Class Exercise 8

Exercise 1 : Differences between A* and WA*, DWA*, A_{ε}^{*}

Explain the difference between A* and WA* resp. DWA*, A* ε . What is the effect of that difference?

Exercise 2 : Relaxed Models

The algorithm A_{ε}^* uses two heuristic functions h and h_F . What is the advantage of using $h_F := h$? What is the advantage of using h_F with $h_F \neq h$?

Exercise 3

What restrictions must be placed on h_F so that A_{ε}^* remains ε -admissible and what is the reason for this? What follows from this for the construction of h_F ?

Exercise 4 : A^*_{ε} Search

Explain the approaches WA* and A_{ε}^* . Why is the completeness proof for WA* already contained in the completeness results for A* whereas the completeness proof A_{ε}^* is that complex?

Exercise 5 : Evaluation Function in WA*

Give an example of a search space graph G with Prop(G) and a heuristic function h. Let G contain a solution path. Does the following statement hold:

If h is admissible, then we have values $\varepsilon > 0$ such that f_{ε} is optimistic, i.e. $f_{\varepsilon}(n) \leq f^*(n)$ for all nodes n.