December 6, 2021

Class Exercise 6

Exercise 1 : Existence of Optimum Cost Paths

Let G be a graph with $Prop_{A^*}(G)$ except that there are at most $K, K \in \mathbb{N}_0$, edges with edge cost 0. Prove that there is an optimum cost solution path for s in G if there is a solution path for s in G.

Exercise 2 : Cheapest Cost Paths

Prove the following statement:

Let be given a search graph G = (V, E) with $Prop_{A^*}(G)$ and a node set $V', V' \subseteq V$. If there is a path in G from node $n, n \in V$, to a node in V', then there is also a cheapest path in G from n to a node in V'.

Exercise 3 : Evaluation Function f = g + h in A*

Let n be a node in a search space graph that is explored by A* using heuristic h.

- (a) When can the value of h(n) change during A*-search?
- (b) When can the value of g(n) change during A*-search?

Exercise 4

Give a proof (by induction) for the following statement:

Let G be a search graph with $Prop_{A^*}(G)$. Then at any point in time before A* terminates it holds:

If $P_{s-\gamma}$ is a solution path in G, then is a shallowest OPEN node n on $P_{s-\gamma}$ and all predecessors of n on $P_{s-\gamma}$ are in CLOSED.

Exercise 5

Let G be a graph with $Prop_1(G)$ with edge cost values assigned, let path cost be sum of edge cost values and let h be a heuristic function for G. Answer the following questions.

- (a) Does A* terminate on finite graphs?
- (b) Does A* terminate on infinite graphs?
- (c) Is A^* complete on finite graphs even if h is not admissible?
- (d) Is A^* complete on infinite graphs even if h is not admissible?

Exercise 6 : A*: Formal Properties

Definition 1 (Constant-Bound Overestimation in *h*)

Let G be a search space graph with $Prop_{A^*}(G)$ and let $b, b \in \mathbb{R}$ be some constant. A heuristic function h is called overestimating by at most b iff

$$h(n) \le h^*(n) + b$$
 for all $n \in G$.

Lemma (($C^* + b$)-Bounded OPEN Node)

Let G be a search space graph with $\operatorname{Prop}_{A^*}(G)$ and let A* use some heuristic function h that overestimating by at most $b, b \in \mathbb{R}$. Then, for each optimum path $P^*_{s-\gamma} \in \mathbb{P}^*_{s-\Gamma}$ and at each point in time before A* terminates there is an OPEN node n' on $P^*_{s-\gamma}$ with $f(n') \leq C^* + b$.

Give a proof for the above lemma. (Follow the steps in the proof of the C^* -Bounded OPEN Node Lemma.)