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Graded Multilabel Classification

Conventional Setting

Each instance belongs to a subset of the classes.

Graded Setting
Shooting
* * * completely
Racing
* * * almost
Fighting
* * * somewhat
Role-playing
* * * not at all

— An instance x € X can belong to each class A € L to a
certain degree; the set of relevant labels is a fuzzy subset
of the label set;

— A graded multilabel classifier is a mapping X — M¥%,
where M C |0, 1] (instead of M = {0, 1}) is the set of
graded membership degrees;

— An ordinal scale of membership degrees is often
preferred, i.e., M = {my, my, ..., m;} with
O=mp<m; <...<mp=1.

Vertical Reduction
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— One classifier h; : X — M is induced for each label \;
— h; is solving an ordinal classification problem;

— To exploit potential label dependencies, the problems
should be solved simultaneously, not independently.

Horizontal Reduction
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— A fuzzy subset of labels Ly can be represented

“horizontally” by its level-cuts | Ly, (e.g.,
L), = {1, A1s As});
— Ly can be recovered by Ly(\) = max{m; € M |\ € |Lx|n.};

— For each level a € {mq, my, ..., m;}, a mapping
p) X — 28 x — [L], is learned;

— Overall, we are solving £ conventional multilabel

classification problems;

— Consistency condition: A"™)(x) =1 = h™-1)(x) = 1.

Loss Functions
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1. How to extend existing loss functions to the graded
setting? 2. Given a graded loss function, what loss should
be minimized for the reduced sub-problems?

— For example, Hamming loss Ey(h(x), Lx) = 17| h(x) ALy
can be extended to a horizontal representation
E7(h(x), Lx) = ﬁ Zle\[h(x):miA[LX]mJ and an equivalent
vertical one Ej;(h(x), Ly) = iz Yoi0y AE(h(x)(A1), Lx(A));

— However, there are other losses that only exhibit a

horizontal or a vertical representation, but not both.

Experiments and Conclusions

Graded learning
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Binary learning

—> YES/NO

Binary test data
YES/ NO

— A dataset from social psychology;
— Iwo settings

- Binary learning: the whole data is binarized,;

- Graded learning: predictions and test data are binarized.
e Both, vertical and horizontal, decompositions work well;

e Training a learner on graded data can be useful even if
only a binary prediction is requested.
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