Class Exercise 6

Exercise 1: Existence of Optimum Cost Paths

Let G be a graph with $\operatorname{Prop}_{A^{*}}(G)$ except that there are at most $K, K \in \mathbf{N}_{0}$, edges with edge cost 0 . Prove that there is an optimum cost solution path for s in G if there is a solution path for s in G.

Exercise 2 : Cheapest Cost Paths

Prove the following statement:
Let be given a search graph $G=(V, E)$ with $\operatorname{Prop}_{A^{*}}(G)$ and a node set $V^{\prime}, V^{\prime} \subseteq V$. If there is a path in G from node $n, n \in V$, to a node in V^{\prime}, then there is also a cheapest path in G from n to a node in V^{\prime}.

Exercise 3 : Evaluation Function $f=g+h$ in A*
Let n be a node in a search space graph that is explored by A^{*} using heuristic h.
(a) When can the value of $h(n)$ change during A^{*}-search?
(b) When can the value of $g(n)$ change during A^{*}-search?

Exercise 4

Give a proof (by induction) for the following statement:
Let G be a search graph with $\operatorname{Prop}_{A^{*}}(G)$. Then at any point in time before A^{*} terminates it holds:
If $P_{s-\gamma}$ is a solution path in G, then is a shallowest OPEN node n on $P_{s-\gamma}$ and all predecessors of n on $P_{s-\gamma}$ are in CLOSED.

Exercise 5

Let G be a graph with $\operatorname{Prop}_{1}(G)$ with edge cost values assigned, let path cost be sum of edge cost values and let h be a heuristic function for G. Answer the following questions.
(a) Does A* terminate on finite graphs?
(b) Does A^{*} terminate on infinite graphs?
(c) Is A^{*} complete on finite graphs even if h is not admissible?
(d) Is A^{*} complete on infinite graphs even if h is not admissible?

Exercise 6: A*: Formal Properties

Definition 1 (Constant-Bound Overestimation in h)
Let G be a search space graph with $\operatorname{Prop}_{A^{*}}(G)$ and let $b, b \in \mathbf{R}$ be some constant. A heuristic function h is called overestimating by at most b iff

$$
h(n) \leq h^{*}(n)+b \quad \text { for all } n \in G .
$$

Lemma (($\left.C^{*}+b\right)$-Bounded OPEN Node)

Let G be a search space graph with $\operatorname{Prop}_{A^{*}}(G)$ and let A* use some heuristic function h that overestimating by at most $b, b \in \mathbf{R}$. Then, for each optimum path $P_{s-\gamma}^{*} \in \mathbf{P}_{s-\Gamma}^{*}$ and at each point in time before A* terminates there is an OPEN node n^{\prime} on $P_{s-\gamma}^{*}$ with $f\left(n^{\prime}\right) \leq C^{*}+b$.

Give a proof for the above lemma. (Follow the steps in the proof of the C^{*}-Bounded OPEN Node Lemma.)

