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Graded Multilabel Classification

Conventional Setting

Each instance belongs to a subset of the classes.

Graded Setting

Shooting

Racing

Fighting

Role-playing

completely

almost

somewhat

not at all

– An instance x ∈ X can belong to each class λ ∈ L to a
certain degree; the set of relevant labels is a fuzzy subset
of the label set;

– A graded multilabel classifier is a mapping X −→ML,
where M ⊆ [0, 1] (instead of M = {0, 1}) is the set of
graded membership degrees;

– An ordinal scale of membership degrees is often
preferred, i.e., M = {m0,m1, . . . ,mk}with
0 = m0 < m1 < . . . < mk = 1.

Vertical Reduction
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– One classifier hi : X −→M is induced for each label λi;

– hi is solving an ordinal classification problem;

– To exploit potential label dependencies, the problems
should be solved simultaneously, not independently.
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– A fuzzy subset of labels Lx can be represented
“horizontally” by its level-cuts [Lx]α (e.g.,
[Lx]m2

= {λ1, λ4, λ5});
– Lx can be recovered by Lx(λ) = max {mi ∈M |λ ∈ [Lx]mi

};
– For each level α ∈ {m1,m2, . . . ,mk}, a mapping
h(α) : X −→ 2L,x 7→ [L]α is learned;

– Overall, we are solving k conventional multilabel
classification problems;

– Consistency condition: h(mi)(x) = 1 ⇒ h(mi−1)(x) = 1.

Loss Functions
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Loss with vertical expression Loss with horizontal expression

1. How to extend existing loss functions to the graded
setting? 2. Given a graded loss function, what loss should
be minimized for the reduced sub-problems?

– For example, Hamming loss EH(h(x), Lx) = 1
|L||h(x)∆Lx|

can be extended to a horizontal representation
E∗H(h(x), Lx) = 1

k|L|
∑k

i=1|[h(x)]mi
∆[Lx]mi

| and an equivalent

vertical one E∗H(h(x), Lx) = 1
k|L|

∑|L|
i=1 AE(h(x)(λi), Lx(λi));

– However, there are other losses that only exhibit a
horizontal or a vertical representation, but not both.

Experiments and Conclusions
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– A dataset from social psychology;

– Two settings

- Binary learning: the whole data is binarized;
- Graded learning: predictions and test data are binarized.

• Both, vertical and horizontal, decompositions work well;

• Training a learner on graded data can be useful even if
only a binary prediction is requested.
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