
Chapter S:V

V. Formal Properties of A*
❑ Properties of Search Space Graphs
❑ Auxiliary Concepts
❑ Roadmap
❑ Completeness of A*
❑ Admissibility of A*
❑ Efficiency of A*
❑ Monotone Heuristic Functions

S:V-1 Search Theory © Stein/Lettmann/Hagen 1998-2021



Formal Properties of A*
Outline

Task: Find a cheapest path from s to some node γ ∈ Γ.

Heuristic methods are often characterized as unpredictable:

❑ They work wonders most of the time.

❑ They may fail miserably some of the time.

Using simple tests on the heuristic function h we can guarantee that

❑ A* will find an optimum solution path, that

❑ a heuristic function h1 entails a higher efficiency in A* search than another
heuristic function h2, and that

❑ A* will never reopen nodes on CLOSED.

S:V-2 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
Prop0(G) Required Properties of G for Node Expansion as Basic Step

1. G is a state-space graph (directed OR graph).
2. G is implicitly defined.

(a) G has a single start state s and
(b) G has a computable function successors(.) returning successor states of the state given

as argument.

3. G is
::::::::
locally

:::::::
finite.

4. A set Γ of goal states in G is given; in general Γ will not be a singleton set.
Goal states are terminal states (states without successors) in G.

5. G has a computable function ⋆(.) returning true if a given state is a goal state.

Prop1(G) Additional Required Properties of G for Best-First Search

1. Evaluation function f is defined for G and assigns cost values to paths in G starting in s.
2. f is computable.
3. When f evaluates a solution bases Ps−n, the computed value does not depend on the time of

computation.
4. When f evaluates a solution bases Ps−n, f estimates optimum cost of solution paths that

have Ps−n as initial part.
5. A most promising solution base has a minimum f -value in a candidate set.

PropBF (G) Additional Required Properties of G for Solving Optimization Problems with BF*

1. f is cycle-avers. (Avoiding corrupted backpointer structures.)
2. f is order-preserving. (Avoiding path discarding problems.)

S:V-3 Search Theory © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1#search-graph4


Properties of Search Space Graphs
Non-Existence of Optimum Solution Paths

A search space graph may have solution paths, but no optimum solution path.

Example:

1
2

1
4

1
8

1
16

1
32

1

γ1

γ2

γ3

s

... ...

Observe that for each solution path a cheaper solution path can be found.

S:V-4 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
Problems in the Search for Optimum Solution Paths

A* search is not guaranteed to find solutions in every problem setting.

1

γ

1
2

1
4

1
8

1

s

...

1

s

... ...

1

1

1 1

-4
∞-many

s

...

Infinite path
Cycle with

negative weight
Infinite number
of successors

What are sufficient conditions to prove that A* will find an optimum solution?

S:V-5 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
PropA∗(G): Required Properties of G for A* Search

1. G has Prop0(G)
:::::::::::::::
properties.

2. The evaluation function f is based on the recursive cost function that
computes cost of a path as sum cost of its edges.

3. A computable heuristic function h gives for each node n in G a heuristic
estimate h(n) of the cheapest path cost from n to Γ.

4. Every edge (n, n′) in G has nonnegative cost c(n, n′).
Therefore, we assume h(n) ≥ 0 for all nodes n ∈ G and h(γ) = 0 for γ ∈ Γ.

5. G has a positive lower bound δ of edge costs.
I.e., there is a fixed δ such that for each edge (n, n′) ∈ G holds c(n, n′) ≥ δ > 0.

2. + 3. =⇒ f = g + h satisfies Prop1(G).
2. + 3. =⇒ f = g + h is order-preserving.
4. =⇒ f = g + h is cycle-avers.
5. =⇒ Existence of optimum solution paths w.r.t. f = g + h.
5. =⇒ Completeness of A* w.r.t. f = g + h.

S:V-6 Search Theory © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#search-space-prop-0


Remarks:

❑ In the context of A* search we do not consider further solution constraints, i.e., each path in G

from s to a node γ ∈ Γ is a solution path.

❑ The positive lower bound δ on edge cost values is chosen for the entire graph G.

❑ The existence of δ in Property 5 implies that the sum cost of a path can exceed any given
bound — if the path is long enough.
Property 5 can be replaced by a requirement that for each bound B there is a length bound
l(B) such that all paths longer than l(B) have at least cost B.

❑ Of course, a positive lower bound of edge costs entails that every edge has nonnegative cost.
However, Property 4 already guarantees the pruning of cyclic paths.

S:V-7 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
Existence of Optimum Solution Path

Lemma 54 (Path Existence Entails Optimum)

Let G be a search space graph with PropA∗(G). If there is a path in G from node n

to node n′ in G, then there is also a cheapest path from n to n′ in G.

S:V-8 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
Existence of Optimum Solution Path

Lemma 54 (Path Existence Entails Optimum)

Let G be a search space graph with PropA∗(G). If there is a path in G from node n

to node n′ in G, then there is also a cheapest path from n to n′ in G.

Proof (sketch)

1. Let P be a path from n to n′ in G with path cost C.

2. P has at most ⌈Cδ ⌉ edges since each edge on P contributes at least δ, with δ > 0.

3. Paths with more than ⌈Cδ ⌉ edges have a path cost value higher than C.

4. A path starting from n with more than ⌈Cδ ⌉ edges has higher path cost than P .

5. The number of paths in G starting from n with a given length l ≥ 0 is finite.
(Proof by induction using local finiteness of G.)

6. The number of paths starting from n with a length bound by ⌈Cδ ⌉ is finite.

7. From this finite set we can select all those paths from n to n′, including P .

8. Among this selection there is a path P ∗ from n to n′ with minimum cost.

9. P ∗ is a cheapest path from n to n′ in G since all path lengths have been considered.

S:V-9 Search Theory © Stein/Lettmann/Hagen 1998-2021



Properties of Search Space Graphs
Existence of Optimum Solution Path (continued)

Corollary 55 (Solution Existence Entails Optimum)

Let G be defined as before. If there is a solution path in G, then there is also an
optimum solution path in G.

Proof (sketch)

1. The proof is analogous to that of the previous lemma.

2. Starting point is an existing solution path Ps−γ in G with path cost C.

3. Select in Step 7 of the previous proof all paths from s to nodes in Γ, especially Ps−γ.

4. The cheapest path among these is an optimum solution path in G.

If there is a solution path in G with PropA∗(G), then the cheapest cost C∗ of a
solution path is uniquely determined. There can be more than one optimum
solution path.

S:V-10 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts
Search Space Graph versus Traversal Tree

When searching a graph with algorithm BF:

1. Information on the explored part of that graph is maintained by BF in form of a
subtree rooted in s, the traversal tree.

2. Discarding paths to a node does not affect completeness if solution paths can
be constructed analogously for the remaining paths.

3. Pruning cycles does not affect admissibility if the cost of the path without
cycle does not exceed the cost of the path with cycle.

4. Discarding more costly paths to a node does not affect admissibility if
order-preserving cost measures are used.

S:V-11 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Usually, a traversal tree will not contain all the information on the portion of G that has been
explored by A* so far. By path discarding some of the explored edges will be lost. Additionally,
nodes in CLOSED can be discarded if no back-pointer references to these nodes exist. In
order to simplify proofs, we will assume that A* does not perform cleanup-CLOSED.

❑ A search space graph is defined by the problem (i.e., all possible states along with all
possible operator applications). While a search space graph is constant, traversal trees
develop and change while A* is running.

S:V-12 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts
Illustration of Traversal Trees

n12n11n10

n9n8n7

n6n5n4

n2 n3n1

s s

n3n2

s

n4 n6n2

n5n8n7

n4

n3n2

s

n4 n6n2

n9n5n8n7

n6n4

n3n2

s

generated
nodes of the
search space
graph

Search space graph: Traversal trees at different points in time:

S:V-13 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ When reopening a CLOSED node with A*, all its successor nodes in the traversal tree have
invalid f -values stored with the nodes. Since A* uses an order-preserving evaluation
function, no OPEN node among the successors of a reopened node in the traversal tree will
be expanded using its invalid f -value; instead, the f -value will be corrected before expansion
by a series of further reopening operations.

❑ Q. Which edge cost values and which h-values result in the traversal trees given in the
illustration?

S:V-14 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions)

Let G be a search space graph with PropA∗(G) and start node s, let Γ denote the set
of all goal nodes in G, and let n1, n2 be nodes in G.

1. Pn1−n2 denotes a path from n1 to n2 in G.

2. Pn1−n2 denotes the set of all paths from n1 to n2 in G.

n1

n2

S:V-15 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Notations:

P Single (mathematical) objects are usually denoted by simple symbols (normal, italic).
P Sets of (mathematical) objects are usually denoted by bold symbols (bold, normal).
P Systems consisting of (different mathematical) objects are usually denoted by

calligraphic symbols.

❑ Although not shown in the drawing, Pn1−n2
may contain paths with cycles.

❑ If node n2 is not reachable from n1, the set Pn1−n2
is empty.

❑ Valid back-pointer paths are found by any best-first strategy that prunes cyclic paths; if the
cost of the path without the cycle is higher than that of the path with the cycle, the resulting
back-pointer-defined traversal tree structure built by BF* will be corrupt.

❑ At any stage of A* search the current traversal tree is the union of all back-pointer paths to
nodes on OPEN.

S:V-16 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions (continued))

Let G be a search space graph with PropA∗(G) and start node s, let Γ denote the set
of all goal nodes in G, and let n1, n2 be nodes in G.

3. k(n1, n2) denotes the cost of a cheapest path from n1 to n2.

k(n1, n2) = min{CP (n1) | P path from n1 to n2 in G}

4. P∗
n1−n2

denotes the set of cheapest cost paths from n1 to n2 in G.

n1

n2

S:V-17 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ If there is no path from n1 to n2, we define k(n1, n2) := +∞.

❑ In search space graphs without positive lower bound of edge cost values, k(n1, n2) has to be
defined as the infimum of the cost values for paths in Pn1−n2

. Since we consider only search
space graphs G with PropA∗(G), a cheapest cost path exists between all pairs of connected
nodes. Hence, Pn1−n2

̸= ∅ implies P∗
n1−n2

̸= ∅. [Lemma 54]

❑ For an edge (n, n′) in G we obviously have k(n, n′) ≤ c(n, n′): There may be a path cheaper
than the edge cost of (n, n′).

S:V-18 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions (continued))

Let G be . . . Let n be a node in G.

5. Pn−Γ denotes the set of paths from n to a node in Γ in G.

6. P∗
n−Γ denotes the set of cheapest paths in G from n to a node in Γ.

7. C∗ = min
γ∈Γ

k(s, γ) denotes the cost of a cheapest path from s to a node in Γ.

8. Γ∗ denotes the set of goal nodes that can be reached from s with cost C∗.

n

γ1

γ2

γ3

S:V-19 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ If G is a search space graph with PropA∗(G), then for each node γ ∈ Γ that is reachable from
n in G, there is a path from n to γ with cheapest cost k(n, γ).
Hence, Pn−Γ ̸= ∅ implies P∗

n−Γ ̸= ∅.

❑ Obviously, P∗
s−Γ = P∗

s−Γ∗ in all cases.

S:V-20 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions (continued))

Let G be . . . Let Ps−n be a path in G and n′ an intermediate node on Ps−n.

9. gPs−n(n
′) denotes the path cost of the initial part of Ps−n up to n′.

Let G be . . . Let Pn−γ be a path in Pn−Γ and n′ an intermediate node on Pn−γ.

10. hPn−γ(n
′) denotes the path cost of the latter part of Pn−γ from n′ to γ.

s

γ1 γ2

n

S:V-21 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions (continued))

Let G be . . . Let n be a node in G.

11. g∗(n) denotes the cost of a cheapest path from s to n, i.e., g∗(n) = k(s, n).

12. h∗(n) = min
γ∈Γ

k(n, γ) denotes the cost of a cheapest path from n to Γ.

13. f ∗(n) denotes the optimum cost over all solution paths constrained to go
through n, i.e., f ∗(n) = g∗(n) + h∗(n).

s

γ1 γ2

n

S:V-22 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ If there is no path from s to n, then g∗(n) = k(s, n) = +∞.

❑ h∗(n) is no estimate but the cost value of paths in P∗
n−Γ. Hence, C∗ = h∗(s).

❑ Ps−n ̸= ∅ implies P∗
s−n ̸= ∅.

❑ Pn−Γ ̸= ∅ implies P∗
n−Γ ̸= ∅.

❑ Paths in P∗
s−n have path cost g∗(n), paths in P∗

n−Γ have path cost h∗(n).

S:V-23 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Definition 56 (Specific Paths and Functions (continued))

Let G be . . . Let n be a node in G.

14. g(n) denotes the cost of the current back-pointer path PPs−n in A* search.

15. h(n) denotes the estimated cheapest cost of paths in Pn−Γ.

16. f (n) = g(n) + h(n) denotes the current value of f for node n in A* search.

s

γ1 γ2

n

S:V-24 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ During an A* search the values of g(n) and f(n) may decrease over time, whereas the values
h(n) are fixed for each node n.

❑ The current back-pointer path PPs−n is the cheapest path from s to n that was found by A* so
far.

❑ If PPs−n is the current back-pointer path of a node n and all nodes in PPs−n are in CLOSED
except perhaps n, then f(n) = gPPs−n

(n) + h(n).

❑ h(n) is used as an estimate for h∗(n).

❑ h(n) can be computed for all nodes, even if Pn−Γ = ∅, i.e., if there are no paths from n to
nodes in Γ.

S:V-25 Search Theory © Stein/Lettmann/Hagen 1998-2021



Auxiliary Concepts

Lemma 57 (Basic Observations)

Let G be a search space graph with PropA∗(G) and start node s, let Γ denote the set
of all goal nodes in G, and let γ be a goal node in Γ.

Then we have:

1. g(s) = g∗(s) = 0

2. h(γ) = h∗(γ) = 0

For a solution path Ps−γ with intermediate node n we have:

3. gPs−γ(n) ≥ g∗(n)

4. hPs−γ(n) ≥ h∗(n)

5. gPs−γ(γ) = hPs−γ(s)

For γ ∈ Γ∗ holds:

6. f ∗(s) = g∗(s)︸︷︷︸
0

+ h∗(s) = h∗(s) = C∗ = g∗(γ) = g∗(γ) + h∗(γ)︸ ︷︷ ︸
0

= f ∗(γ)

S:V-26 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Q. Consider Point 6 in Lemma 57. What is the difference between f ∗(n) for an intermediate
node n ̸∈ {s, γ}, compared to f ∗(s) or f ∗(γ)?

❑ Q. For which nodes n ∈ V holds f ∗(n) = C∗?

S:V-27 Search Theory © Stein/Lettmann/Hagen 1998-2021



Roadmap
Important Lemmas and Theorems

Termination of A*

Completeness of A*

Admissibility of A*

Efficiency of A*

Lemma "Shallowest OPEN Node"

Lemma "Shallowest OPEN Node on Optimum Path"

Lemma "C*-Bounded OPEN Node"

S:V-28 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Two important concepts for algorithms with regard to the returned solutions are
completeness and admissibility.

Recall:

❑
::::::::::::::
Definition

::::
of

:::::::::::::::::::::::
Completeness:

An algorithm is complete if it terminates with a solution if a solution exists.

❑
::::::::::::::
Definition

::::
of

::::::::::::::::::::
Admissibility:

An algorithm is admissible if it terminates with an optimum solution if a
solution exists.

For OR-graphs solutions are solution paths, for AND/OR-graphs solutions are
solution graphs. The above definitions apply to search algorithms for both types of
graphs.

S:V-29 Search Theory © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-basic-search1.pdf#definition-completeness
https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-informed-bf1.pdf#definition-admissibility


Remarks:

❑ The definition of admissibility does not consider the existence of an optimum solution.
Existence is implied by the search space graph properties PropA∗(G) for the case that a
solution path exists at all. [Corollary 55]

❑ Instead of “admissible” we may also use the phrase “optimum finding”.

S:V-30 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Termination

Lemma 58 (Termination on Finite Graph)

A* terminates on finite graphs G that have PropA∗(G).

S:V-31 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Termination

Lemma 58 (Termination on Finite Graph)

A* terminates on finite graphs G that have PropA∗(G).

Proof (sketch)

1. The number of cycle-free paths in a finite graph is finite.

2. Due to the positive edge costs A* will prune cyclic paths.

3. When A* expands a node, new nodes may be added to OPEN or not.

4. If a node n is added to OPEN, a new back-pointer path from s to n is used.

(This fact is obvious when a node is reached for the first time. However, a new (back-pointer)
path is also considered if a node on CLOSED is reopened or if a node on OPEN is updated.
The latter fact is not needed in the proof.)

5. A* never finds a back-pointer path twice, since A* reopens a node on CLOSED (or updates a
node on OPEN) only if it finds a strictly cheaper path to it. Discarded back-pointer paths
cannot be recovered.

6. At some point the reservoir of back-pointer paths is exhausted or OPEN is empty.

7. Only a finite number of node expansions can be performed by A*.

S:V-32 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

1. Since G has PropA∗(G), the evaluation function f is cycle-avers. Therefore, we only have to
consider cycle-free paths. Cyclic paths might be considered in the FOREACH loop in A*, but
such a solution base will never enter OPEN.

2. Obviously, the new back-pointer paths that are used in Point 4 are cycle-free.

3. The statement of the above lemma is true also for search space graphs with non-negative
edge cost values, or even more general for search space graphs with non-negative cycle
costs. A* will still prune cyclic paths for such graphs.

4. Termination on finite graphs holds for all BF algorithms that prune cyclic paths, i.e., that use
an evaluation function f which returns values for cyclic paths that are at least as high as the
values for the corresponding acyclic path.

S:V-33 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Shallowest OPEN Node

Definition 59 (Shallowest OPEN Node)

Let G be a search space graph with PropA∗(G), P = (n0, n1, n2, . . . , nl) with n0 = s,
be an arbitrary path in G, and let G be processed by A*. The node ni, 0 ≤ i ≤ l, is
the shallowest OPEN node on P iff (↔) ni is on OPEN and none of the nodes
n0, . . . , ni−1 is on OPEN.

The shallowest OPEN node on a path P is the first OPEN node which we come
across when following P starting from s.

To be precise we would need to define the shallowest OPEN node on P at some
point in time, before A* terminates. A point in time is whenever A* (re)enters the
main loop. At any point in time at least all nodes of an initial part of P are known
to A*.

S:V-34 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Shallowest OPEN Node (continued)

OPEN list

Traversal tree
generated by A*

nl

s

ni

Solved rest problem

Node on OPEN

Node on CLOSED

Shallowest
OPEN node

S:V-35 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Illustration of Shallowest OPEN Node

Consider the following search space graph G:

1

1
ns

1 1 11

2

1 10

γ
60

Solved rest problem

Node on OPEN

Node on CLOSED

Distinguish paths in G and back-pointer paths (found by A*):

❑ Q. How does A* search this graph?

❑ Q. Which is the shallowest OPEN node in which path at which point in time?

S:V-36 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Illustration of Shallowest OPEN Node

Consider the following search space graph G:

1

1
ns

1 1 11

2

1 10

γ
60

Solved rest problem

Node on OPEN

Node on CLOSED

h=50h=40h=30h=20

h=10

h=15

h=11

h=10 h=0

Distinguish paths in G and back-pointer paths (found by A*):

❑ Q. How does A* search this graph?

❑ Q. Which is the shallowest OPEN node in which path at which point in time?

S:V-37 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Illustration of Shallowest OPEN Node

Consider the following search space graph G:

1

1
ns

1 1 11

2

1 10

γ
60

Solved rest problem

Node on OPEN

Node on CLOSED

h=50h=40h=30h=20

h=10

h=15

h=11

h=10 h=0

Distinguish paths in G and back-pointer paths (found by A*):

❑ Q. How does A* search this graph?

❑ Q. Which is the shallowest OPEN node in which path at which point in time?

S:V-38 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Illustration of Shallowest OPEN Node

Consider the following search space graph G:

1

1
ns

1 1 11

2

1 10

γ
60

Solved rest problem

Node on OPEN

Node on CLOSED

h=50h=40h=30h=20

h=10

h=15

h=11

h=10 h=0

Distinguish paths in G and back-pointer paths (found by A*):

❑ Q. How does A* search this graph?

❑ Q. Which is the shallowest OPEN node in which path at which point in time?

S:V-39 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Shallowest OPEN Node (continued)

Lemma 60 (Shallowest OPEN Node ⋆)

Let G be a search space graph with PropA∗(G) and let Ps−n be a path in G. Then at
any point in time before A* terminates it holds:

If not all nodes on Ps−n are in CLOSED, then there is a shallowest OPEN node n′

on Ps−n and all predecessors of n′ on Ps−n are in CLOSED.

S:V-40 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*
Shallowest OPEN Node (continued)

Lemma 60 (Shallowest OPEN Node ⋆)

Let G be a search space graph with PropA∗(G) and let Ps−n be a path in G. Then at
any point in time before A* terminates it holds:

If not all nodes on Ps−n are in CLOSED, then there is a shallowest OPEN node n′

on Ps−n and all predecessors of n′ on Ps−n are in CLOSED.

Proof (sketch)

1. The basic observation is that whenever an OPEN node n′ on Ps−n is moved to CLOSED, a
successor node n′′ of n′ on Ps−n is added to OPEN if it was neither in OPEN nor in CLOSED.

2. So, at any point in time a CLOSED node on Ps−n (except n) is followed by a node on Ps−n

which is either in OPEN or in CLOSED.

3. By induction this result can be extended to non-empty sequences of CLOSED nodes.

4. Therefore, at any point in time a CLOSED node is followed in Ps−n by a sequence of CLOSED
nodes followed by an OPEN node in Ps−n or all following nodes in Ps−n are in CLOSED.

5. Initially, s on OPEN. s is shallowest OPEN node on Ps−n and s has no predecessors.

6. At all following points in time s is in CLOSED and the lemma follows from 4.

S:V-41 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ In order to include the case that a function cleanup_closed is integrated into A*, we must use
the clumsy formulation "n′ has been selected for expansion at some previous point in time"
instead of "n′ is in CLOSED". Additionally, we have to take into consideration that nodes in
CLOSED are discarded not before it has become clear that nodes in OPEN reachable by
them are already reached by paths that are at least as cheap.

⋆ The elegance of this Lemma becomes obvious at second sight only: It states a property that
holds for all paths that start with node s and that holds always.

⋆ The importance of this Lemma results from the fact that it rules out the “Fail”-case for A* if we
consider a path Ps−γ : either we select the last node γ of Ps−γ from OPEN or there “is still
work to do” (= a predecessor node of γ on Ps−γ is on OPEN).

S:V-42 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Lemma 61 (Completeness for Finite Graph)

A* is complete for finite graphs G with PropA∗(G).

S:V-43 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Lemma 61 (Completeness for Finite Graph)

A* is complete for finite graphs G with PropA∗(G).

Proof (sketch)

1. Assume that there is a solution path Ps−γ.

2. At any point before A* terminates there is a shallowest OPEN node on Ps−γ or all nodes on
Ps−γ have been selected for expansion. [Lemma 60]

3. If there is a shallowest OPEN node on Ps−γ, A* will not terminate with “Fail”.

4. If all nodes on Ps−γ have been selected for expansion, also γ has been selected for
expansion and A* terminates with solution γ.

S:V-44 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Completeness of BF algorithms can be proven analogously if cycles are pruned.

❑ The proof uses the arguments in the proof of the above lemma for the special case of solution
paths. [Lemma 60]

S:V-45 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Lemma 62 (Shallowest OPEN Node on Path ⋆)

Let G be a search space graph with PropA∗(G) and let Ps−n be a path in G. Then at
any point in time before A* terminates the following holds: If not all nodes in Ps−n

are in CLOSED, then we have for the shallowest OPEN node n′ on Ps−n

g(n′) ≤ gPs−n(n
′)

S:V-46 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Lemma 62 (Shallowest OPEN Node on Path ⋆)

Let G be a search space graph with PropA∗(G) and let Ps−n be a path in G. Then at
any point in time before A* terminates the following holds: If not all nodes in Ps−n

are in CLOSED, then we have for the shallowest OPEN node n′ on Ps−n

g(n′) ≤ gPs−n(n
′)

Proof (sketch)

1. If n′ is the shallowest OPEN node on Ps−n, then all its predecessors on that path have been
expanded and are in CLOSED.

2. For an arbitrary point in time before A* terminates we have:

The successor of an initial sequence of CLOSED nodes on path Ps−n is reached with
g(n′) ≤ gPs−n

(n′) (i.e., the back-pointer path PPs−n′ is at most as costly as Ps−n up to n′).

More formally:
If (s, n1, . . . , ni, ni+1) is the initial part of Ps−n and s, n1, . . . , ni are in CLOSED, then it holds
g(ni+1) ≤ gPs−n

(ni+1).

(Proof by induction.)

S:V-47 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Theorem 63 (Completeness)

A* is complete for infinite graphs G with PropA∗(G).

S:V-48 Search Theory © Stein/Lettmann/Hagen 1998-2021



Completeness of A*

Theorem 63 (Completeness)

A* is complete for infinite graphs G with PropA∗(G).

Proof (sketch)

1. Assume that there is a solution path Ps−γ.

2. At any point before A* terminates there is always a shallowest OPEN node on Ps−γ, and
hence A* will not terminate with “Fail”. [Lemma 60]

3. For all nodes n on Ps−γ there is a value gPs−γ
(n) + h(n). Define M := max

n∈Ps−γ

(gPs−γ
(n) + h(n)).

4. At time t, the f -value of the shallowest OPEN node nt on Ps−γ is at most M ,
f(nt) ≤ gPs−γ

(nt) + h(nt) ≤ M . [Lemma 62]

5. A* will never expand a node nM with f(nM) > M , since all nodes on Ps−γ including γ have to
be expanded before.

6. The set of paths in G starting in s with path cost of at most M is finite. [Lemma 54, Point 6]

7. After finitely many node expansions, A* will choose a goal node (not necessarily γ) from
OPEN and terminate with a solution.

S:V-49 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Within the proof we exploit the fact that path cost values of infinite paths are unbounded, i.e.,
for each bound B there is a length lB such that all paths in G starting from s with length lB
have at least path cost B.

❑ In the proof of Theorem 63 the selection strategy of A* for nodes on OPEN is used. An
analogous statement holds for algorithm A*ε which is also based on the evaluation function
f = g + h. [

::::::::::
Definition

:::
of

::::
A*ε] In Steps 5 and 6 of an analogous proof for A*ε we would use

(1 + ε)M instead of M .

❑ In the book of Pearl this theorem is denoted as Theorem 1. [Pearl 1984]

S:V-50 Search Theory © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-astar-relaxed1.pdf#definition-a-star-epsilon


Admissibility of A*

Lemma 64 (Node Cost on Optimum Path)

For a search space graph G with PropA∗(G) and a node n on some optimum path
P ∗
s−γ ∈ P∗

s−Γ in G holds:
f ∗(n) = g∗(n) + h∗(n) = C∗

S:V-51 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Lemma 64 (Node Cost on Optimum Path)

For a search space graph G with PropA∗(G) and a node n on some optimum path
P ∗
s−γ ∈ P∗

s−Γ in G holds:
f ∗(n) = g∗(n) + h∗(n) = C∗

Proof (sketch)

1. Let P ∗
s−γ ∈ P∗

s−Γ be an optimum solution path which contains n.

2. Therefore, gP ∗
s−γ

(n) + hP ∗
s−γ

(n) = C∗

3. Due to the optimality of g∗ and h∗ it holds that: g∗(n) ≤ gP ∗
s−γ

(n) and h∗(n) ≤ hP ∗
s−γ

(n)

4. If we had gP ∗
s−γ

(n) > g∗(n) or hP ∗
s−γ

(n) > h∗(n), we could construct a cheaper path from s to γ,
using the cheapest path from s to n and the cheapest path from n to γ. This would be a
contradiction to P ∗

s−γ ∈ P∗
s−Γ.

5. Hence, g∗(n) = gP ∗
s−γ

(n) and h∗(n) = hP ∗
s−γ

(n) and we have g∗(n) + h∗(n) = C∗.

S:V-52 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ In the book of Pearl this lemma is denoted as Equation 3.4. [Pearl 1984]

S:V-53 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Corollary 65 (Implications of Lemma 64)

Let G be a search space graph with PropA∗(G).

1. If a node n is not contained in any optimum solution path, then f ∗(n) > C∗.

2. If a path P is optimum, then every part of P is optimum.

Point 2 states that the search problem exhibits the principle of optimality (or
optimum substructure) used in dynamic programming (Bellman).

The principle of optimality is fulfilled due to the fact that f ∗ can be defined
recursively, using an additive (and thus order-preserving) cost measure.

This in turn means, that if f ∗ guides our search, A* search will never deviate from
optimum paths. Unfortunately, f ∗ is not at our disposal.

S:V-54 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Definition 66 (Admissibility of h)

Let G be a search space graph with PropA∗(G). A heuristic function h is called
admissible iff (↔)

h(n) ≤ h∗(n) for all n ∈ G.

Thus an admissible heuristic function h provides an optimistic estimate of the
cheapest solution cost for a node in G.

Similarly, the A* evaluation function f = g + h with admissible h provides an
optimistic estimate of the cheapest solution cost for s with respect to the current
traversal tree.

S:V-55 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Corollary 67 (Shallowest OPEN Node on Optimum Path [Lemma 62]
⋆)

Let G be a search space graph with PropA∗(G) and let P ∗
s−n be an optimum path

in G. Then at any point in time before A* terminates the following holds: If not all
nodes in P ∗

s−n are in CLOSED, then we have for the shallowest OPEN node n′

on P ∗
s−n

g(n′) = g∗(n′)

S:V-56 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Corollary 67 (Shallowest OPEN Node on Optimum Path [Lemma 62]
⋆)

Let G be a search space graph with PropA∗(G) and let P ∗
s−n be an optimum path

in G. Then at any point in time before A* terminates the following holds: If not all
nodes in P ∗

s−n are in CLOSED, then we have for the shallowest OPEN node n′

on P ∗
s−n

g(n′) = g∗(n′)

Proof (sketch)

1. Let n′ be the shallowest OPEN node on P ∗
s−n.

2. Then we have g(n′) ≤ gP ∗
s−n

(n′) [Lemma 62]

3. Since P ∗
s−n is an optimum path, we have gP ∗

s−n
(n′) = g∗(n′).

4. Altogether we have g(n′) = g∗(n′). [Lemma 57]

5. A* found an optimum back-pointer path PPs−n′ to n′ and PPs−n′ will not be changed later.

S:V-57 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

⋆ The Lemma states that nodes on optimum paths are reached by A* with optimum cost when
they become shallowest OPEN node on that path for the first time. Put another way, the cost
of a shallowest OPEN node on an optimum path is afterwards never changed by A*.

❑ To better understand the Corollary, construct a search space graph with a traversal tree such
that an optimum path P ∗

s−γ has more than one OPEN node. Hint: a node can be reached on
some non-optimum path (long) before its predecessors on the optimum path are expanded.

❑ Q. Why does the path PPs−n′ not always form a subpath of P ∗
s−n?

❑ In the book of Pearl this lemma is denoted as Lemma 2. [Pearl 1984]

S:V-58 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Lemma 68 (C∗-Bounded OPEN Node)

Let G be a search space graph with PropA∗(G) and let A* use some admissible
heuristic function h. For each optimum path P ∗

s−γ ∈ P∗
s−Γ and at each point in time

before A* terminates there is an OPEN node n′ on P ∗
s−γ with f (n′) ≤ C∗.

S:V-59 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Lemma 68 (C∗-Bounded OPEN Node)

Let G be a search space graph with PropA∗(G) and let A* use some admissible
heuristic function h. For each optimum path P ∗

s−γ ∈ P∗
s−Γ and at each point in time

before A* terminates there is an OPEN node n′ on P ∗
s−γ with f (n′) ≤ C∗.

Proof (sketch)

1. Let P ∗
s−γ = s, n1, n2, . . . , n

′, . . . , γ be an optimum solution path, i.e., P ∗
s−γ ∈ P∗

s−Γ.

2. Since γ is a goal node, there is at any point in time a shallowest OPEN node n′ on P ∗
s−γ

before A* terminates. [Lemma 60]

3. n′ is optimally reached by A*, i.e., g(n′) = g∗(n′). [Corollary 67]

4. Using the admissibility of h we have
f(n′) = g(n′) + h(n′) = g∗(n′) + h(n′) ≤ g∗(n′) + h∗(n′) = f ∗(n′).

5. Since n′ ∈ P ∗
s−γ we have f ∗(n′) = C∗. [Lemma 64]

6. Altogether we have f(n′) ≤ C∗.

S:V-60 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ Since in the proof of Lemma 68 no selection strategy for nodes on OPEN is used, an
analogous statement holds for BF* algorithms based on the evaluation function f = g + h,
using a different selection strategy such as A*ε. [

::::::::::
Definition

:::
of

::::
A*ε]

❑ In the book of Pearl this lemma is denoted as Lemma 1 and Nilsson Result 2 respectively.
[Pearl 1984]

S:V-61 Search Theory © Stein/Lettmann/Hagen 1998-2021

https://cs.uni-paderborn.de/fileadmin/informatik/fg/is/Teaching/slides-le/search/unit-en-astar-relaxed1.pdf#definition-a-star-epsilon


Admissibility of A*

Theorem 69 (Admissibility [Hart, Nilsson, Raphael 1968,1972])

A* is admissible when using an admissible heuristic function h on search space
graphs G with PropA∗(G).

S:V-62 Search Theory © Stein/Lettmann/Hagen 1998-2021



Admissibility of A*

Theorem 69 (Admissibility [Hart, Nilsson, Raphael 1968,1972])

A* is admissible when using an admissible heuristic function h on search space
graphs G with PropA∗(G).

Proof (sketch)

1. Let there be a solution path in G, i.e. P∗
s−Γ ̸= ∅.

2. A* is complete and will terminate with a solution path.

3. Assume A* terminates returning a non-optimum goal node γ ∈ Γ with f(γ) = g(γ) > C∗.

4. A* selected γ from OPEN.

5. Thus f(n) ≥ f(γ) > C∗ for all n ∈ OPEN.

6. This contradicts to Lemma 68 which states that there is an OPEN node n′ with f(n′) ≤ C∗.

S:V-63 Search Theory © Stein/Lettmann/Hagen 1998-2021



Remarks:

❑ This result holds for any BF* algorithm that uses an optimistic heuristic evaluation function f

that is order-preserving and allows pruning of cyclic paths for search space graphs where
path cost values of infinite paths are unbounded.

❑ In the book of Pearl this lemma is denoted as Theorem 2 and Nilsson Result 4 respectively.
[Pearl 1984]

S:V-64 Search Theory © Stein/Lettmann/Hagen 1998-2021


	TOC Search Theory Pt. 1
	Formal Properties of A*
	Properties of Search Graphs
	Auxiliary Concepts
	Roadmap
	Completeness of A*
	Admissibility of A*


