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1 Related Work

The problem of identifying common structural similarities among structured data has
simultaneously arisen from many fields of research, including pattern recognition, data
mining, structural bio- and chemoinformatics, database systems and many more. In par-
ticular, the use of graphs as a modeling concept for structured data has been proposed by
several authors. Since graphs are a rather general data structure, graph-based methods
are very flexible and widely applicable. Especially in life sciences, the analysis of struc-
tured data has gained increased attention in recent years. In the field of bioinformatics, for
example, graphs have not only been used for modeling molecular structures, but also for
modeling biological networks, such as regulatory networks [16], interaction networks [5, 88],
metabolic networks [36], or phylogenetic networks [31]. Moreover, graph-based models also
play an important role beyond the bioinformatics domain. For example, graphs can be
used to model other kinds of networks, such as social networks [87], HTML/XML docu-
ments [57], or the Internet itself [9]. Hence it is not surprising, that a plethora of methods
exist to tackle this problem.

Roughly speaking, one can distinguish a couple of generic principles of graph similarity
on which most of the existing approaches are based. A first concept that has been widely
used in chemoinformatics, pattern matching and computer vision considers two graphs
similar if they are isomorphic or share at least a common subgraph which leads to the
(sub)graph isomorphism problem, and closely related to this, the concept of the maximum
common subgraph. Instead of looking for a single, as large as possible compliance, one
may also look for many small compliances. Thus, it might be more reasonable to look for
a large number of smaller common substructures and define similarity accordingly which
is the basic idea of frequent subgraph mining. A third principle is based on the generic
concept of an edit distance. According to this principle, two graphs are similar if a few
modifications (edit operations) are sufficient to make the first one isomorphic to the second
one. As mentioned previously, our idea of aligning (multiple) graphs is actually closely
related to this conception of similarity. Note that this approach naturally supports the
idea of an approximate match between graphs and, thereby, of approximately conserved
patters, which makes it especially interesting for our purpose. In contrast, the first two
approaches focus primarily on exact matches between graphs. Although it is possible
to extend these concepts to approximate similarity, such extensions are often difficult to
realize algorithmically. Other approaches aim at representing graphs or structures by
defining certain representative features and calculate similarity accordingly.

Subsequently, we give a brief review of general approaches to graph comparison (cf. Sec-
tion 1.1) and then focus on those commonly used in bioinformatics that are most relevant
for protein structure analysis (cf. Section 1.2). Finally we give a short overview on alter-
native non-graph-based methods in the field of protein comparison (cf. Section 1.3).

1.1 General approaches to graph matching and comparison

Graph isomorphism and subgraph isomorphism are standard concepts for determining the
similarity of graphs in the field of pattern matching, for which standard algorithms have
long been known [79, 63]. Closely related to these concepts is the principle of common
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subgraphs. In chemoinformatics, the concepts of maximum common subgraph (MCS) [14]
and minimum common supergraph (mcs) [12] have been widely used for the comparison
of chemical compounds [61]. Obviously, both measures are related and can be used as
distance metrics on graphs, either separately, for example based on the MCS [13], or
combined into a single distance measure [20]. A variety of algorithms have been proposed
for the calculation of the MCS, some of them being exact algorithms using clique-detection
[10, 59] and, to a lesser extend, also backtracking algorithms [49, 66]. Other approaches
approximate the MCS, often based on combinatorial optimization techniques [83, 62] as
the problem is provably NP-hard, which in fact is a major problem for all these methods.
As a major disadvantage of isomorphism-based similarity is the requirement of exact node
matches between graphs, some approaches exist that extend the concept to approximate
graph matching techniques [15, 75, 89, 86]. However, these methods are likely to get stuck
in local optima.

Furthermore, the methods mentioned so far are generally limited to simple pairwise com-
parisons and concentrate on one large common subgraph. As pointed out earlier, frequent
subgraph mining aims at identifiying a large set of smaller common substructures instead
of concentrating on single large subgraph to define similarity on graphs, while offering the
opportunity to incorporate multiple graphs into the analysis. Early contributions in this
area employed computationally expensive inductive logic programming (ILP) [17, 74]. As
this is unfeasible for larger or a greater number of graphs approximate algorithms were
also proposed, but these early approaches could not guarantee to find all common sub-
structures [94, 27]. More advanced methods extend the well-known apriori algorithm [1]
for mining frequent item sets to this problem [32, 44, 45].

Faster approaches have also been proposed. Borgelt and Berthold developed an algorithm
that employs a depth-first tree search with structural pruning [7, 8]. ClosedGraph is an
approach that constraints itself by looking for connected closed subgraphs [90] and FFSM
utilizes efficient subgraph enumeration operations [30]. However, they all constrain the
patterns they allow to connected subgraphs. Although these approaches were successfully
employed in chemoinformatics, they are generally not applicable for larger graph structures
that may arise when analyzing protein structure data due to their complexity.

The above mentioned methods are in most cases dependent on exact matches, although
approximations have also been considered to a certain degree. However, as especially in
life sciences one has to deal with inconsistencies and noisy data, more powerful approxi-
mate and error-tolerant graph matching techniques are required. As pointed out earlier,
a powerful alternative to subgraph isomorphism is given by the concept of graph edit
distances as a similarity measure between graphs, originally introduced by Sanfeliu et al.
[65]. The distance or similarity between two graphs is given by the minimal sequence of
edit operations needed to transform one graph into the other. Edit operations are typically
insertions, deletions or label/weight changes of nodes, respectively edges. This is a more
general approach to graph matching than the subgraph methods mentioned above, in fact
it could be shown that graph and subgraph isomorphism as well as the MCS problem are
special instances of graph edit computations [11]. Our proposed method is also based on
this concept.

Most algorithms that utilize graph edit distances stem from the field of computer vision.
Here graph edit distances were used in combination with enumeration techniques and
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indexing methods [51, 50], probabilistic edit models [54, 64, 6] or hill climbing heuristics
[84]. A more recent approach uses binary linear programming to calculate graph matchings
based on graph edit distances [34]. A prominent approach that has been motivated by the
task of parsing three-dimensional structure databases of chemical compounds employs a
geometric hashing method introduced by [46] to find approximate matching counterparts
to a query molecule as indicated by the graph edit distance [85]. However, note that the
usefulness of graph edit distances strongly depend on the underlying cost function, more
specifically on the costs assigned to a certain edit operation [11].

Another approach builds upon graph edit distances as well but proposes the utilization of
a vector representation of graphs [58]. This is equivalent to the fourth principle mentioned
above, the feature based representation of structured objects. Of course many possibilities
to define features on graphs exist. The main challenge is here of course to cover all aspects
that might be relevant to the underlying problem. One approach to feature definition is
to look at local features in a graph, which leads to similarity measures based on local
rather than global similarity. Local approaches to graph comparison generally look for
the compliance of properties that refer to substructures or local components of a graph,
such as subgraphs, paths or walks. In contrast to subgraph isomorphism approaches, local
methods typically aim at the identification of a set of characteristic substructures for a
given group of graphs rather than the calculation of a single maximum common subgraph.

Main contributions to local similarity measures have recently been made in the field of
kernel-based machine learning [70]. A kernel function defined on a set X is an X ×X →
R mapping satisfying certain formal properties (including symmetry and positive semi-
definiteness), which makes them appealing both from a mathematical and algorithmic
point of view. Generally, a kernel function can also be viewed as a similarity function.
Several kernel functions on graphs have already been proposed, some of which are based
on walks or, more precisely, random walks [22]. Here, walks are generated in one graph
at random and then searched in the second graph. The number of random walks present
in both graphs can be used to define a similarity metric. Other kernels build upon ran-
dom walks [37] or are closely related to the concept, for example diffusion kernels [42].
Since the number of possible random walks can become extraordinary large, the use of
shortest paths has been proposed as an alternative [9]. Other graph kernels are based
on graph edit distances [55]. A number of kernels exist that are deliberately tailored to-
wards chemoinformatics, namely the Tanimoto kernel, the min-max kernel and the hybrid
kernel[60].

An interesting approach was suggested by Neuhaus and Bunke. They stated that graph
kernels and edit distance based matching algorithms tackle the problem of graph similarity
in a complementary way, and for given applications, either the first or the second approach
is superior to the other. They combined both priciples by enhancing a random walk kernel
by adding information based on graph edit distances [55]. Another kernel is the graphlet
kernel [9] that also makes use of substructures (a graphlet is a subgraph consisting of four
nodes) to calculate the similarity between two graphs. The related concept of an optimal
assignment kernel has recently been introduced in [21]. Here, the idea is to search for
an assignment of subcomponents of the graphs so that, for a given kernel function on
the subcomponents, the sum over all mutually assigned pairs becomes maximal. Strictly
speaking, the term ‘kernel’ is misleading here, since this measure does actually not fulfill
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the kernel properties [81].

Aside from kernel functions there exist alternative approaches that build upon different
feature representations of graphs. One line of works is focused on graph decomposition
methods. As every graph can be represented by its adjacency matrix, a number of decom-
position methods have been employed to solve the mapping problem of graphs. Several
approaches utilize an eigenvalue decomposition of the adjacency matrix [80]. Recently,
Kondor and Borgwardt introduced a set of invariant matrices derived from graphs by
Fourier transformation called the skew spectrum [43]. They showed that it could compete
with state-of-the-art graph kernels.

1.2 Graph methods in protein structure comparisons

The comparative analysis of protein structures is more challenging, since these struc-
tures can have a considerably larger size which renders many of the above mentioned
approaches useless for this task. Thus, a variety of specialized approaches exist that aim
at the identification of common three-dimensional patterns and substructures in proteins,
corresponding to relevant sites for the protein function, such as catalytic triads or protein
binding sites. Some of those approaches resort to principles and methods from graph
theory. Among these are the ASSAM algorithm by [4, 73], a method that exploits a pro-
tein surface database (ef-site) [39, 40], and the approach of [33], in which the amino acid
structure of a protein is represented as a set of chemical groups. Those approaches mostly
utilize clique detection algorithms to discover similar substructures in graphs.

A variety of algorithms exist that build upon a higher-level representation of proteins than
atom coordinates. Artymiuk et al. first proposed the use of secondary structure elements,
such as alpha helices and beta sheets in conjunction with additional information such as
orientation of these elements, to tackle the problem of aligning similar protein structures
[26, 52] by employing clique-detection algorithms. Based upon this idea, several other
algorithms have evolved that employ this strategy [48, 3].

Other approaches, originating from the database field, aim at the exploration of (po-
tentially very large) graph databases [67, 91, 95]. These methods usually employ exact
matching techniques which is problematic in life sciences, where structured data is usu-
ally noisy and incomplete. Therefore, query algorithms for the approximate matching
of graphs have been developed as well [92, 93]. Yet, these approaches still are not very
flexible, as they do not allow insertions or deletions of nodes. SAGA is a more versatile
approach that uses a flexible graph similarity model [77]. Although SAGA is very efficient
on small graphs, it is computationally expensive for large graphs. The recently proposed
TALE algorithm instead allows for the matching of even large graphs by using a novel
sophisticated indexing method [78].

A fundamental limitation of the previous approaches is their restriction to pairwise com-
parisons, i.e., the comparison of two graphs. Even though pairwise comparisons are suf-
ficient to define a similarity measure and, hence, to apply similarity- or distance-based
data analysis tools such as cluster analysis, they are not fully adequate for certain bio-
logical applications. In the functional analysis of proteins, for example, it is important to
find those features that are conserved across a whole family of related structures. This is
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why methods for multiple sequence alignment are of major importance in bioinformatics.
Obviously, high scoring pairwise alignments do in general not correspond to high scoring
alignments of multiple molecules [2].

Only a few approaches exist that are able to compare multiple protein structures or protein
binding sites. These approaches employ heuristics to overcome the inherent computational
complexity of the problem and make additional assumptions on the structure of the pro-
teins to simplify the problem [18, 68, 47]. However, as proteins can share similar functions
without common backbone folds, in conjunction with the fact that the heuristics can
easily miss small common substructures, these methods cannot guarantee to retrieve all
important features. Recently, Shatzky et al. proposed the MultiBind algorithm [69] that
defines the multiple alignment of protein substructures such as protein binding sites to
the problem of finding a multiple common point set of 3D points that does not rely on
additional information.

We like to emphasize that, despite their superficial resemblance, most of the methods
and algorithms for analyzing graphs are quite specialized and not universally applicable.
In fact, given the existence of many types of graphs (directed vs. undirected, labeled vs.
unlabeled, etc.), it is clear that a method suitable for one problem class might not be useful
for (and perhaps not even applicable to) another one. And even within a single class of
graphs, the suitability of an algorithm may strongly depend on concrete properties of the
problems given as input. For example, an algorithm working effectively on graphs with a
small number of different node labels may become ineffective if this number is too high.
This observation is quite important against the background of biological applications, since
these applications have special requirements. For example, our method of multiple graph
alignment is tailored toward the comparative analysis of a special type of graph structure
for modeling protein binding sites, and we are not aware of any other method equally
useful for this purpose.

1.3 Protein structure and fold comparison

The structural comparison of proteins and protein substructures is not limited to graph-
based approaches alone. We now give a short review of relevant approaches in this field
of application beyond the scope of graph-based models. Several approaches in this field of
research exist that are not based on graph representations of proteins (cf. Section 1.2) but
focus on alternative protein representations. A general goal of these algorithms is often
to derive an alignment that can be used to superimpose structures.

Some approaches focus on deriving suitable sequence alignments backed up by structure
information, such as the Euclidian distance between Cα-Atoms. Such alignments can be
used to generate a superposition of structures that can be evaluated by the root mean
square deviation (RMSD), which is basically a measure for the structural overlap of two
superimposed structures. It can be easily calculated by using the Kabsch algorithm [35]
and is often used as a quality measure for structural superpositions. The DALI method
for instance uses distance matrices of inter-residue distances based on the correspond-
ing Cα-Atoms to represent proteins and calculates an alignmnet of structural equivalent
residues by using a Monte Carlo approach [29, 28]. Other approaches (SSAP, MUTAL)
compare inter-atomic distance vectors for a certain residue [56, 76] or focus on pairwise
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residue distances [23, 24]. MUTAL even allows for the comparison of multiple structures.
Shindyalov et al. proposed an approach based on a combinatorial extension technique
(CE) [71]. The main drawback of these methods is their relatively huge computational
cost which renders them less suited for large-scale analyses.

Yet other approaches employ a higher level representation of protein structure and com-
pare secondary structure elements (SSE) of proteins. Those methods employ dynamic pro-
gramming, depth-first search, three-dimensional clustering or a Markov Transition Model
to align similar SSEs [72, 25, 41, 53, 82, 38]. Since there are only small numbers of SSE
present in a protein structure, algorithms that focus on this representation are usually
faster than those building upon more detailed representation. The concept of SSEs gives
also rise to a variety of graph based methods, as was mentioned above (cf. Section 1.2).
However, these methods resemble a fold-based similarity, as SSE are rather coarse features
that are not able to capture finer details. Other approaches aim to find the best superpo-
sition of two proteins by minimizing the surface between virtual protein backbones [19].
The metric of choice for this task is the RMSD-value.

2 Illustration of the Recombination Operator

The recombination operator is illustrated in Fig. 1 for the case ρ = 3. Three individuals
I1, I2, and I3 and two integers ρ1 and ρ2 in the range {1 . . .m} are chosen at random. All
individuals are split at the rows ρ1 and ρ2. The resulting blocks are merged into a new
individual (offspring). To preserve the ordering, columns are rearranged according to the
rows ρ1 and ρ2, respectively, whose indexes serve as pivot elements: For example, the first
framed subcolumn in I1 is copied to the offspring, and since the index in the pivot row ρ1

is 2, we have to search for the same index in this row in I2. This subcolumn (framed) is
also copied into the offspring. This procedure is repeated for all individuals and columns.

Figure 1: Recombination of ρ = 3 individuals

3 Comparing GAVEO and Hill-Climbing

Average scores and standard deviations for GAVEO and a simple hill climber (HC) are
shown in the following table:
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# graphs GAVEO HC
2 −22.2± 74.7 −191.4± 47.6
4 −98.4± 144.6 −1152.4± 87.4
8 −539.3± 352.2 −6484.2± 1156.4
16 −5888.0± 1626.4 −33004.0± 3249.4

4 Runtimes of GAVEO, GAVEO*, and the greedy approach

on the thermolysin data set

Figure 2: Runtimes in seconds (mean and standard deviation) of Greedy, GAVEO, and
GAVEO∗

5 Depiction of a pairwise Graph Alignment

Naturally, the depiction of a multiple graph alignment showing the real underlying struc-
tures, that were used in the experiments is difficult and prone to be overloaded. Hence we
only show a subpart of a multiple alignment consisting of two cavities and the mapping
that was calculated during the alignment process as an example in Fig. 3. The two struc-
tures resemble protein binding pockets of members of the thermolysin family, which we
used during our experiments. Shown are the amino acids bordering the cavities, as well as
the corresponding pseudocenters, which are depicted as spheres. Dotted lines indicate the
mapping of the graph alignments. The color of the lines indicates a node match (green)
or a node mismatch(red). Mappings of a node onto a dummy are omitted to improve the
clarity of the visualization.

6 Visualization of Multiple Graph Alignments

In Fig. 4, each tuple of an alignment corresponds to a segment of a circle. The outer
part of a segment provides information about the mutually assigned nodes: The nodes are
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Figure 3: Depiction of a part of an alignment of eight thermolysin structures calcu-
lated by GAVEO. Only two of the eight cavities are shown. Spheres represent pseu-
docenters with colors indicating the type of the pseudocenter (donor(red), acceptor(blue),
donor/acceptor(purple), aliphatic(cyan), aromatic(green), metal(orange), PI(grey)). Dot-
ted lines indicate mappings of nodes onto each other as calculated by GAVEO. Red indi-
cates a node mismatch, green indicates a node match.

sorted according to their frequency, and the list of frequencies thus obtained is shown as
a kind of color histogram, using a fixed order of colors (the frequency of dummy nodes
is shown in white). Thus, the more “pure” a segment is, i.e., the less colors it contains
and the more dominant a single color is, the better is the alignment. The lines in the
inner part of the circle provide information about the matches between edges. The length
of a line is proportional to the average fraction of mismatches (defined by a threshold)
between the edges that emerge from the nodes in this segment and their corresponding
match partners. Thus, a good alignment is almost unicolored at the outside and mostly
uncolored in the middle.

7 Illustration of Conserved Patterns

In the experiments on mining protein binding pockets, the GAVEO algorithm was ap-
plied to a data set consisting of 74 structures derived from the Cavbase database. Each
structure represents a protein cavity belonging to the protein family of thermolysin, bac-
terial proteases frequently used in structural protein analysis and annotated with the E.C.
number 3.4.24.27 in the ENZYME database.

Fig. 5 shows an example of a conserved pattern that was discovered by GAVEO (parame-
ters α = 1, β = 0.9, as explained in the paper). The pattern includes a metal pseudocenter
surrounded by several acceptor and donor/acceptor centers. As thermolysin is a bacterial
metalloprotease, it obviously captures the subpart of the cavity hosting the zinc ion of
thermolysin. The surrounding acceptor pseudocenters probably correspond to residues
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Figure 4: Visual representation of exemplary MGAs calculated by GAVEO (left) and
Greedy (right) for benzamidine structures. The bottom pictures show the same alignments
as the pictures in the middle, but the length of the left alignment (GAVEO) is adapted
to the length of the right one (Greedy) to increase comparability.
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Figure 5: Superposition of six thermolysin cavities showing conserved pseudocenters (α =
1, β = 0.9). Pseudocenter types: donor (red), acceptor (blue), donor/acceptor (purple),
aliphatic (cyan), aromatic (green), metal (orange), PI (grey).

interacting with the ion.
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