but such that the support function does not cover any observed instance x with
λx 	= λxı , that is γı ≤ |xı − x| holds true for all of those x. Fig. 2 gives an
illustration for l = 2.

This special case is a useful point of departure for investigating theoretical prop-
erties of PossIBL. In [4], some convergence properties of IB1 have been shown
for a special setup which makes statistical assumptions about the generation
of training data and geometrical assumptions on a concept C1 to be learned.
For PossIBL, one can prove similar properties under the same assumptions.
More specifically, let l = 2, X = [0, 1]× [0, 1] (the results can be generalized to
any dimension l > 2 and any bounded region X ⊆ Rl) and consider a concept
C1 ⊆ X . For the special case above, the PossIBL approximation of C1 is then

32Auxiliary rules are used if x0 does not have an accepted neighbor.
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given by

Cest
1 =

⋃
〈xı,1〉∈S

Bρ(xı)(xı), (49)

where Bd(xı) = {x ∈ X | |x− xı| < d} is the (open) d-ball around xı and

ρ(xı) = min
{|x − xı| | 〈x, λx〉 ∈ S, λx 	= λxı

}
. (50)

Moreover, the approximation of C0 = X \ C1 is given by

Cest
0 =

⋃
〈xı,0〉∈S

Bρ(xı)(xı). (51)

It is readily verified that Cest
0 ∩ Cest

1 = ∅. However, Cest
0 ∪ Cest

1 = X does
not necessarily hold true. Thus, one may have δx0 ≡ 0 for some instances
x0 ∈ X (which are then classified at random). Consequently, an approximation
of concept C1 should actually be represented by the tuple (Cest

0 , Cest
1 ) which

divides instances x0 ∈ X into three groups: Those which (supposedly) belong
to C1 (δx0(0) = 0, δx0(1) = 1), those which do not (δx0(0) = 1, δx0(1) = 0), and
those for which no evidence is available so far (δx0 ≡ 0).

Now, a first desirable property is the convergence of the concept approximation,
that is the convergence of Cest

0 and Cest
1 toward C0 and C1, respectively. In this

context, however, the property of convergence itself has to be weakened since
exact convergence cannot be achieved due to the fact that an NN classifier
cannot guarantee the avoidance of wrong decisions at the boundary of a concept.
Moreover, some assumptions on the generation of samples and on the geometry
of the concept C1 have to be made. Here, we make the same assumptions
as in [4]: Instances are generated randomly and independently according to a
fixed probability measure µ over X . Furthermore, C1 is a concept having a nice
boundary, which is the union of a finite number of closed (hyper-)curves of finite
size.

We employ the following notation: The ε-neighborhood of C1 is the set

C+
1 (ε) .= {x ∈ X |Bε(x) ∩ C1 	= ∅},

and the ε-core of C1 is defined by

C−
1 (ε) .= {x ∈ X |Bε(x) ⊆ C1}.

A set A ⊆ X is called an (ε, γ)-approximation of C1 if there is a (measurable)
set N ⊆ X with µ(N) ≤ γ and such that

(C−
1 (ε) \N) ⊆ (A \N) ⊆ (C+

1 (ε) \N).

Finally, let Cest
1,n and Cest

0,n denote, respectively, the possibilistic concept approx-
imations (49) and (51) for |S| = n, i.e. after n observations have been made.
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Lemma 2 The equalities

C−
1 (ε) = X \ C+

0 (ε) and C−
0 (ε) = X \ C+

1 (ε)

hold true for all 0 < ε < 1. �

Proof. For x ∈ C−
1 (ε) we have Bε(x) ⊆ C1, which means that |x − x1| < ε

implies x1 ∈ C1. Consequently, there is no x0 ∈ C0 such that |x− x0| < ε and,
hence, x 	∈ C+

0 (ε). Now, suppose x ∈ X \C+
0 (ε). Thus, there is no x0 ∈ C0 such

that |x − x0| < ε, which means that |x − x1| < ε implies x1 ∈ C1 and, hence,
x ∈ C−

1 (ε). The second equality is shown in the same way. �

Theorem 3 Let C1 ⊆ X and 0 < ε, γ, d < 1. There is an integer n0 such
that the following holds true with probability at least 1 − d: The possibilis-
tic concept approximation Cest

1,n is a (2ε, γ)-approximation of C1 and Cest
0,n is a

(2ε, γ)-approximation of C0 for all n > n0. �

Proof. Let N denote the set of instances x ∈ X for which no sample xı ∈ S

exists such that |x − xı| < ε. In [4], the following lemma has been shown:
µ(N) ≤ γ holds true with probability 1− d whenever

n > �n0 =
√

2/ε�2/γ2 · ln
(
�
√

2/ε�2/d
)

. (52)

Subsequently, we ignore the set N , that is we formally replace X by X \N , C1

by C1 \N and C0 by C0 \N . Thus, the following holds true by definition: For
each x ∈ X there is an instance xı ∈ S such that |x− xı| < ε.

Now, consider any instance x ∈ C−
1 (2ε). We have to show that x ∈ Cest

1,n.
Let xı ∈ S be an instance such that |x − xı| < ε. For this instance we have
xı ∈ Bε(x) ⊆ C1, which means that xı belongs to C1. Furthermore, Bε(xı) ⊆
B2ε(x) ⊆ C1 and, hence, ρ(xı) ≥ ε for the value in (50). This implies that x ∈
Bρ(xı)(xı) and, therefore, x ∈ Cest

1,n. Thus, we have shown that C−
1 (2ε) ⊆ Cest

1,n.

Since the same arguments apply to C0, the property C−
0 (2ε) ⊆ Cest

0,n can be
shown in an analogous way. Thus, using Lemma 2,

Cest
1,n ⊆ X \ Cest

0,n ⊆ X \ C−
0 (2ε) = C+

1 (2ε).

Likewise, one shows that Cest
0,n ⊆ C+

0 (2ε). �
Roughly speaking, Theorem 3 guarantees that the 2ε-core of both, C0 and C1

is classified correctly (with high probability) if the sample S is large enough.
In other words, classification errors can only occur in the boundary region. For
being able to quantify the probability of an error, it is necessary to put restric-
tions on the size of that boundary region and on the probability distribution
µ. Thus, let C denote the class of concepts C1 ⊆ X that can be represented as
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the union of a finite set of regions bounded by closed curves with total length
of at most L [4]. Moreover, let Pβ denote the class of probability distributions
µ over X such that µ(A) ≤ µL(A) · β for all Borel-subsets A ⊆ X , where µL is
the Lebesgue measure and β > 0.

Theorem 4 The concept class C is polynomially learnable with respect to Pβ

by means of the possibilistic concept approximation (Cest
0 , Cest

1 ). �

Proof. If C1 ∈ C, then the size of the region C+
1 (2ε) \ C−

1 (2ε) is bounded by
4 εL. Consequently, the probability of that area is at most α = 4 εLβ. Since
a classification error can only occur either in this region or in the set N as
defined in Theorem 3 and the probability of N is at most γ, the probability of
a classification error is bounded by α + γ. Now, fix the parameters γ and ε as
follows: γ = e/2, ε = e/(8Lβ). By substituting these parameters into (52) one
finds that the required sample size n is polynomial in 1/e and 1/d. In summary,
the following holds true for any 0 < e, d < 1, C1 ∈ C, and µ ∈ Pβ : If more than
n(1/e, 1/d) examples are presented, where n is a polynomial function of 1/e and
1/d, then, with probability 1− d, the possibilistic concept approximation has a
classification error of at most e. This is precisely the claim of the theorem. �

5.3 From Instances to Rules

Selecting appropriate instances to be stored in memory and pruning the training
set are important issues in IBL that have a strong influence on performance.
Especially reducing the size of the memory is often necessary in order to main-
tain the efficiency of the system. The basic idea is to remove instances which
are actually not necessary to achieve good concept descriptions. For example,
imagine a concept having the form of a circle in some (two-dimensional) instance
space. To classify inner points correctly by means of the kNN rule it might then
be sufficient to store positive examples of that concept near the boundary.

In connection with PossIBL, where support is absolute rather than relative,
deleting instances from memory might produce “holes” in the concept descrip-
tion. An interesting alternative, which allows one to reduce the size of the
memory and, at the same time, to fill “holes” in the concept description by in-
terpolation, is based on the idea of merging instances and of generalizing cases
into rules. This idea appears particularly reasonable since the possibilistic esti-
mation principle is closely related to fuzzy rule-based reasoning. More precisely,
each observation can be interpreted as a fuzzy rule, namely as an instance of a
fuzzy meta-rule suggesting that similar instances have similar labels.

To illustrate the one-to-one correspondence between rules and cases in PossIBL,
let X = R, L = {0, 1} and suppose that two instances x1 = 4 and x2 = 6 with
label 0 have been observed. The possibilistic kernels (25) induced by these
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Figure 3: Possibility distributions induced by two cases (left, middle) and the
distribution associated with the summarizing fuzzy rule (right).

cases are shown in Fig. 3. The first case is equivalent to the fuzzy rule “If x0

is approximately 4 then λ = 0” if the fuzzy set “approximately 4” is modeled
by the possibility distribution δ1

x0
(the individual support function (25)). The

rules associated with the two cases can be merged into one rule, say, “If x0 is
about 5 then λ = 0”, where the fuzzy set “about 5” is modeled by the pointwise
maximum, δ1

x0
∨ δ2

x0
, of δ1

x0
and δ2

x0
(Fig. 3, right).

The above procedure is closely related to several other techniques that have been
proposed in connection with IBL. Viewing cases as maximally specific rules and
the idea of generalizing cases into rules has been put forward in [21, 22]. The
method proposed in [64] generalizes cases by placing rectangles of different size
around them. A new instance is then labeled by the nearest rectangle rather
than by the nearest case. This is very similar to our approach, where rectangles
are replaced by possibility distributions. Relations also exist with the idea of
merging nearest neighbors of the same class, thereby generating new (pseudo-
sample) prototypes [11]. In our example, the point 5 may be regarded as a
pseudo-instance replacing 4 and 6 (and also endowed with a modified support
function).

In the example in Fig. 3, the summarizing rule is exactly equivalent to the
conjunction of the two individual rules. Of course, the merging procedure
might also incorporate concepts of approximation and interpolation. For ex-
ample, suppose x2 = 8 rather than x2 = 6. The replacement of δ1

x0
∨ δ2

x0

by its convex hull δ : x 
→ max{δ1
x0

(x), δ2
x0

(x), I[5,7]} then goes beyond a sim-
ple combination since δ is larger than the pointwise maximum of δ1

x0
and δ2

x0

(e.g. δ1
x0

(6) = δ2
x0

(6) = 0.5 < 1 = δ(6)). This kind of possibilistic induction
can be reasonable and often allows for incorporating background knowledge.
Particularly, replacing a possibilistic estimation δx0 by its convex hull is advised
whenever a multimodal distribution does not make sense (as in our example in
Section 4.5) or if the relation of observable cases (cf. page 9) is even known to
satisfy a convexity constraint of the form

x ∈ Cλ ∩Cλ′′ ⇒ x ∈ Cλ′

for all λ < λ′ < λ′′.
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As can be seen, the extensions discussed here basically suggest a system that
maintains an optimal rule base rather than an optimal case base, including the
combination and adaptation of rules. These extensions are well-suited to the
discounting of instances discussed in Section 5.2. Indeed, deriving one rule from
several instances (or other rules) can be accomplished by replacing the latter
by a pseudo-instance and defining an appropriate modifier function m for that
pseudo-instance. Still, the extensions in this direction are premature and have
not been implemented in PossIBL yet.

6 Experimental Studies

6.1 Preliminaries

This section presents some experimental studies providing evidence for Pos-

sIBL’s excellent performance in practice. We would like to emphasize, how-
ever, that it is not meant as an exhaustive comparative study covering several
competing learning algorithms – and showing that PossIBL is superior to all
of its competitors. Apart from the fact that empirical studies are clearly of
limited evidence,33 one should realize that the primary motivation underlying
PossIBL is not another ε-improvement in classification accuracy but rather the
enrichment of IBL by concepts of possibilistic reasoning (though the latter does
clearly not exclude the former). Besides, one should keep the following points
in mind. Firstly, PossIBL has not been developed within a statistical frame-
work. Thus, the type of problems for which PossIBL is most suitable (see the
example in Section 4.5) is perhaps not represented in the best way by standard
(public) data sets commonly used for testing performance. Secondly, an impor-
tant aspect of the possibilistic approach is the one of knowledge representation.
But this aspect is neglected if – as in experimental studies – only the correctness
of the final decision (classification accuracy) counts, not the estimated distribu-
tion. Thirdly, a comparison with other IBL algorithms might appear dubious
since PossIBL – in its most general form – is an extension of IBL and hence
covers specific algorithms such as kNN as special cases.

Due to these difficulties, we have decided to apply a basic version of PossIBL to
several data sets from the UCI repository and to employ the kNN (resp. IB1)
algorithm as a reference (we use kNN with k = 1, 3, 5 and the weighted 5NN

rule with weight function (10)). Thus, we have refrained from tuning various
degrees of freedom in order to optimize the performance of PossIBL (an ex-
ception is only the experimental study presented in Section 6.4). Instead, we

33It is well-known that each algorithm has a selective superiority [10]. Thus, one will always

find data sets for which a certain algorithm, at least after being tuned appropriately, performs

better than others.
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have applied the original max–min version (20), only extended by the learn-
ing scheme presented in Section 5.2. The function mı in (46) was defined as
t 
→ exp(−γı (1 − t)), where γı ≥ 0 is the discounting rate of the ıth instance.
The constant β in (47) was taken as 0.8.34 In order to avoid difficulties due to
the different handling of non-nominal class labels and the definition of similarity
measures for non-numeric attributes, we have restricted ourselves to data sets
for which all predictive attributes are numeric and for which the class label is
defined on a nominal scale. The similarity σX is always defined as 1 minus the
normalized Euclidean distance and the similarity σL is given by (23).

6.2 Classification Accuracy

The experiments in this section were performed as follows: In a single simulation
run, the data set is divided at random into a training set (the case base) and a
test set, and the discounting rates γı are adapted to the training set. A decision
is then derived for each element of the test set by extrapolating the training
set (but without adapting the discounting rates or expanding the case base any
further), and the percentage of correct decisions is determined. Statistics are
obtained by means of repeated simulation runs.

Results are summarized by means of statistics for the percentage of correct clas-
sifications (mean, standard deviation, minimum, maximum, 0.1–fractile, 0.9–
fractile).

Balance Scale Database (625 observations, 4 predictive attributes, three
classes, training set of size 300, 1, 000 simulation runs):

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.8776 0.0148 0.8215 0.9230 0.8584 0.8984
1NN 0.7837 0.0161 0.7323 0.8369 0.7630 0.8030
3NN 0.8117 0.0165 0.7630 0.8707 0.7907 0.8338
5NN 0.8492 0.0155 0.8030 0.8923 0.8307 0.8707
w5NN 0.7864 0.0164 0.7294 0.8428 0.7655 0.8067

Iris Plant Database (150 observations, 4 predictive attributes, three classes,
training set of size 75, 10, 000 simulation runs):

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.9574 0.0204 0.8400 1.0000 0.9333 0.9733
1NN 0.9492 0.0196 0.8400 1.0000 0.9200 0.9733
3NN 0.9554 0.0175 0.8666 1.0000 0.9333 0.9733
5NN 0.9586 0.0181 0.8533 1.0000 0.9333 0.9866
w5NN 0.9561 0.0187 0.8400 1.0000 0.9333 0.9733
34Variations of this parameter had no significant influence.
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Glass Identification Database (214 observations, 9 predictive attributes,
seven classes, training set of size 100, 10, 000 simulation runs):

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.6841 0.0419 0.5300 0.8400 0.6300 0.7400
1NN 0.6870 0.0410 0.5200 0.8200 0.6300 0.7400
3NN 0.6441 0.0421 0.4800 0.8100 0.5900 0.7000
5NN 0.6277 0.0412 0.4800 0.7800 0.5700 0.6800
w5NN 0.6777 0.0414 0.5000 0.8300 0.6200 0.7300

Pima Indians Diabetes Database (768 observations, 8 predictive attributes,
two classes, training set of size 380, 1, 000 simulation runs):

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7096 0.0190 0.6421 0.7711 0.6868 0.7316
1NN 0.6707 0.0199 0.6132 0.7289 0.6447 0.6947
3NN 0.6999 0.0183 0.6447 0.7500 0.6763 0.7237
5NN 0.7190 0.0183 0.6553 0.7684 0.6947 0.7421
w5NN 0.6948 0.0188 0.6421 0.7474 0.6684 0.7184

Wine Recognition Data (178 observations, 13 predictive attributes, three
classes, training set of size 89, 1, 000 simulation runs):

Algorithm mean std. min max 0.1–frac. 0.9–frac.
PossIBL 0.7148 0.0409 0.5506 0.8652 0.6629 0.7640
1NN 0.7163 0.0408 0.5843 0.8652 0.6629 0.7640
3NN 0.6884 0.0407 0.5506 0.8315 0.6404 0.7416
5NN 0.6940 0.0392 0.5730 0.8090 0.6404 0.7416
w5NN 0.7031 0.0404 0.5730 0.8315 0.6517 0.7528

The experiments show that PossIBL achieves comparatively good results and
is always among the best algorithms. Thus, it can be said that a basic version
of PossIBL performs at least as well as the basic IBL (NN) algorithms. In
other words, possibilistic IBL is in no way inferior to “standard” IBL as a basis
for further improvements and sophisticated learning algorithms. This is exactly
what we wanted to show.

Due to the special setting of our experimental studies, especially the choice
of max as an aggregation operator and the use of a {0, 1}-valued similarity
measure over L, one might wonder how to explain the different performance of
PossIBL and the NN classifiers. In fact, in Section 4.4 it was argued that the
possibilistic NN decision derived from (20) is actually equivalent to the 1NN

rule when applying the maximum operator. It should hence be recalled that
PossIBL, as employed in the above experiments, involves an adaptation of the
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(absolute) possibilistic support that comes from stored cases, which in essence
is responsible for the differences.

A very interesting finding is the following: In the above examples, classification
performance of the kNN algorithm is generally an increasing or a decreasing
function of k. PossIBL, on the other hand, performs very well irrespective of
the direction of that tendency, i.e. regardless of whether a smaller or a larger
neighborhood should be called in. This can be taken as an indication of the
robustness of the possibilistic approach.

6.3 Statistical Assumptions and Robustness

Let us elaborate a little more closely on the aspect of robustness. Above, it has
been claimed that the possibilistic approach is more robust than other methods
against violations of statistical assumptions of independence (see page 29). This
is clearly true for the possibilistic estimation δx0 the informational content of
which remains meaningful even if data is not independent. Here, we would
like to provide experimental evidence for the supposition that the possibilistic
approach can indeed be advantageous from both, an estimation and a decision
making point of view, if the sample is not fully representative of the population.

The experimental setup is determined as follows: The instance space is defined
by X = R, the set of labels is L = {−1, +1}, the class probabilities are 1/2, the
conditional probability density of x given λx is normal with standard deviation
1 and mean λx. In a single simulation run, a random sample of size n = 20 is
generated, using class-probabilities of 1/2−α and 1/2+α, respectively (0 < α ≤
1/2). Based on the resulting training set, which is not “fully representative” in
the sense of [17], predictions are derived for 10 new instances. These instances,
however, are generated with the true class-probabilities of 1/2. For a fixed
value α and a fixed prediction method, a misclassification rate r(α) is derived
by averaging over 10,000 simulation runs.

Fig. 4 shows the misclassification rates for several methods. As was to be
expected, r(·) is an increasing function of the sample bias α. The best results
are of course obtained if the class-probabilities of the training set and the test
set coincide, that is for α = 0. The figure also reveals that the sensitivity of
the kNN classifier increases with k. On the one hand, it is true that a larger
k leads to better results for α close to 0. On the other hand, the performance
decreases more quickly than for smaller k, and k = 1 is to be preferred for α

close to 1/2. This finding can also be grasped intuitively: The larger k, the
more the kNN rule relies on frequency information, and the more it is affected
if this information is misleading.

Apart from kNN methods, we have tested PossIBL with ⊕ = ⊕P . The simi-
larity measure σX was defined by the triangle (x, y) 
→ max{0, 1− |x− y|/0.8}.
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Figure 4: Misclassification rates of kNN methods (left) and PossIBL (right, in
comparison with 1NN).

Interestingly enough, this approach yields the most satisfactory results. For α

close to 0 it is almost as good as the kNN rules with k > 1, and for α close
to 1/2 it equals the 1NN rule. Thus, the combination mode as realized by the
probabilistic sum (α, β) 
→ α + β − αβ turns out to be reasonable under the
conditions of this experiment. As already explained in Section 4.2, this oper-
ator produces a kind of saturation effect: It takes frequency information into
account, but only to a limited extent (the larger the current support already is,
the smaller the absolute increase due to a new observation). Thus, it is indeed
in-between the 1NN rule and the kNN rules for k > 1. Intuitively, this explains
our findings in the above experiment, especially that PossIBL is more robust
against the sample bias than kNN rules for k > 1.

6.4 Variation of the Aggregation Operator

An interesting question concerns the dependence of PossIBL’s performance on
the specification of the aggregation operator ⊕ in (25). To get a first idea of this
dependence, we have performed the same experiments as described in Section 6.2
above. Now, however, we have tested PossIBL with different t-conorms.

More precisely, we have specified a t-conorm by means of the parameter ρ in
(30), i.e. we have taken different aggregation operators from the Frank-family of
t-conorms. PossIBL was then applied to each data set with different operators
⊕ρ. The simulation results are presented in Appendix A. Each figure shows
the average classification performance of PossIBL (over 100 experiments) as a
function of the parameter ρ. Please note the different scaling of the axes for the
five data sets.

Confirming our previous considerations, the results show that in general differ-
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ent t-conorms are optimal for different applications. Still, PossIBL’s perfor-
mance is quite robust toward the variation of the aggregation operator. That is,
classification accuracy does not drop off too much when choosing a suboptimal
operator.

A very interesting finding is the observation that the parameter ρ = 0 and,
hence, the maximum operator is optimal if simultaneously the 1NN classifier
performs well in comparison with other kNN classifiers. If this is not the case, as
e.g. for the Balance Scale and the Pima Indians Diabetes data, parameters
ρ > 0 achieve better results. This finding is not astonishing and can also
be grasped intuitively. In fact, it was already mentioned that PossIBL with
⊕ = ⊕0 = max is closely related to the 1NN classifier, as both methods do fully
concentrate on the most relevant information. As opposed to this, aggregation
operators ⊕ = ⊕ρ with ρ > 0 combine the information from several neighbors
in much the same way as do kNN classifiers with k > 1.

6.5 Representation of Uncertainty

It was already mentioned that an important aspect of PossIBL concerns the
representation of uncertainty. The fact that PossIBL can adequately represent
the ignorance related to a decision problem is easily understood and does not
call for empirical validation. To get a first idea of PossIBL’s ability to represent
ambiguity we have derived approximations to two characteristic quantities, again
using the experimental setup as described in Section 6.1.

Let D1 denote the expected difference between the possibility degree of the
predicted label λest

x0
and the possibility degree of the second best label, given

that the prediction is correct:

D1
.= δx0 (λx0)− max

λ∈L,λ	=λx0

δx0(λ).

Moreover, let D0 denote the expected difference between the possibility degree
of the predicted label λest

x0
and the possibility degree of the actually true label

λx0 , given that λx0 	= λest
x0

:

D0
.= δx0

(
λest

x0

)− δx0 (λx0) .

Ideally, D0 is small and D1 is large: Wrong decisions are accompanied by a
large degree of uncertainty, as reflected by a comparatively large support of the
actually correct label. As opposed to this, correct decisions appear reliable, as
reflected by low possibility degrees assigned to all labels λ 	= λx0 .

The following table shows approximations to the expected values D0 and D1,
namely averages over 1, 000 experiments. As can be seen, the reliability of a
prediction is reflected very well by the possibilistic estimations:
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Database D0 D1

Balance Scale 0,094 0,529
Iris Plant 0,194 0,693
Glass Identification 0,181 0,401
Pima Indians Diabetes 0,211 0,492
Wine Recognition 0,226 0,721

7 Summary and Future Work

The idea underlying the method presented in this paper is to extend instance-
based learning by concepts and techniques from possibility theory and fuzzy
sets. Here, this idea has been realized in the form of a basic learning proce-
dure called PossIBL. Apart from discussing methodological aspects, the paper
has started the investigation of theoretical properties of this approach (under
standard statistical assumptions) and the validation of PossIBL by means of
experimental studies.

The application of possibility theory allows for realizing a graded version of
the similarity-based extrapolation principle underlying IBL. Not only does this
version appear very natural, it is also intuitively appealing. We have presented
a detailed comparison of the possibilistic extrapolation principle and the com-
monly used approach which can be endowed with a probabilistic basis. Even
though the two methods are based on quite different semantics, PossIBL can
formally be seen as an extension of the probabilistic approach. Indeed, it has
been shown that the former – at least in its general form– can mimic the latter.
Apart from that, the possibilistic approach has the following advantages:

• Knowledge representation: A possibilistic (instance-based) prediction is
more expressive than a probabilistic one. Especially, the former is able
to represent the absolute amount of evidential support as well as partial
ignorance, a point which seems to be of major importance in IBL. Fur-
thermore, the interpretation of aggregated degrees of individual support
in terms of (guaranteed) possibility (degrees of confirmation) is generally
less critical than the interpretation in terms of degrees of probability.

• Scope for applications: The possibilistic approach is more robust and ex-
tends the range of applications. Particularly, it makes no statistical as-
sumptions about the generation of data and less mathematical assump-
tions about the structure of the underlying instance space. In fact, Pos-

sIBL performs at least as well as standard NN techniques for typical
(real-word) data sets. Beyond that, however, it can also be applied to
data that violates certain statistical assumptions. Finally, the max–min
version of PossIBL can even be applied within a purely ordinal setting.
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• Support of extensions: The possibilistic method is more flexible and sup-
ports several extensions of IBL. This includes the adaptation of aggre-
gation modes in the combination of individual degrees of support, the
coherent handling of incomplete information, and the graded discounting
of atypical cases. Moreover, it allows one to complement the similarity-
based extrapolation principle by other inference procedures.

In the paper, we have outlined some extensions of the basic PossIBL algorithm
which deserve further investigation. This concerns particularly the ideas to au-
tomatically adapt a parameterized aggregation operator (Section 4.2.2) and to
complement lower possibility bounds by means of upper bounds (Section 4.2), as
well as the combination of instance-based and rule-based inference (Section 5.3).
These extensions are important topics of ongoing research, which aims at re-
alizing an efficient framework of plausible instance-based learning on the basis
of possibility theory and fuzzy sets. In this regard, let us again mention the
idea of supplementing IBL with fuzzy set-based modeling techniques. In fact,
the methods in [27] allow for guiding and extending instance-based learning
by means of domain knowledge and, thus, for combining knowledge and data
in a flexible way. Parts of the possibilistic IBL framework have already been
realized in connection with the PRETI project (Platform of Research and Ex-
perimentation in the Treatment of Information) maintained at the Institut de

Recherche en Informatique de Toulouse.
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A Simulation Results from Section 6.4

Experimental results for the Balance Scale data.
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Experimental results for the Iris Plant data.

Experimental results for the Glass Identification data.

Experimental results for the Pima Indian Diabetes data.
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Experimental results for the Wine Recognition data.

References

[1] D.W. Aha. Incremental, instance-based learning of independent and graded
concept descriptions. In Proceedings of the 6th International Workshop on
Machine Learning, pages 387–391, Ithaca, NY, 1989. Morgan Kaufmann.

[2] D.W. Aha. Tolerating noisy, irrelevant and novel attributes in instance-
based learning algorithms. International Journal of Man-Machine Studies,
36:267–287, 1992.

[3] D.W. Aha, editor. Lazy Learning. Kluwer Academic Publ., 1997.

[4] D.W. Aha, D. Kibler, and M.K. Albert. Instance-based learning algorithms.
Machine Learning, 6(1):37–66, 1991.

[5] T. Bailey and A.K. Jain. A note on distance-weighted k-nearest neigh-
bor rules. IEEE Transactions on Systems, Man, and Cybernetics, SMC–
8(4):311–313, 1978.
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